Задача распределения ресурсов. Динамическое программирование. Задача оптимального распределения ресурсов

Имеется определенное количество ресурсов s 0 , которое необходимо распределить между n хозяйствующими субъектами на текущую деятельность в течение рассматриваемого периода (месяц, квартал, полугодие, год и т.д.) с целью получения совокупной максимальной прибыли. Размеры вложений ресурсов x i (;) в деятельность каждого хозяйствующего субъекта кратны некоторой величине h. Известно, что каждый хозяйствующий субъект в зависимости от объема используемых средств x i за рассматриваемый период приносит прибыль в размере f i (x i) (не зависит от вложения ресурсов в другие хозяйствующие субъекты).

Представим процесс распределения ресурсов между хозяйствующими субъектами как n-шаговый процесс управления (номер шага совпадает с условным номером хозяйствующего субъекта). Пусть s k () - параметр состояния, т.е. количество свободных средств после k-го шага для распределения между оставшимися (n - k) хозяйствующими субъектами. Тогда уравнения состояний можно записать в следующем виде:

Введем в рассмотрение функцию - условно оптимальная совокупная прибыль, полученная от k-го, (k+1) - го, …, n-го хозяйствующих субъектов, если между ними оптимальным образом распределялись ресурсы в объеме s k-1 (). Множество возможных управленческих решений относительно размера распределяемых ресурсов на k-ом шаге можно представить следующим образом: .

Тогда рекуррентные уравнения Р.Э. Беллмана (обратная схема) будут иметь вид:

Пример. Имеется определенное количество ресурсов s 0 =100, которое необходимо распределить между n=4 хозяйствующими субъектами на текущую деятельность в течение рассматриваемого периода (месяц) с целью получения совокупной максимальной прибыли. Размеры вложений ресурсов x i (;) в деятельность каждого хозяйствующего субъекта кратны величине h=20 и заданы вектором Q. Известно, что каждый хозяйствующий субъект в зависимости от объема используемых средств x i за рассматриваемый период приносит прибыль в размере f i (x i) () (не зависит от вложения ресурсов в другие хозяйствующие субъекты):

Необходимо определить, какой объем ресурсов нужно выделить каждому предприятию, чтобы суммарная прибыль была наибольшей.

Решение. Составим рекуррентные уравнения Беллмана (обратную схему):

Определим условные максимумы в соответствии с (13), результаты расчетов представлены в таблице 1.

Таблица 1. Расчет условных оптимумов

22+20=42

22+33=55

17+42=59

22+46=68

17+55=72

14+59=73

67+20=87

По результатам условной оптимизации определим оптимальное распределение ресурсов:


Таким образом, оптимальное распределение ресурсов:

которое обеспечит наибольшую прибыль в размере 87 усл. ден. ед.

Ответ: оптимальное распределение ресурсов: , которое обеспечивает наибольшую прибыль в 87 усл. ден. ед.

Вывод

Динамическое программирование - это область математического программирования, включающая совокупность приемов и средств для нахождения оптимального решения, а также оптимизации каждого шага в системе и выработке стратегии управления, то есть процесс управления можно представить, как многошаговый процесс. Динамическое программирование, используя поэтапное планирование, позволяет не только упростить решение задачи, но и решить те из них, которым нельзя применить методы математического анализа. Упрощение решения достигается за счет значительного уменьшения количества исследуемых вариантов, так как вместо того, чтобы один раз решать сложную многовариантную задачу, метод поэтапного планирования предполагает многократное решение относительно простых задач. Планируя поэтапный процесс, исходят из интересов всего процесса в целом, т.е. при принятии решения на отдельном этапе всегда необходимо иметь в виду конечную цель. Однако динамическое программирование имеет и свои недостатки. В отличие от линейного программирования, в котором симплексный метод является универсальным, в динамическом программировании такого метода не существует. Каждая задача имеет свои трудности, и в каждом случае необходимо найти наиболее подходящую методику решения. Недостаток динамического программирования заключается также в трудоемкости решения многомерных задач. Задача динамического программирования должна удовлетворять два условия. Первое условие обычно называют условием отсутствия последействия, а второе - условием аддитивности целевой функции задачи. На практике встречаются такие задачи планирования, в которых заметную роль играют случайные факторы, влияющие как на состояние системы, так и на выигрыш. Существует разница между детерминированной и стохастической задачами динамического программирования. В детерминированной задаче оптимальное управление является единственным и указывается заранее как жесткая программа действий. В стохастической задаче оптимальное управление является случайным и выбирается в ходе самого процесса в зависимости от случайно сложившейся ситуации. В детерминированной схеме, проходя процесс по этапам от конца к началу, тоже находится на каждом этапе целый ряд условных оптимальных управлений, но из всех этих управлений, в конечном счете осуществлялось только одно. В стохастической схеме это не так. Каждое из условных оптимальных управлений может оказаться фактически осуществленным, если предшествующий ход случайного процесса приведет систему в соответствующее состояние. Принцип оптимальности является основой поэтапного решения задач динамического программирования. Типичными представителями экономических задач динамического программирования являются так называемые задачи производства и хранения, задачи распределения капиталовложений, задачи календарного производственного планирования и другие. Задачи динамического программирования применяются в планировании деятельности предприятия с учетом изменения потребности в продукции во времени. В оптимальном распределении ресурсов между предприятиями в направлении или во времени. Описание характеристик динамического программирования и типов задач, которые могут быть сформулированы в его рамках, по необходимости должно быть очень общим и несколько неопределенным, так как существует необозримое множество различных задач, укладывающихся в схему динамического программирования. Только изучение большого числа примеров дает отчетливое понимание структуры динамического программирования.

Назначение сервиса . Данный сервис предназначен для решения задачи оптимального распределения инвестиций в онлайн режиме. Результаты вычислений оформляются в отчете формата Word (см. пример оформления).
Такого рода задачи основаны на функции Беллмана и при решении используется метод обратной прогонки (см. Типовые задания). Также можно воспользоваться сервисом Процедура прямой прогонки .

Инструкция . Выберите количество предприятий и количество строк (количество вариантов эффективного вложения), нажмите Далее (см. Пример заполнения). Если доход и остатки предприятий задан в виде функций f(x) и g(x) , задача решается через этот калькулятор .

Количество предприятий 2 3 4 5 6 7 8 9 10
Количество строк (количество вариантов эффективного вложения) 2 3 4 5 6 7 8 9 10

Пример №1 . Определите оптимальный план расширения производства трех предприятий, если известна их прибыль в год при отсутствии вложений и при инвестировании 1, 2, 3 или 4 млн. Определите, при каком инвестировании будет максимальный процент прироста прибыли.

f1 f2 f3 x i
40 30 35 0
90 110 95 1
395 385 270 2
440 470 630 3
620 740 700 4

I этап. Условная оптимизация .
1-ый шаг. k = 3.

e 2 u 3 e 3 = e 2 - u 3 f 3 (u 3) F* 3 (e 3) u 3 (e 3)
1 0 1 35
1 0 95 95 1
2 0 2 35
1 1 95
2 0 270 270 2
3 0 3 35
1 2 95
2 1 270
3 0 630 630 3
4 0 4 35
1 3 95
2 2 270
3 1 630
4 0 700 700 4

2-ый шаг. k = 2.

e 1 u 2 e 2 = e 1 - u 2 f 2 (u 2) F* 2 (e 1) F 1 (u 2 ,e 1) F* 2 (e 2) u 2 (e 2)
1 0 1 30 95 125 125 0
1 0 110 0 110
2 0 2 30 270 300
1 1 110 95 205
2 0 385 0 385 385 2
3 0 3 30 630 660 660 0
1 2 110 270 380
2 1 385 95 480
3 0 470 0 470
4 0 4 30 700 730
1 3 110 630 740 740 1
2 2 385 270 655
3 1 470 95 565
4 0 740 0 740

3-ый шаг. k = 1.

e 0 u 1 e 1 = e 0 - u 1 f 1 (u 1) F* 1 (e 0) F 0 (u 1 ,e 0) F* 1 (e 1) u 1 (e 1)
1 0 1 40 125 165 165 0
1 0 90 0 90
2 0 2 40 385 425 425 0
1 1 90 125 215
2 0 395 0 395
3 0 3 40 660 700 700 0
1 2 90 385 475
2 1 395 125 520
3 0 440 0 440
4 0 4 40 740 780 780 0
1 3 90 660 750
2 2 395 385 780
3 1 440 125 565
4 0 620 0 620

Примечание : Столбцы 1 (вложенные средства), 2 (проект) и 3 (остаток средств) для всех трех таблиц одинаковы, поэтому их можно было бы сделать общими. Столбец 4 заполняется на основе исходных данных о функциях дохода, значения в столбце 5 берутся из столбца 7 предыдущей таблицы, столбец 6 заполняется суммой значений столбцов 4 и 5 (в таблице 3-го шага столбцы 5 и 6 отсутствуют).
В столбце 7 записывается максимальное значение предыдущего столбца для фиксированного начального состояния, и в 8 столбце записывается управление из 2 столбца, на котором достигается максимум в 7.
Этап II. Безусловная оптимизация .
Из таблицы 3-го шага имеем F* 1 (e 0 = 4 млн.руб.) = 780 тыс.руб., то есть максимальная прибыль от инвестирования e 0 = 4 млн.руб. равна 780 тыс.руб.
Из этой же таблицы получаем, что первому предприятию следует выделить u* 1 (e 0 = 4 млн.руб.) = 0 млн.руб.
При этом остаток средств составит: e 1 = e 0 - u 1 , e 1 = 4 - 0 = 4 млн.руб.
Из таблицы 2-го шага имеем F* 2 (e 1 = 4 млн.руб.) = 740 тыс.руб., т.е. максимальная прибыль при e 1 = 4 млн.руб. равна 740 тыс.руб.
Из этой же таблицы получаем, что второму предприятию следует выделить u* 2 (e 1 = 4 млн.руб.) = 1 млн.руб.
При этом остаток средств составит: e 2 = e 1 - u 2 , e 2 = 4 - 1 = 3 млн.руб.
Последнему предприятию достается 3 млн.руб. Итак, инвестиции в размере 4 млн.руб. необходимо распределить следующим образом: первому предприятию ничего не выделять, второму предприятию выделить 1 млн.руб., третьему предприятию выделить 3 млн.руб., что обеспечит максимальную прибыль, равную 780 тыс.руб.

Пример №2 . Имеются 4 предприятия, между которыми необходимо распределить 100 тыс. усл. ед. средств. Значения прироста выпуска продукции на предприятии в зависимости от выделенных средств Х представлены в таблице. Составить оптимальный план распределения средств, позволяющий максимизировать общий прирост выпуска продукции.

Краткая теория

Динамическое программирование (иначе - динамическое планирование) - это метод нахождения оптимальных решений в задачах с многошаговой (многоэтапной) структурой. Многие экономические процессы расчленяются на шаги естественным образом. Это все процессы планирования и управления, развиваемые во времени. Естественным шагом в них может быть год, квартал, месяц, декада, неделя, день и т. д. Однако метод динамического программирования может использоваться при решении задач, где время вообще не фигурирует; разделение на шаги в таких задачах вводится искусственно. Поэтому «динамика» задач динамического программирования заключается в методе решения.

В экономической практике встречается несколько типов задач, которые по постановке или способу решения относятся к задачам динамического программирования. Это задачи оптимального перспективного и текущего планирования во времени. Их решают либо путем составления комплекса взаимосвязанных статических моделей для каждого периода, либо путем составления единой динамической задачи оптимального программирования с применением многошаговой процедуры принятия решений. К задачам динамического программирования следует отнести задачи многошагового нахождения оптимума при размещении производительных сил, а также оптимального быстродействия.

Типичные особенности многошаговых задач.

1. Рассматривается система, состояние которой на каждом шаге определяется вектором . Дальнейшее изменение ее состояния зависит только от данного состояния и не зависит от того, каким путем система пришла в него. Такие процессы называются процессами без последействия.

2. На каждом шаге выбирается одно решение , под действием которого система переходит из предыдущего состояния в новое . Это новое состояние является функцией состояния на начало интервала и принятого в начале интервала решения т. е.

3. Действие на каждом шаге связано с определенным выигрышем (доходом, прибылью) или потерей (издержками), которые зависят от состояния на начало шага (этапа) и принятого решения.

4. На векторы состояния и управления могут быть наложены ограничения, объединение которых составляет область допустимых решений .

5. Требуется найти такое допустимое управление для каждого шага , чтобы получить экстремальное значение функции цели за все шагов.

Любую многошаговую задачу можно решать по-разному. Во-первых, можно считать неизвестными величинами щ и находить экстремум целевой функции одним из существующих методов оптимизации, т. е. искать сразу все элементы решения на всех шагах. Отметим, что этот путь не всегда приводит к цели, особенно когда целевая функция задана в виде таблиц или число переменных очень велико. Второй путь основан на идее проведения оптимизации поэтапно. Поэтапность отнюдь не предполагает изолированности в оптимизации этапов. Наоборот, управление на каждом шаге выбирается с учетом всех его последствий. Обычно второй способ оптимизации оказывается проще, чем первый, особенно при большом числе шагов. Идея постепенной, пошаговой оптимизации составляет суть метода динамического программирования. Оптимизация одного шага, как правило, проще оптимизации всего процесса в целом. Лучше много раз решать сравнительно простую задачу, чем один раз - сложную.

С первого взгляда идея может показаться тривиальной: если трудно оптимизировать сложную задачу, то следует разбить ее на ряд более простых. На каждом шаге оптимизируется задача малого размера, что уже нетрудно. При этом принцип динамического программирования вовсе не предполагает, что каждый шаг оптимизируется изолированно, независимо от других. Напротив, пошаговое управление должно выбираться с учетом всех его последствий.

Можно сформулировать следующие принципы, лежащие в основе динамического программирования: принцип оптимальности и принцип погружения.

Оптимальное управление на каждом шаге определяется состоянием системы на начало этого шага и целью управления. Или в развернутой форме: оптимальная стратегия обладает таким свойством, что, каковы бы ни были начальное состояние и начальные решения, последующие решения должны приниматься исходя из оптимальной стратегии с учетом состояния, вытекающего из первого решения. Этот принцип имеет довольно простую математическую интерпретацию, выражающуюся в составлении определенных рекуррентных соотношений (функциональных уравнений Р. Беллмана).

Природа задачи, допускающей использование метода динамического программирования не меняется при изменении количества шагов , т. е. форма такой задачи инвариантна относительно . В этом смысле всякий конкретный процесс с заданным числом шагов оказывается как бы погруженным в семейство подобных ему процессов и может рассматриваться с позиции более широкого класса задач.

Реализация названных принципов дает гарантию того, что решение, принимаемое на очередном шаге, окажется наилучшим относительно всего процесса в целом, а не узких интересов данного этапа. Последовательность пошаговых решений приводит к решению исходной -шаговой задачи.

Дадим математическую формулировку принципа оптимальности для задач с аддитивным критерием оптимальности (сепарабельная функция цели). Для простоты будем считать, что начальное и конечное состояния системы заданы. Обозначим через значение функции цели на первом этапе при начальном состоянии системы и при управлении , через -соответствующее значение функции цели только на втором этапе, …., через - на этапе, …, через - на -м этапе. Очевидно, что

Надо найти оптимальное управление такое, что доставляет экстремум целевой функции при ограничениях .

Для решения этой задачи погружаем ее в семейство подобных. Введем обозначения. Пусть - соответственно области определения для подобных задач на последнем этапе, двух последних и т.д.; - область определения исходной задачи. Обозначим через

соответственно условно-оптимальные значения функции цели на последнем этапе, двух последних и т.д., на последних и т.д., на всех этапах.

Начинаем с последнего этапа. Пусть - возможные состояния системы на начало -го этапа. Находим:

Для двух последних этапов получаем:

Аналогично:

…………………….

…………………….

Выражение (5) представляет собой математическую запись принципа оптимальности. Выражение (4) - общая форма записи условно-оптимального значения функции цели для оставшихся этапов. Выражения (1)-(5) называются функциональными уравнениями Беллмана. Отчетливо просматривается их рекуррентный (возвратный) характер, т.е. для нахождения оптимального управления на шагах нужно знать условно-оптимальное управление на предшествующих этапах и т.д. Поэтому функциональные уравнения часто называются рекуррентными (возвратными) соотношениями Беллмана.

Пример решения задачи

Условие задачи

Производственное объединение выделяет четырем входящим в него предприятиям кредит в сумме 100 млн.ден.ед. для расширения производства и увеличения выпуска продукции. По каждому предприятию известен возможный прирост выпуска продукции (в денежном выражении) в зависимости от выделенной ему суммы . Для упрощения вычислений выделяемые суммы кратны 20 млн.ден.ед. При этом предполагаем, что прирост продукции на предприятии не зависит от суммы средств, вложенных в другие предприятия, а общий прирост выпуска в производственном объединении равен сумме приростов, полученных на каждом предприятии объединения.

Требуется найти оптимальное решение распределения кредита между предприятиями, чтобы общий прирост выпуска продукции на производственном объединении был максимальным.

Выделяемые средства , млн.ден.ед. Предприятие №1 №2 №3 №4 Прирост выпуска продукции на предприятиях млн.ден.ед. 20 10 12 11 16 40 31 24 36 37 60 42 36 45 46 80 62 52 60 63 100 76 74 77 80

Решение задачи

Если сроки со сдачей контрольной работы поджимают, на сайте всегда можно заказать cрочное решение задач по методам оптимальных решений .

Динамическое программирование представляет собой многоэтапный поиск оптимального решения. Оптимизация многошагового процесса базируется на принципе оптимальности Р. Беллмана.

Вычисления в динамическом программировании выполняются рекуррентно - оптимальное решение одной подзадачи используется в качестве исходных данных для поиска оптимального решения следующей подзадачи. Решив последнюю подзадачу, мы получим оптимальное решение исходной задачи.

Выделяемые средства 0 0 0 0 0 20 10 12 11 16 40 31 24 36 37 60 42 36 45 46 80 62 52 60 63 100 76 74 77 80

Шаг 1

В соответствии с вычислительной схемой динамического программирования рассмотрим сначала случай , т.е. предположим, что все имеющиеся средства выделяются на реконструкцию и модернизацию одного предприятия. Обозначим через максимально возможный дополнительный доход на этом предприятии, соответствующий выделенной сумме . Каждому значению отвечает вполне определенное (единственное) значение дополнительного дохода, поэтому можно записать, что:

Шаг 2

Пусть теперь , т.е. средства распределяются между двумя предприятиями. Если второму предприятию выделена сумма , то дополнительный доход на нем составит . Оставшиеся другому предприятию средства в зависимости от величины (а значит, и ) позволят увеличить дополнительный доход до максимально возможного значения . При этом условии общий дополнительный доход на двух предприятиях:

Шаг 3

Пусть теперь , т.е. средства распределяются между тремя предприятиями. Если третьему предприятию выделена сумма , то дополнительный доход на нем составит . Оставшиеся средства в зависимости от величины (а значит, и ) позволят увеличить дополнительный доход до максимально возможного значения . При этом условии общий дополнительный доход на трех предприятиях:

Шаг 4

Пусть теперь , т.е. средства распределяются между четырьмя предприятиями. Если четвертому предприятию выделена сумма , то дополнительный доход на нем составит . Оставшиеся средства в зависимости от величины (а значит, и ) позволят увеличить дополнительный доход до максимально возможного значения . При этом условии общий дополнительный доход на четырех предприятиях:

0 0 0 0 0 20 10 12 12 16 40 31 31 36 37 60 42 43 48 52 80 62 62 67 73 100 76 76 79 85

Ответ

Оптимальный план распределения между 4 предприятиями 100 единиц ресурса:

0 20 40 40

При этом суммарный прирост продукции достигнет максимальной величины, равной 85.

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Основная модель управления запасами
На примере решения задачи рассмотрена основная модель управления запасами (модель Уилсона). Вычислены такие показатели модели как оптимальный размер партии заказа, годовые затраты на хранение, интервал между поставками и точка размещения заказа.

Задача квадратичного программирования
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.

Игры в смешанных стратегиях
Содержит изложенные в краткой и доступной форме теоретические сведения о матричной игре без седловой точки и способе сведения такой задачи к задаче линейного программирования, для отыскания ее решения в смешанных стратегиях. Приведен пример решения задачи.

Назначение сервиса . Онлайн-калькулятор предназначен для решения задачи оптимального распределения ресурсов заданных в виде функций f(x) . Результаты вычислений оформляются в отчете формата Word (см. ).

Инструкция . Выберите количество предприятий.

Количество предприятий 2 3

Пример №1 . Планируется работа двух предприятий на n лет. Начальные ресурсы равны s0. Средства x, вложенные в 1-е предприятие в начале года, дают в конце года прибыль f1(x), и возвращаются в размере g1(x). Средства y, вложенные в 2-е предприятие в начале года, дают в конце года прибыль f2(y) и возвращаются в размере g2(y). В конце года возвращенные средства заново перераспределяются между отраслями. Определить оптимальный план распределения средств и найти максимальную прибыль.

Задачу решим методом динамического программирования. Операцию управления производственным процессом разобьём на этапы. На каждом из них управление выберем так, чтобы оно приводило к выигрышу как на данном этапе, так и на всех последующих до конца операции. В этом состоит принцип оптимальности , сформулированный американским математиком А. Беллманом.
Разобьём весь период на три этапа по годам и будем нумеровать их, начиная с первого.
Обозначим через x k и y k количество средств выделяемых каждому предприятию на k-ом этапе, а через x k + y k = a k - общее количество средств на этом этапе. Тогда первое предприятие приносит на этом этапе 3 x k , а второе 4 y k единиц дохода. Общий доход на k-ом этапе 3x k + 4y k .
Обозначим через f k (a k) - максимальный доход, который получает отрасль от обоих предприятий на k-ом и всех последующих. Тогда функциональное уравнение, отражающее принцип оптимальности Беллмана, принимает вид:
f k (a k)= max{3 x k + 4 y k + f k +1 (a k +1)}. (1)
Так как x k + y k = a k , то y k = a k - x k и 3x k + 4y k = 3x k + 4(a k - x k) = - x k + 4a k . Поэтому f k (a k) = max{-x k + 4a k + f k+1 (ak+1)} . (2)
0 ≤ x k ≤ a k
Кроме того, ak - это средства выделяемые обои предприятиям на k-ом этапе, и они определяются остатком средств, получаемых на предыдущем (k-1)-ом этапе. Поэтому по условию задачи оптимальное управление на каждом этапе
a k = 0,5 x k -1 + 0,2 y k -1 = 0,5 x k -1 +0,2(a k -1 - x k -1) = 0,3 x k -1 +0,2 a k -1 . (3)

I.Условия оптимизации
Планирование начинаем с последнего третьего этапа

При k = 3 получаем из (2)
f 3 (a 3) = max {- x 3 + 4a 3 + f 4 (a 4)}
0 ≤ x 3 ≤ a 3
Так как четвёртого этапа нет, то f 4 (a 4)=0 и
f 3 (a 3) = max {- x 3 + 4a 3 }=4a 3
0 ≤ x 3 ≤ a 3
(максимум выражения (- x 3 + 4 a 3 ) будет при x 3 =0)).

Итак, для третьего последнего этапа имеем: f 3 (a 3) = 4 a 3 , x 3 = 0, y 3 = a 3 - x 3 = a 3 ,
где a 3 = 0,3x 2 + 0,2a 2 , что следует из формулы (3).

При k = 2 из (2) и (3) получаем:
f(a 2) = max {-x 2 + 4a 2 + f 3 (a 3)}=
0 ≤ x ≤ a 2
= max {-x 2 + 4a 2 + 4a 3 }= max {-x 2 + 4a 2 + 4(0,3x 2 + 0,2a 2)} max{0,2x 2 + 4,8a 2 } 5a
0 ≤ x ≤ a 2
т. к. максимум выражения (0,2 x 2 + 4,8 a 2 ) будет при x 2 = a 2 .
То для второго этапа имеем: f 2 (a 2) = 5a 2 , x 2 = a 2 , y 2 = a 2 x 2 = 0 , при этом
a 2 = 0,3x 1 + 0,2a 1 с учетом (3).
При k = 1 с учетом (2) и (3) получаем:
f 1 (a 1) = max {-x 1 + 4a 1 + f 2 (a 2)}=
0 ≤ x ≤ a 1
= max {-x 1 + 4a 1 + 5a 2 }= max {-x 1 + 4a 2 + 5(0,3x 1 + 0,2a 2)}= max {0,5x 1 + 5a 1 }=5,5a 1
0 ≤ x ≤ a 1
при x 1 = a 1 .
Итак, для первого этапа f 1 (a 1) = 5,5 a 1 , x 1 = a 1 , y 1 = 0.
Процесс закончен. На первом этапе общее количество распределяемых средств известно -a 1 = 900 ед. Тогда максимальный доход, получаемый обоими предприятиями за три года составит f 1 (a 1) = 5,5*900 = 4950 ден. ед.

II. Безусловная оптимизация
Выясним, каким должно быть оптимальное управление процессом выделения средств между первым и вторым предприятиями для получения максимального дохода в количестве 4950 ден. ед.
1-й год. Так как x 1 = a 1 и , y 1 = 0, то все средства в количестве 900 ден. ед. отдаются первому предприятию.
2-й год. Выделяются средства a 2 = 0,3x 1 + 0,2a 1 = 0,5 a 1 =450 ед., x 2 = a 2 , y 2 = 0.
Все они передаются первому предприятию.
3-й год . Выделяются средства a 3 = 0,3x 2 + 0,2a 2 = 0,5 a 2 = 225 ед., x 3 = 0, y 3 = a 3 . Все они передаются второму предприятию.
Результаты решения представим в виде таблицы.

Период Средства Предприятие №1 Предприятие №2 Остаток Доход
1 900 900 0 450 2700
2 450 450 0 225 1350
3 225 0 225 45 900
4950

Пример №2 . Оптимальное поэтапное распределение средств между предприятиями в течении планового периода.
Руководство фирмы, имеющей договор о сотрудничестве с тремя малыми предприятия, на плановый годовой период выделила для них оборотные средства в объеме 100000 у.е. Для каждого предприятия известны функции поквартального дохода и поквартального остатка оборотных средств в зависимости от выделенной на квартал суммы x. В начале квартала средства распределяются полностью между тремя предприятиями (из этих вложенных средств и вычисляется доход), а по окончанию квартала остатки средств аккамулируются у руководства фирмы и снова распределяются полностью между предприятиями.
Составить план поквартального распределения средств на год (4 квартала), позволяющего достичь максимальный общий доход за год.
f 1 (x)=1,2x, f 2 (x)=1.5x, f 3 (x)=2x; g 1 (x)=0.7x, g 2 (x)=0.6x, g 3 (x)=0.1x

Лабораторная работа

Информатика, кибернетика и программирование

Средства X выделенные kому предприятию приносит в конце года прибыль. Функции заданы таблично: X f1X f2X f3X f4X 1 8 6 3 4 2 10 9 4 6 3 11 11 7 8 4 12 13 11 13 5 18 15 18 16 Определить какое количество средств нужно выделить каждому предприятию чтобы суммарная прибыль равная сумме прибылей полученных от каждого предприятия была наибольшей. Пусть количество средств выделенных kому предприятию. Уравнения на м шаге удовлетворяют условию: либо kому предприятию ничего не выделяем: либо не больше того что...

Лабораторная работа 4_2. Решение задачи о распределении ресурсов методом динамического программирования.

Цель работы – изучить возможности табличного процессора MS Excel для решения задачи распределения ограниченных ресурсов методом динамического программирования.

Краткие теоретические сведения

Построение модели динамического программирования (ДП) и применение метода ДП для решения задачи сводится к следующему:

  1. выбирают способ деления процесса управления на шаги;
  2. определяют параметры состояния и переменные управления X k на каждом шаге;
  3. записывают уравнения состояний;
  4. вводят целевые функции k -ого шага и суммарную целевую функцию;
  5. вводят в рассмотрение условные максимумы (минимумы) и условное оптимальное управление на k -ом шаге: .
  6. Записывают основные для вычислительной схемы ДП уравнения Беллмана для и по правилу:
  1. Решают последовательно уравнения Беллмана (условная оптимизация) и получают две последовательности функций и.
  2. После выполнения условной оптимизации получают оптимальное решение для конкретного состояния:

а) и

б) по цепочке оптимальное управление (решение) .

Постановка задачи динамического программирования в общем виде.

Условие задачи . Планируется деятельность четырех промышленных предприятий на очередной год. Начальные средства: у.е. Размеры вложения в каждое предприятие кратны 1 условной единице. Средства X , выделенные k

f 1 (X)

f 2 (X)

f 3 (X)

f 4 (X)

Определить, какое количество средств нужно выделить каждому предприятию, чтобы суммарная прибыль (равная сумме прибылей, полученных от каждого предприятия), была наибольшей.

Решение. Пусть - количество средств, выделенных k -ому предприятию. Суммарная прибыль равна. Переменные X удовлетворяют ограничениям: . Требуется найти переменные, удовлетворяющие данным ограничениям и обращающие в максимум функцию Z .

Схема решения задачи методом ДП имеет следующий вид: процесс решения распределения средств можно рассматривать как 4-шаговый, номер шага совпадает с номером предприятия; выбор переменных – уравнения на 1, 2, 3, 4 шагах соответственно; - конечное состояние процесса распределения – равно нулю, т.к. все средства должны быть вложены в производство, =0 .

Уравнения состояний и схему распределения можно представить в виде:

Здесь - параметр состояния – количество средств, оставшихся после k -ого шага, т.е. средства, которые остается распределить между оставшимися (4- k ) предприятиями.

Введем в рассмотрение функцию - условно оптимальную прибыль, полученную от -го, (k +1 )-го, …, 4-го предприятий, если между ними распределялись оптимальным образом средства). Уравнения на -м шаге удовлетворяют условию: (либо k -ому предприятию ничего не выделяем: , либо не больше того, что имеем к k -ому шагу:).

Уравнения Беллмана имеют вид:

Решение уравнений осуществляется путем последовательной оптимизации каждого шага.

4 шаг. Все средства, оставшиеся к 4-ому шагу, следует вложить в 4-е предприятие, поскольку согласно таблице прибыли монотонно возрастают. При этом для возможных значений получим:

3 шаг . Делаем предположения относительно остатка средств к 3-ему шагу: может принимать значения 0,1,2,3,4,5 (=0, если все средства отданы 1-ому и 2-ому предприятиям и т.д.). В зависимости от этого выбираем и сравниваем для разных при фиксированных значениях значения суммы. Для каждого максимальное из этих значений есть - условная оптимальная прибыль, полученная при оптимальном распределении средств между 3-м и 4-м предприятиями. Полученные значения для приведены в таблице в графах 5 и 6 соответственно.

S k-1

k =3

k =2

k =1

f 3 (X 3 )+

f 2 (X 2 )+

f 1 (X 1 )+

0+4=4

3+0=3

0+4=4

6+0=6

0+6=6

8+0=8

0+6=6

3+4=7

4+0=4

0+7=7

6+4=10

9+0=9

0+10=10

8+6=14

10+0=10

0+8=8

3+6=9

4+4=8

7+0=7

0+9=9

6+7=13

9+4=13

11+0=11

0+13=13

8+10=18

10+6=16

11+0=11

0+13=13

3+8=11

4+6=10

7+4=11

11+0=11

0+13=13

6+9=15

9+7=16

11+4=15

13+0=13

0+16=16

8+13=21

10+10=20

11+6=17

12+0=12

0+16=16

3+13=16

4+8=12

7+6=13

11+4=15

18+0=18

0+18=18

6+13=19

9+9=18

11+7=18

13+4=17

15+0=15

0+19=19

8+16=24

10+13=23

11+10=21

12+6=18

18+0=18

2 шаг k =2. Для всех возможных значений значения и находятся в столбцах 8 и 9 соответственно; первые слагаемые в столбце 7 – значения взяты из условия, вторые слагаемые взяты из столбца 5 при.

1 шаг . Условная оптимизация проведена в таблице при k =1 для.

Если, то=5; прибыль, полученная от четырех предприятий при условии, что =5 средств между оставшимися тремя предприятиями будут распределены оптимально, равна.

Если, то=4; суммарная прибыль при условии, что =4 средств между оставшимися тремя предприятиями будут распределены оптимально, равна.

Аналогично, при, и;

При, и;

При, и;

Сравнивая полученные значения, получим при.

Вычисляя, получим, а по таблице в столбце 9 находим. Далее находим, а в столбце 6 . Наконец, и. Оптимальное решение.

Ответ. Максимум суммарной прибыли равен 24 у.е. при условии, что 1-ому предприятию выделена 1 у.е.; 2-ому предприятию выделено 2 у.е.; 3-ому предприятию - 1 у.е.; 4-ому предприятию - 1 у.е.

Реализация задачи в MS Excel

  1. Ввод исходных данных в таблицу показан на Рис.1.

Рис.1. Ввод исходных данных в ячейки рабочего листа MS Excel

2. Порядок заполнения ячеек таблицы:

1). В ячейку E 15 введем формулу ИНДЕКС($B$3:$F$8;ПОИСКПОЗ($C15;$B$3:$B$8);G$12+1) и скопируем формулу в диапазоне ячеек с E 15 до E 35.

2). В ячейку F 15 введем формулу

ИНДЕКС($B$3:$F$8;ПОИСКПОЗ($D15;$B$3:$B$8);5) и скопируем формулу в диапазон ячеек с F 15 до F 35.

3). В ячейку G 15 введем формулу E 15+ F 15 и скопируем формулу в диапазон: G 15 - G 35.

4). Находим максимальное значение для каждого состояния от 0 до 5, для этого в ячейку H 15 введем формулу МАКС(G15); после ввода формулы в ячейку H 16 необходимо изменить диапазон с G 16 на G 16: G 17 и т.д. по всему столбику до ячейки H 30 (Рис.2а).

3. Находим значение управления, которому соответствует максимальное значение функции, для этого в ячейку I 15 введем формулу ИНДЕКС($ C 15: G 15;ПОИСКПОЗ(H 15; G 15;0);1), скопируем формулу в ячейку I 16 и увеличим диапазон, в результате в ячейке I 16 получим: ИНДЕКС($ C 16: G 17;ПОИСКПОЗ(H 16; G 16: G 17;0);1). Далее скопируем формулу в ячейки I 18, I 21, I 25, I 30 , постепенно увеличивая диапазон (Рис.2б)

Рис.2а. Вид рабочего листа с формулами, k =3.

Рис.2б (правая часть рабочего листа с формулами, k =3

В результате получим:

Рис. 3 . Результат выполнения первого шага (k =3).

4. Выделяем диапазон E 15: I 35, выполняем команду Копировать J 15 и выполняем команду Вставить .

5. Изменим формулу функции. В ячейки K 15, K 16, K 18, K 21, K 25, K 30 введем соответственно максимальные значения предыдущего шага, находящиеся в ячейках H 15, H 16, H 18, H 21, H 25, H 30. В остальные ячейки поместим значения, стоящие в этом же столбце и соответствующие предыдущим S k . :

В ячейку K 17 копируем значения ячейки К15;

в ячейки К19 и К20 – значения К16 и К17;

в К22:К24 – значения К18:К20;

в К26:К29 – значения К21:К24;

в К31:К35 – значения К25:К29;

В результате получим:

Рис.4. Результат выполнения второго шага (k =2).

6. Выделяем диапазон ячеек J 15: N 35, выполняем команду Копировать , устанавливаем курсор в ячейку O 15, выполняем команду Вставить . В результате получаем заполненную таблицу с решением для k =1 (Рис.5)

7. Объясним полученные результаты: при. Вычисляя, получим, а по таблице в столбце 12 находим. Далее определяем, а из столбца 6 . Наконец, и. Таким образом, оптимальное значение, а значение функции 24 у.е., что согласуется с данными, полученными вручную.

Рис.6. Результат выполнения третьего шага (k =1).

Контрольные упражнения. Варианты.

1. Планируется деятельность четырех промышленных предприятий на очередной год. Начальные средства у.е. Размеры вложения в каждое предприятие кратны 1 у.е. Средства X , выделенные k -ому предприятию (), приносит в конце года прибыль. Функции заданы таблично:

f 1 (X)

f 2 (X)

f 3 (X)

f 4 (X)

Определить, какое количество средств нужно выделить каждому предприятию, чтобы суммарная прибыль была наибольшей.

2. Планируется деятельность трех промышленных предприятий на очередной год. Начальные средства: у.е. Размеры вложения в каждое предприятие кратны 1 у.е. Средства X , выделенные k -ому предприятию (), приносит в конце года прибыль. Функции заданы таблично:

f 1 (X)

f 2 (X)

f 3 (X)

Определить, какое количество средств нужно выделить каждому предприятию, чтобы суммарная прибыль, была наибольшей.


А также другие работы, которые могут Вас заинтересовать

58796. Geographical Outlook 977.5 KB
By the end of the lesson you should be able to recognize and understand new words and word combinations in the text, to read and understand the gist and details despite the natural difficulties.
58797. Інформація та інформаційні процеси. Обчислювальна система 128 KB
Загальна характеристика теми. Правила техніки безпеки в кабінеті ПЕОМ. Інформатика. Поняття інформації. Інформація і шум. Інформаційні процеси. Інформація й повідомлення.
58798. Операційні системи 126 KB
Робочий стіл. Основні об’єкти Windows. Виділення об’єкта. Операції, властивості та основні команди для роботи з об’єктами. Контекстне меню об’єкта. Ярлики та їх призначення.
58799. Основи роботи з дисками 144.5 KB
Загальна характеристика теми. Форматування диска. Діагностика та дефрагментація дисків. Відновлення інформації на диску. Правила записування та зчитування інформації з дискет.
58800. Текстовий редактор 190 KB
Системи опрацювання текстiв i їх основнi функцiї. Завантаження текстового редактора. Iнтерфейс редактора. Інформаційний рядок. Режими екрана, використання вікон.
58801. Графічний редактор 708 KB
Загальна характеристика теми. Машинна графiка. Графiчний екран. Система опрацювання графiчної інформації. Вказiвки малювання графiчних примiтивiв при роботi з редактором. Типи графічних файлів.
58802. Електронні таблиці 280.5 KB
Навчальна. Охарактеризувати нову тему, висвітлити її роль в курсі інформатики. Ввести поняття електронна таблиця. Ознайомити учнів з програмами опрацювання ЕТ, правилами введення та редагування інформації в ЕТ, способами форматування ЕТ.
58803. Системи управління базами даних (СУБД) 156.5 KB
Бази даних. Фактографічні й документальні БД. Iєрархiчна, мережева, реляцiйна модель бази даних. Основнi елементи та об’єкти бази даних: поле, запис, файл. СУБД.
Понравилась статья? Поделиться с друзьями: