Целевая функция. Выбор критериев

В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе начальным пунктом всего цикла предпринимательской деятельности становится изучение потребительского спроса. Рассмотрим некоторые вопросы моделирования спроса и потребления.

Рассмотрим потребителя, который в результате своего существования потребляет некоторые блага. Уровень удовлетворения потребностей потребителя обозначим через U .Предположим, что имеется n видов благ Б 1 , Б 2 ,…, Б n . В качестве благ могут выступать:

· продовольственные товары;

· товары первой необходимости;

· товары второй необходимости;

· предметы роскоши;

· платные услуги и т. д.

Пусть количество потребления каждого блага равно х 1 , х 2 ,…, х n . Целевой функцией потребления называется зависимость между степенью (уровнем) удовлетворения потребностей U и количеством потребляемых благ: х 1 , х 2 , …, х n . Эта функция имеет вид .

В пространстве потребительских благ каждому уравнению соответствует определенная поверхность равноценных, или безразличных, наборов благ, которая называется поверхностью безразличия . Гиперповерхность такой кривой, называемой многомерной поверхностью безразличия, можно представить в виде , где С - константа. Для наглядности рассмотрим пространство двух благ, например, в виде двух агрегированных групп товаров: продукты питания Б 1 и непродовольственные товары, включая платные услуги Б 2 . Тогда уровни целевой функции потребления можно изобразить на плоскости в виде кривых безразличия, соответствующих различным значениям константы С .Для этого выражают количество потребления одного блага х 1 через другое х 2 . Рассмотрим пример.

Пример 6.3 . Целевая функция потребления имеет вид . Найти кривые безразличия.

Решение . Кривые безразличия имеют вид или , или (при этом следует отметить, что должно выполняться ).



Каждый потребитель стремится максимизировать уровень удовлетворения потребностей, то есть . Однако максимизации степени удовлетворения потребностей будут мешать возможности потребителя. Обозначим цену на единицу каждого блага через р 1 , р 2 ,…, р n , а доход потребителя через D .Тогда должно выполняться бюджетное ограничение , имеющее смысл закона, согласно которому затраты потребителя не должны превышать сумму дохода:

В результате для нахождения оптимального набора благ необходимо решать задачу оптимального программирования:

(6.3)

Рассмотрим двухфакторную функцию потребления , где х 1 - объем потребления продуктов питания и х 2 - потребление непродовольственных товаров и платных услуг. Кроме того, предположим, что весь доход потребитель направляет на удовлетворение своих потребностей. В этом случае бюджетное ограничение будет содержать только два слагаемых, и неравенство превратится в равенство. Задача оптимального программирования при этом примет вид:

(6.4)

Геометрически оптимальное решение имеет смысл точки касания кривой безразличия линии, соответствующей бюджетному ограничению.

х 2
Из бюджетного ограничения системы (6.4) можно выразить переменную . Подставив это выражение в целевую функцию, получаем функцию одной переменной , максимум которой можно найти из уравнения, приравняв производную к нулю: .

Пример 6.4 . Целевая функция потребления имеет вид . Цена на благо Б 1 равна 20, цена на благо Б 2 равна 50. Доход потребителя составляет 1800 единиц. Найти кривые безразличия, оптимальный набор благ потребителя, функцию спроса на первое благо по цене, функцию спроса на первое благо по доходу.

Решение. Кривые безразличия имеют вид:

Получаем множество гипербол, расположенных в первой координатной четверти на разном расстоянии от начала координат в зависимости от значения константы С .

Находим оптимальный набор благ. Задача оптимального программирования имеет вид:

Для ее решения выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию

Находим производную и приравниваем ее к нулю

Получаем .

Таким образом, оптимальный набор благ составляют 30,5 и 23,8 единиц. Находим теперь функцию спроса на первое благо по цене на него. Для этого в бюджетном ограничении вместо фиксированного значения вводим цену первого блага , получая уравнение: . Выражаем

или , откуда находим функцию спроса на первое благо по цене: .

Находим теперь функцию спроса на первое благо по доходу. Для этого выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию:

Находим производную и приравниваем ее к нулю:

Отсюда находим функцию спроса на первое благо по доходу

7. Модель
межотраслевого баланса

Балансовые модели предназначены для анализа и планирования производства и распределения продукции на различных уровнях - от отдельного предприятия до народного хозяйства в целом. Если вспомнить историю народного хозяйства как Советского Союза и России, так и других развитых стран, то можно наблюдать, что в экономике многих государств в разное время случались экономические кризисы разных крайностей от кризисов перепроизводства (США, середина ХХ века), до дефицита (Россия, конец ХХ века). Все эти экономические кризисы связаны с нарушением баланса между производством и потреблением. Из этих фактов видно, что баланс между произведенной продукцией и потреблением является важным критерием как для макроэкономики, так и для микроэкономики.

Экономико-математические модели баланса пытались выстроить многие экономисты и математики с самого начала возникновения проблемы, однако, наиболее полную балансовую модель удалось построить в 1936 г. американским экономистом В. Леонтьевым (который после революции эмигрировал в США и за свою модель получил Нобелевскую премию в области экономики). Эта модель позволяла рассчитать баланс между несколькими взаимодействующими отраслями, хотя ее можно легко обобщить и для организаций микроэкономики, например, для вычисления баланса между несколькими взаимодействующими предприятиями или между подразделениями одного предприятия (например, цехами одного завода).

Цель балансового анализа - ответить на вопрос, возникающий в макроэкономике и связанный с эффективностью ведения многоотраслевого хозяйства: каким должен быть объем производства каждой из п отраслей, чтобы удовлетворить все потребности в продукции этой отрасли? При этом каждая отрасль выступает, с одной стороны, как производитель некоторой продукции; а с другой - как потребитель продукции и своей, и произведенной другими отраслями.

Предположим, что рассматривается п отраслей промышленности, каждая из которых производит свою продукцию. Пусть общий объем произведенной продукции i -й отрасли равен . Полная стоимость продукции, произведенной i -й отраслью, будем называть валовым продуктом этой отрасли. Теперь рассмотрим, на что тратится продукция, производимая отраслью. Часть продукции идет на внутрипроизводственное потребление данной отраслью и потребление другими отраслями, связанными с этой отраслью. Количество продукции i -й отрасли, предназначенной для конечного потребления (вне сферы материального производства) личного и общественного j -й отраслью, обозначим . Оставшаяся часть предназначена для реализации во внешнюю сферу. Эта часть называется конечным продуктом. Пусть i -я отрасль производит конечного продукта.

Рассмотрим процесс производства за некоторый период времени (например, год). Так как валовой объем продукции любой i -й отрасли равен суммарному объему продукции, потребляемой n отраслями, и конечного продукта, то уравнение баланса между производством и потреблением будет иметь вид

, (i = 1, 2, …, n ). (7.1)

Уравнения (7.1) называются соотношениями баланса.

. (7.2)

Все ранее рассмотренные показатели можно записать в основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
n
n
Чистый продукт

В результате основная балансовая таблица содержит четыре матрицы: матрицу межотраслевых производственных связей

; матрицу валовой продукции ; матрицу конечной продукции и матрицу чистой продукции .

Одной из задач балансового анализа является определение валового продукта , если известно распределение конечного . Для этого введем коэффициенты прямых затрат

Они получаются в результате деления всех элементов каждого столбца матрицы на соответствующий элемент матрицы межотраслевых производственных связей Х .Коэффициенты прямых затрат имеют смысл количества потребления продукции j -й отрасли, необходимой для производства единицы продукции i -й отраслью. Из выражения (7.3) можно получить: . Подставив последнее выражение в соотношение баланса (7.1), получим

. (7.4)

Если обозначить матрицу коэффициентов прямых затрат как , то соотношение баланса (7.4) в матричном виде можно записать в виде

Из последнего выражения можно найти значение конечного продукта при известном значении валового

где - единичная матрица того же размера, что и А .

Пример 7.1 . Баланс четырех отраслей за предыдущий период имеет матрицу межотраслевых производственных связей вида и матрицу валовой продукции вида . Необходимо определить конечный продукт Y и чистый продукт C каждой отрасли.

Конечный продукт Y получается в результате вычитания из каждого элемента матрицы валовой продукции суммы элементов соответствующих строк матрицы . Например, первое значение равно 100 – (10 + 20 + 15 + 10) = 45. Чистый продукт С получается в результате вычитания из каждого элемента матрицы валовой продукции Х суммы элементов соответствующих столбцов матрицы . Например, первое значение равно 100 – (10 + 5 + 25 + 20) = 40. В результате получим основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
Чистый продукт, S = 210 S = 400

Поставим теперь другую задачу: рассчитаем конечный продукт каждой отрасли на будущий период, если валовой продукт окажется равным . Для решения этой задачи найдем коэффициенты прямых затрат:i -й отрасли.

Пример 7.2 . В некотором регионе имеются две основные отрасли народного хозяйства: машиностроение (м/с) и сельское хозяйство (с/х). Баланс этих отраслей за отчетный период определяется матрицами , . Вычислим остальные показатели и заполним основную балансовую таблицу

Предположим, что на будущий период планируется конечная продукция в объемах . Нужно определить, какой валовой продукт при этом нужно планировать. Найдем коэффициенты прямых затрат:

Можно выделить следующие причины, по которым экономические системы являются стохастическими:

1) система сложная, многокритериальная, описывается многоуровневой иерархической структурой;

2) система подвержена влиянию большого числа неуправляемых внешних факторов (погодные условия, внешняя политика, социальные факторы и т. д.);

3) преднамеренное искажение информации, сокрытие информации и целенаправленная экономическая диверсия.

Исходя из этого для моделирования многих экономических систем используют математические методы, основанные на применении законов теории вероятностей, которые получили название стохастических методов .

При применении стохастических методов оптимизация целевой функции ведется по среднему значению, то есть при заданных параметрах необходимо найти такое решение, когда значение целевой функции в среднем будет максимальным.

Стохастические системы в экономике описываются марковским аппаратом, в основе которого лежат марковские случайные процессы . Они применяются в случаях, когда нельзя заформализовать модель (описать аналитическим выражением) и в случае, когда система представляет собой многопараметрическую вероятностную экономическую систему.

27 августа 2017 в 14:20

Решение прямой и двойственной задачи линейного программирования средствами Python

Введение

Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.

Постановка задачи

В публикациях рассматривались решения прямых задач оптимизации методом линейного программирования и был предложен обоснованный выбор решателя scipy. optimize.

Однако известно , что каждой задаче линейного программирования соответствует так называемая выделенная(двойственная)задача. В ней по сравнению с прямой задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума - максимум). Задача, двойственная к двойственной - эта сама исходная задача.

Решение двойственной задачи очень важно для анализа использования ресурсов. В данной публикации будет доказано, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной).

Оптимальные значения стоимости материала и труда будут оцениваться по их вкладу в целевую функцию. В результате будут получены «объективно обусловленные оценки» сырья и рабочей силы, которые не совпадают с рыночными ценами.

Решение прямой задачи о оптимальной производственной программе

Учитывая высокий уровень математической подготовки подавляющего большинства пользователей данного ресурса не стану приводить балансовые уравнения с верхними и нижними ограничениями и введением для перехода к равенствам дополнительных переменных. Поэтому сразу приведу обозначения используемых в решении переменных:
N – количество видов производимых изделий;
m– количество видов используемого сырья;
b_ub - вектор имеющихся ресурсов размерности m;
A_ub – матрица размерности m×N, каждый элемент которой является расходом ресурса вида i на производство единицы изделия вида j;
с - вектор прибыли от производства единицы изделия каждого вида;
x – искомые объёмы производимых изделий каждого вида (оптимальный план производства) обеспечивающие максимальную прибыль.

Функция цели
maxF(x)=c×x

Ограничения
A×x≤b

Численные значения переменных:
N=5; m=4; b_ub = ; A_ub = [, , ,]; c = .

Задачи
1.Найти x для обеспечения максимальной прибыли
2. Найти использованные ресурсы при выполнении п.1
3. Найти остатки ресурсов (если они есть) при выполнении п.1


Для определения максимума (по умолчанию определяется минимум коэффициенты целевой функции нужно записать с отрицательным знаком c = [-25, -35,-25,-40,-30] и проигнорировать знак минус перед прибылью.

Используемые при выводе результатов обозначения:
x – массив значений переменных, доставляющих минимум (максимум) целевой функции;
slack – значения дополнительных переменных. Каждая переменная соответствует ограничению-неравенству. Нулевое значение переменной означает, что соответствующее ограничение активно;
success – True, если функции удалось найти оптимальное решение;
status – статус решения:
0 – поиск оптимального решения завершился успешно;
1 – достигнут лимит на число итераций;
2 – задача не имеет решений;
3 – целевая функция не ограничена.
nit – количество произведенных итераций.

Листинг решения прямой задачи оптимизации

#!/usr/bin/python # -*- coding: utf-8 -*- import scipy from scipy.optimize import linprog # загрузка библиотеки ЛП c = [-25, -35,-25,-40,-30] # список коэффициентов функции цели b_ub = # список объёмов ресурсов A_ub = [, # матрица удельных значений ресурсов , , ] d=linprog(c, A_ub, b_ub) # поиск решения for key,val in d.items(): print(key,val) # вывод решения if key=="x": q=#использованные ресурсы print("A_ub*x",q) q1= scipy.array(b_ub)-scipy.array(q) #остатки ресурсов print("b_ub-A_ub*x", q1)


Результаты решения задачи
nit 3
status 0

success True
x [ 0. 0. 18.18181818 22.72727273 150. ]
A_ub*x
b_ub-A_ub*x [ 0. 0. 0. 90.90909091]
fun -5863.63636364
slack [ 0. 0. 0. 90.90909091]

Выводы

  1. Найден оптимальный план по видам продукции
  2. Найдено фактическое использование ресурсов
  3. Найден остаток не использованного четвёртого вида ресурса [ 0. 0 0.0 0.0 90.909]
  4. Нет необходимости в вычислениях по п.3, так как тот же результат выводить в переменной slack

Решение двойственной задачи о оптимальной производственной программе

Четвёртый вид ресурса в прямой задаче использована не полностью. Тогда ценность этого ресурса для предприятия оказывается более низкой по сравнению с ресурсами, ограничивающими выпуск продукции, и предприятие готово заплатить более высокую цену за приобретение ресурсов, позволяющих увеличить прибыль.

Введём новое назначение искомой переменной x как некоторой «теневой» цены, определяющей ценность данного ресурса в отношении прибыли от реализации выпускаемой продукции.

C – вектор имеющихся ресурсов;
b_ub – вектор прибыли от производства единицы изделия каждого вида;
A_ub_T– транспонированная матрица A_ub.

Функция цели
minF(x)=c×x

Ограничения
A_ub_T ×x≥ b_ub

Численные значения и соотношения для переменных:
с = ; A_ub_T transpose(A_ub); b_ub = .

Задача:
Найти x показывающий ценность для производителя каждого вида ресурсов.

Особенности решения с библиотекой scipy. optimize
Для замены ограничений сверху на ограничения с низу необходимо умножить на минус единицу обе части ограничения – A_ub_T ×x≥ b_ub… Для этого исходные данные записать в виде: b_ub = [-25, -35,-25,-40,-30]; A_ub_T =- scipy.transpose(A_ub).

Листинг решения двойственной задачи оптимизации

#!/usr/bin/python # -*- coding: utf-8 -*- import scipy from scipy.optimize import linprog A_ub = [, , , ] c= b_ub = [-25, -35,-25,-40,-30] A_ub_T =-scipy.transpose(A_ub) d=linprog(c, A_ub_T, b_ub) for key,val in d.items(): print(key,val)


Результаты решения задачи
nit 7
message Optimization terminated successfully.
fun 5863.63636364
x [ 2.27272727 1.81818182 6.36363636 0. ]
slack [ 5.45454545 2.27272727 0. 0. 0. ]
status 0
success True

Выводы

Третий вид ресурсов имеет наибольшую ценность для производителя поэтому данный вид ресурсов должен быть закуплен в первую очередь, затем первый и второй вид. Четвёртый вид ресурса имеет для производителя нулевую ценность и закупается последним.

Результаты сравнения прямой и двойственной задачи

  1. Двойственная задача расширяет возможности планирования выпуска продукции, но средствами scipy. optimize решается за вдвое большее чем прямая количество итераций.
  2. Переменная slack выводит информацию об активности ограничений в виде неравенств, что может быть использовано, например, для анализа остатков сырья.
  3. Прямая задача является задачей максимизации, а двойственная - задачей минимизации, и наоборот.
  4. Коэффициенты функции цели в прямой задаче являются ограничениями в двойственной задаче.
  5. Ограничения в прямой задаче становятся коэффициентами функции цели в двойственной.
  6. Знаки неравенств в ограничениях меняются на противоположные.
  7. Матрица системы равенств транспонируется.
Ссылки

) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций , линейном программировании , теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи . Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Примеры

Гладкие функции и системы уравнений

\left\{ \begin{matrix} F_1(x_1, x_2, \ldots, x_M) = 0 \\ F_2(x_1, x_2, \ldots, x_M) = 0 \\ \ldots \\ F_N(x_1, x_2, \ldots, x_M) = 0 \end{matrix} \right.

может быть сформулирована как задача минимизации целевой функции

S = \sum_{j=1}^N F_j^2(x_1, x_2, \ldots, x_M) \qquad (1)

Если функции гладкие, то задачу минимизации можно решать градиентными методами .

Для всякой гладкой целевой функции можно приравнять к 0 частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

Линейное программирование

Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

Комбинаторная оптимизация

Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра . Эта функция равна длине гамильтонова цикла на графе . Она задана на множестве перестановок n-1 вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

Напишите отзыв о статье "Целевая функция"

Примечания

См. также

Литература

  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. - 1977. - Вып. 5. - С.26-30

Отрывок, характеризующий Целевая функция

Бедный муж мой переносит труды и голод в жидовских корчмах; но новости, которые я имею, еще более воодушевляют меня.
Вы слышали, верно, о героическом подвиге Раевского, обнявшего двух сыновей и сказавшего: «Погибну с ними, но не поколеблемся!И действительно, хотя неприятель был вдвое сильнее нас, мы не колебнулись. Мы проводим время, как можем; но на войне, как на войне. Княжна Алина и Sophie сидят со мною целые дни, и мы, несчастные вдовы живых мужей, за корпией делаем прекрасные разговоры; только вас, мой друг, недостает… и т. д.
Преимущественно не понимала княжна Марья всего значения этой войны потому, что старый князь никогда не говорил про нее, не признавал ее и смеялся за обедом над Десалем, говорившим об этой войне. Тон князя был так спокоен и уверен, что княжна Марья, не рассуждая, верила ему.
Весь июль месяц старый князь был чрезвычайно деятелен и даже оживлен. Он заложил еще новый сад и новый корпус, строение для дворовых. Одно, что беспокоило княжну Марью, было то, что он мало спал и, изменив свою привычку спать в кабинете, каждый день менял место своих ночлегов. То он приказывал разбить свою походную кровать в галерее, то он оставался на диване или в вольтеровском кресле в гостиной и дремал не раздеваясь, между тем как не m lle Bourienne, a мальчик Петруша читал ему; то он ночевал в столовой.
Первого августа было получено второе письмо от кня зя Андрея. В первом письме, полученном вскоре после его отъезда, князь Андрей просил с покорностью прощения у своего отца за то, что он позволил себе сказать ему, и просил его возвратить ему свою милость. На это письмо старый князь отвечал ласковым письмом и после этого письма отдалил от себя француженку. Второе письмо князя Андрея, писанное из под Витебска, после того как французы заняли его, состояло из краткого описания всей кампании с планом, нарисованным в письме, и из соображений о дальнейшем ходе кампании. В письме этом князь Андрей представлял отцу неудобства его положения вблизи от театра войны, на самой линии движения войск, и советовал ехать в Москву.
За обедом в этот день на слова Десаля, говорившего о том, что, как слышно, французы уже вступили в Витебск, старый князь вспомнил о письме князя Андрея.
– Получил от князя Андрея нынче, – сказал он княжне Марье, – не читала?
– Нет, mon pere, [батюшка] – испуганно отвечала княжна. Она не могла читать письма, про получение которого она даже и не слышала.
– Он пишет про войну про эту, – сказал князь с той сделавшейся ему привычной, презрительной улыбкой, с которой он говорил всегда про настоящую войну.
– Должно быть, очень интересно, – сказал Десаль. – Князь в состоянии знать…
– Ах, очень интересно! – сказала m llе Bourienne.
– Подите принесите мне, – обратился старый князь к m llе Bourienne. – Вы знаете, на маленьком столе под пресс папье.
M lle Bourienne радостно вскочила.
– Ах нет, – нахмурившись, крикнул он. – Поди ты, Михаил Иваныч.
Михаил Иваныч встал и пошел в кабинет. Но только что он вышел, старый князь, беспокойно оглядывавшийся, бросил салфетку и пошел сам.
– Ничего то не умеют, все перепутают.
Пока он ходил, княжна Марья, Десаль, m lle Bourienne и даже Николушка молча переглядывались. Старый князь вернулся поспешным шагом, сопутствуемый Михаилом Иванычем, с письмом и планом, которые он, не давая никому читать во время обеда, положил подле себя.

Целевая функция представляет собой функцию с некоторыми переменными, от которых непосредственно зависит достижение оптимальности. Также она может выступать в качестве нескольких переменных, которые характеризуют тот или иной объект. Можно сказать, что, по сути, она показывает, как мы продвинулись в достижении поставленной задачи.

Примером таких функций может выступать расчет прочности и массы конструкции, мощности установки, объема выпуска продукции, стоимости перевозок и другие.

Целевая функция позволяет ответить на несколько вопросов:

Выгодно или нет то или иное событие;

В правильном ли направлении идет движение;

Насколько верно сделан выбор и т.д.

Если мы не имеем возможности влиять на параметры функции, то, можно сказать, что и сделать мы ничего не можем, разве что только проанализировать и все. Но чтобы быть в состоянии что-то изменить, обычно существуют изменяемые параметры функции. Главная задача - это изменить значения на те, при которых функция станет оптимальной.

Целевые функции не всегда могут быть представлены в виде формулы. Это может быть таблица, например. Также условие может быть в виде нескольких целевых функций. Например, если требуется обеспечить максимальную надежность, минимальные затраты и минимальную материалоемкость.

Задачи на оптимизацию должны иметь важнейшее исходное условие - целевую функцию. Если мы ее то можно считать, что оптимизации не существует. Иными словами, если нет цели, то и нет путей ее достижения, а тем более выгодных условий.

Задачи на оптимизацию бывают условными и безусловными. Первый вид предполагает ограничения, то есть определенные условия при постановке задачи. Второй вид состоит в том, чтобы отыскать максимум или при существующих параметрах. Зачастую такие задачи предполагают поиск минимума.

В классическом понимании оптимизации подбираются такие значения параметров, при которых целевая функция удовлетворяет желаемым результатам. Также ее можно обозначить как процесс подбора самого лучшего варианта из возможных. Например, выбрать лучшее распределение ресурсов, вариант конструкции и т.д.

Существует такое понятие, как неполная оптимизация. Она может образоваться по нескольким причинам. Например:

Число попавших в максимальную точку систем ограничено (уже установлена монополия или олигополия);

Нет монополии, но отсутствуют ресурсы (недостаток квалификации на каком-либо конкурсе);

Отсутствие самой а точнее «незнание» ее (мужчина мечтает о некой красивой женщине, но неизвестно, существует ли такая в природе) и т.д.

В условиях рыночных отношений управления сбытовой и производственной деятельностью фирм и предприятий основой принятия решений является информация о рынке, а обоснованность этого решения проверяется уже при выходе на рынок с соответствующим товаром или услугой. В таком случае отправной точкой является изучение потребительского спроса. Для нахождения решений устанавливается целевая функция потребления. Она показывает количество потребляемых благ и степень удовлетворения потребностей потребителя, а также зависимость между ними.

Действие системы, ее поведение характеризуются не только установлением факта достижения цели, но и степенью ее достижения, определяемой с помощью целевой функции.

Целевая функция – есть обобщенный показатель системы, который характеризует степень достижения системой ее цели. Составление целевой функции одна из важнейших задач при проектировании системы. Однако нет общей теории построения целевых функций, есть только некоторые рекомендации.

Целевая функция составляется по указаниям ТЗ о критерии оптимизации путем анализа внешних параметров системы и ограничений на них.

Целевая функция должна существенно зависеть от внешних параметров или части их. В противном случае оптимизация по данной целевой функции не имеет смысла. Целевая функция представляет вектор в m -мерном пространстве внешних параметров системы

Обычно целевая функция задается в скалярном виде.

Используются следующие четыре формы целевой функции.

1. Наиболее часто используется целевая функция одного внешнего параметра

В этом случае целевая функция просто равна одному из внешних параметров или его обратной величине

Все остальные (m – 1) внешних параметров переводятся в систему ограничений.

Физический смысл целевой функции приведенных видов заключается в том, что чем больше (или меньше) параметр y i , тем лучше при прочих равных условиях данная система, причем равенство прочих условий понимается в смысле ограничений на остальные внешние параметры. Типичные задачи с приведенной формой целевой функции: оптимизация системы по надежности (y = P (t )), помехоустойчивости, стоимости и другим внешним параметрам. Такая целевая функция имеет ясный физический (технический или экономический) смысл, объективно характеризует систему и поэтому часто используется. То есть в этом случае целевой функцией является внешний параметр системы. Он и называется целевой функцией системы. Это могут быть: точность, быстродействие, время, стоимость, надежность, масса, габариты, какой-то технологический показатель и т.п.

2. Вторая форма целевой функции – это сумма параметров одной размерности или сумма функций от этих параметров

Такая форма характерна при оптимизации по экономическим критериям, по критериям сложности и т.п.

Например, при минимизации годовых приведенных затрат на систему целевая функция представляет собой сумму двух внешних параметров: годовых эксплуатационных расходов и капитальных затрат, отнесенных к сроку окупаемости системы. В этом случае каждый из этих внешних параметров системы является сложной функцией ее внутренних (подлежащих нахождению) параметров.

Целевые функции задач оптимизации по критерию сложности также имеют вторую форму, т.к. они представляются в виде суммы сложностей отдельных подсистем или блоков системы.

3. Третья форма целевой функции – ранжированная форма – представляет собой упорядоченную совокупность целевых функций первой формы с приоритетами

Первая целевая функция наиболее важная, последняя целевая функция наименее важная.

В частном случае целевая функция этого вида записывается так:

Пример ранжирования – это (например) такая последовательность целевых функций: точность, надежность, стоимость. Смысл целевой функции третьей формы состоит в следующем. Самым главным – первым по рангу – признается некоторый i -й параметр системы – y i (например, точность). Если у некоторой системы этот i -ый параметр больше, чем у всех других систем, то независимо от значений других параметров (если только они удовлетворяют ограничениям) данная система считается лучшей. Затем по второму параметру и т.д.

Процедура оптимизации в этом случае, как правило, является многошаговой. Такая оптимизация часто неосознанно применяется в технических системах. Сначала выбирают систему лучшую по точности, при одинаковой точности нескольких систем – более надежную, а затем – более дешевую. На каждом шаге при оптимизации используется только один критерий, что не противоречит концепции системного подхода (оптимизация по одному единственному критерию, см. далее).

4. Четвертая – наиболее общая – форма целевой функции представляет собой произвольную зависимость от всех или части (но не меньше двух) разнородных внешних параметров

При этом разнородные параметры преобразуются в безразмерные (или одноразмерные) и целевая функция формируется как некоторая композиция (например, среднее арифметическое) полученных безразмерных показателей.

Единую целевую функцию четвертой формы можно получить из целевых функций третьей формы путем умножения их на весовые коэффициенты и последующего суммирования :

где F S (y i ) – одна из k целевых функций третьей формы;

ω S – ее весовой коэффициент.

Однако, как указывается там же, определение весовых коэффициентов отдельных целевых функций является очень сложным.

Экстремальное значение полученной суммы будет считаться оптимальным.

Таким образом, можно указать, что в большинстве случаев (1-я и 3-я формы) показатели качества системы оцениваются численными значениями компонентов векторной целевой функции, которые носят названия функционалов :

- - - - - - - - - - - - - - - - - -

Так как системы работают в условиях случайных воздействий, то значения функционалов часто оказываются случайными величинами. Это неудобно при использовании функционалов в виде показателей качества. Поэтому в таких случаях обычно пользуются средними значениями соответствующих функционалов. Например: среднее количество изделий, выпускаемых за смену; средняя стоимость продукции и т.д.

В некоторых случаях показатели качества представляют собой вероятности некоторых случайных событий. При этом в качестве целевой функции выбирается вероятность
выполнения системой поставленной цели (задачи)

Например, вероятность обнаружения цели радиолокатором и т.п.

Понравилась статья? Поделиться с друзьями: