История микропроцессоров. Компания Intel стала лидером среди производителей процессоров. История развития процессоров Intel

Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.

Как началось создание процессора

Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.

Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.

В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.

В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.

Самый первый персональный компьютер

Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.

История развития процессоров Intel

Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.

В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.

Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.

Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.

В то же самое время в СССР

В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.

В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.

Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.

Эволюция процессоров

В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.

В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.

По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.

В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

Эволюция процессоров Intel, Zilog, Motorola

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

Процессоры нового поколения от компании Intel

В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.

Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.

Недорогие разработки Intel

Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.

), начиная от первых графических адаптеров MDA и CGA и заканчивая новейшими архитектурами AMD и NVIDIA. Теперь настала очередь проследить за тем, как развивались центральные процессоры - не менее важная составляющая любого компьютера. В этой части материала речь пойдет о 1970-х годах, а следовательно, первых 4- и 8-битных решениях.

Первые центральные процессоры были многоножками

1940–1960-е годы

Прежде чем углубляться в историю развития центральных процессоров, необходимо сказать несколько слов о развитии компьютеров в целом. Первые CPU появились еще в 40-х годах XX века. Тогда они работали с помощью электромеханических реле и вакуумных ламп, а применяемые в них ферритовые сердечники выполняли роль запоминающих устройств. Для функционирования компьютера на базе таких микросхем требовалось огромное количество процессоров. Подобный компьютер представлял собой огромный корпус размером с достаточно большую комнату. При этом он выделял большое количество энергии, а его быстродействие оставляло желать лучшего.

Компьютер, использующий электромеханические реле

Однако уже в 1950-х годах в конструкции процессоров стали применяться транзисторы. Благодаря их применению инженерам удалось добиться более высокой скорости работы чипов, а также снизить их энергопотребление, но повысить надежность.

В 1960-х годах получила свое развитие технология изготовления интегральных схем, что позволило создавать микрочипы с расположенными на них транзисторами. Сам процессор состоял из нескольких таких схем. С течением времени технологии позволили размещать все большее количество транзисторов на кристалле, в связи с чем количество используемых в CPU интегральных схем сокращалось.

Тем не менее архитектура процессоров была всё ещё очень и очень далека от того, что мы видим сегодня. Но выход в 1964 году IBM System/360 немного приблизил дизайн тогдашних компьютеров и CPU к современному - прежде всего в плане работы с программным обеспечением. Дело в том, что до появления этого компьютера все системы и процессоры работали лишь с тем программным кодом, который был написан специально для них. В своих ЭВМ компания IBM впервые использовала иную философию: вся линейка разных по производительности CPU поддерживала один и тот же набор инструкций, что позволяло писать ПО, которое работало бы под управлением любой модификации System/360.

Компьютер IBM System/360

Возвращаясь к теме совместимости System/360, нужно подчеркнуть, что IBM уделила очень много внимания данному аспекту. Например, современные компьютеры линейки zSeries до сих пор поддерживают работу программного обеспечения, написанного для платформы System/360.

Не стоит забывать и о компании DEC (Digital Equipment Corporation), а именно о ее линейке компьютеров PDP (Programmed Data Processor). Фирма была основана в 1957 году, и в 1960 году выпустила свой первый миникомпьютер PDP-1. Устройство представляло собой 18-битную систему и по размерам было меньше, чем мейнфреймы того времени, занимая «всего лишь» комнатный угол. В компьютер был интегрирован ЭЛТ-монитор. Интересно, что первая в мире компьютерная игра под названием Spacewar! была написана именно под платформу PDP-1. Стоимость компьютера в 1960 году составляла 120 тысяч долларов США, что было значительно ниже цены других мейнфреймов. Тем не менее PDP-1 не пользовался особой популярностью.

Компьютер PDP-1

Первым коммерчески успешным устройством DEC стал компьютер PDP-8, выпущенный в 1965 году. В отличие от PDP-1, новая система была 12-битной. Стоимость PDP-8 составляла 16 тысяч долларов США – это был самый дешевый миникомпьютер того времени. Благодаря столь низкой цене устройство стало доступно промышленным предприятиям и научным лабораториям. В итоге было продано около 50 тысяч таких компьютеров. Отличительной архитектурной особенностью процессора PDP-8 стала его простота. Так, в нем было всего четыре 12-битных регистра, которые использовались для задач различного типа. При этом PDP-8 содержал всего 519 логических вентилей.

Компьютер PDP-8. Кадр из фильма «Три дня Кондора»

Архитектура процессоров PDP напрямую повлияла на устройство 4- и 8-битных процессоров, о которых и пойдет речь далее.

Intel 4004

1971 год вошел в историю как год появления первых микропроцессоров. Да-да, таких решений, которые используются сегодня в персональных компьютерах, ноутбуках и других устройствах. И одной из первых заявила о себе тогда еще только-только основанная компания Intel, выпустив на рынок модель 4004 - первый в мире коммерчески доступный однокристальный процессор.

Прежде чем перейти непосредственно к процессору 4004, стоит сказать пару слов о самой компании Intel. Её в 1968 году создали инженеры Роберт Нойс и Гордон Мур, которые до того момента трудились на благо компании Fairchild Semiconductor, и Эндрю Гроувом. Кстати, именно Гордон Мур опубликовал всем известный «закон Мура», согласно которому количество транзисторов в процессоре удваивается каждый год.

Уже в 1969-ом, спустя всего лишь год после основания, компания Intel получила заказ от японской компании Nippon Calculating Machine (Busicon Corp.) на производство 12 микросхем для высокопроизводительных настольных калькуляторов. Первоначальный дизайн микросхем был предложен самой Nippon. Однако такая архитектура не приглянулась инженерам Intel, и сотрудник американской компании Тед Хофф предложил сократить число микросхем до четырех за счет использования универсального центрального процессора, который бы отвечал за арифметические и логические функции. Помимо центрального процессора, архитектура микросхем включала оперативную память для хранения данных пользователя, а также ПЗУ для хранения программного обеспечения. После утверждения окончательной структуры микросхем продолжилась работа над дизайном микропроцессора.

В апреле 1970 года к команде инженеров Intel присоединился итальянский физик Федерико Фаджин, который до этого также работал в компании Fairchild. У него был большой опыт работы в области логического проектирования компьютеров и технологий МОП (металл-оксид-полупроводник) с кремниевыми затворами. Именно благодаря вкладу Федерико инженерам Intel удалось объединить все микросхемы в один чип. Так увидел свет первый в мире микропроцессор 4004.

Процессор Intel 4004

Что касается технических характеристик Intel 4004, то, по сегодняшним меркам, конечно, они были более чем скромные. Чип производился по 10-мкм техпроцессу, содержал 2300 транзисторов и работал на частоте 740 кГц, что означало возможность выполнения 92 600 операций в секунду. В качестве форм-фактора использовалась упаковка DIP16. Размеры Intel 4004 составляли 3x4 мм, а по бокам располагались ряды контактов. Изначально все права на чип принадлежали компании Busicom, которая намеревалась использовать микропроцессор исключительно в калькуляторах собственного производства. Однако в итоге они позволили Intel продавать свои чипы. В 1971 году любой желающий мог приобрести процессор 4004 по цене примерно 200 долларов США. К слову, чуть позже Intel выкупила все права на процессор у Busicom, предрекая важную роль чипа в последующей миниатюризации интегральных схем.

Несмотря на доступность процессора, его область применения ограничилась калькулятором Busicom 141-PF. Также долгое время ходили слухи, что Intel 4004 применялся в конструкции бортового компьютера беспилотного космического аппарата «Пионер-10», который стал первым межпланетным зондом, совершившим пролет вблизи Юпитера. Эти слухи напрямую опровергаются тем, что бортовые компьютеры «пионера» имели 18- или 16-битную разрядность, тогда как Intel 4004 был 4-битным процессором. Впрочем, стоит отметить, что инженеры NASA рассматривали возможность его использования в своих аппаратах, однако посчитали чип недостаточно испытанным для таких целей.

Процессор Intel 4040

Спустя три года после выхода процессора Intel 4004 увидел свет его преемник - 4-битный Intel 4040. Чип производился по тому же 10-мкм техпроцессу и работал на той же тактовой частоте 740 кГц. Тем не менее, процессор стал немного «сложнее» и получил более богатый набор функций. Так, 4040 содержал 3000 транзисторов (на 700 больше, чем у 4004). Форм-фактор процессора остался прежним, однако вместо 16-пинового стали использовать 24-пиновый DIP. Среди улучшений 4040 стоит отметить поддержку 14 новых команд, увеличенную до 7 уровней глубину стека, а также поддержку прерываний. «Сороковой» использовался в основном в тестовых устройствах и управлении оборудованием.

Intel 8008

Помимо 4-битных процессоров, в начале 70-х годов в арсенале Intel появилась и 8-битная модель - 8008. По своей сути чип представлял собой 8-битную версию процессора 4004 с меньшей тактовой частотой. Не стоит этому удивляться, потому как разработка модели 8008 велась параллельно с разработкой 4004. Так, в 1969 году компания Computer Terminal Corporation (впоследствии Datapoint) поручила Intel создание процессора для терминалов Datapoint, предоставив им схему архитектуры. Как и в случае с моделью 4004, Тэд Хофф предложил интегрировать все микросхемы в один чип, и в CTC согласились с таким предложением. Разработка плавно шла к своему завершению, но в 1970 году CTC отказались как от чипа, так и от дальнейшего сотрудничества с Intel. Причины были банальны: инженеры Intel не вложились в установленные сроки разработки, а функциональность предоставленного «камня» не соответствовала запросам CTC. Договор между двумя компаниями был разорван, права на все наработки остались у Intel. Новым чипом заинтересовалась японская компания Seiko, инженеры которой хотели использовать новый процессор в своих калькуляторах.

Процессор Intel 8008

Так или иначе, но после прекращения сотрудничества с CTC Intel переименовала разрабатываемый чип в 8008. В апреле 1972 года этот процессор стал доступен для заказа по цене 120 долларов США. После того как Intel осталась без поддержки CTC, в стане компании осторожно относились к коммерческим перспективам нового чипа, однако сомнения были напрасны - процессор хорошо продавался.

Технические характеристики 8008 были во многом схожи с 4004. Процессор производился в 18-пиновом форм-факторе DIP по 10-мкм технологическим нормам и содержал 3500 транзисторов. Внутренний стек поддерживал 8 уровней, а объем поддерживаемой внешней памяти составлял до 16 Кбайт. Тактовая частота 8008 была установлена на отметке 500 кГц (на 240 кГц ниже, чем у 4004). За счет этого 8-битный процессор Intel зачастую проигрывал в скорости 4-битному.

На основе 8008 было построено несколько компьютерных систем. Первой из них стал не очень известный проект под названием The Sac State 8008. Эта система разрабатывалась в стенах университета Сакраменто под руководством инженера Билла Пентца. Несмотря на то, что долгое время первым созданным микрокомпьютером считалась система Altair 8800, именно The Sac State 8008 является таковым. Проект был завершен в 1972 году и представлял полностью полноценный компьютер для обработки и хранения медицинских записей пациентов. Компьютер включал в себя непосредственно процессор 8008, жесткий диск, 8 Кбайт оперативной памяти, цветной дисплей, интерфейс для подключения к мейнфреймам, а также собственную операционную систему. Стоимость такой системы была крайне высокой, поэтому The Sac State 8008 так и не смог получить должного распространения, хотя довольно продолжительное время конкурентов в плане производительности у него не было.

Примерно так выглядел The Sac State 8008

Тем не менее, The Sac State 8008 - не единственный компьютер, построенный на базе процессора 8008. Были созданы и другие системы, такие как американская SCELBI-8H, французская Micral N и канадская MCM/70.

Intel 8080

Как и в случае с процессором 4004, спустя некоторое время 8008 также получил обновление в лице чипа 8080. Однако в случае с 8-битным решением изменения, внесенные в архитектуру процессора, были намного более существенные.

Intel 8080 был представлен в апреле 1974 года. Прежде всего, нужно отметить, что производство процессора перевели на новый 6-мкм техпроцесс. Более того, при производстве использовалась технология N-МОП (n-канальные транзисторы) - в отличие от 8008, который производился с помощью P-МОП-логики. Использование нового техпроцесса позволило разместить на кристалле 6000 транзисторов. В качестве форм-фактора использовался DIP с 40 контактами.

Модель 8080 получила более богатый набор команд, который включал 16 команд передачи данных, 31 команду для их обработки, 28 команд для перехода с прямой адресацией, а также 5 команд управления. Тактовая частота процессора составила 2 МГц - в 4 раза больше, чем у предшественника. Также 8080 имел 16-разрядную адресную шину, которая позволяла производить адресацию 64 Кбайт памяти. Эти нововведения обеспечили высокую производительность нового чипа, которая примерно в 10 раз превышала таковую у 8008.

Процессор Intel 8080

Процессор 8080 в своей первой ревизии содержал серьезную ошибку, которая могла приводить к зависанию. Ошибка была исправлена в обновленной ревизии чипа, получившей название 8080А и выпущенной только спустя полгода.

Благодаря высокой производительности процессор 8080 стал очень популярным. Его применяли даже в системах управления уличным освещением и светофорами. Однако в основном его использовали в компьютерных системах, самой известной из которых являлась разработка компании MITS Altair-8800, представленная в 1975 году.

Altair-8800 работал на базе операционной системы Altair BASIC, а в качестве шины использовался интерфейс S-100, который спустя несколько лет стал стандартом для всех персональных компьютеров. Технические характеристики компьютера были более чем скромные. Он обладал всего лишь 256 байт оперативной памяти, у него отсутствовали клавиатура и монитор. Пользователь работал с компьютером путем ввода программ и данных в двоичной форме, щелкая набором маленьких ключей, которые могли занимать два положения: верхнее и нижнее. Результат считывался также в двоичной форме - по погасшим и светящимся лампочкам. Тем не менее, Altair-8800 стал настолько популярным, что такая маленькая компания, как MITS, попросту не успевала удовлетворять спрос на компьютеры. Популярности компьютера напрямую посодействовала его невысокая стоимость - 621 доллар США. При этом за 439 долларов США можно было приобрести компьютер в разобранном виде.

Компьютер Altair-8800

Возвращаясь к теме 8080, нужно отметить, что на рынке присутствовало множество его клонов. Тогдашняя маркетинговая ситуация в корне отличалась от того, что мы наблюдаем сегодня, и Intel было выгодно предоставлять сторонним компаниям лицензии на производство копий 8080. Производством клонов занималось множество крупных компаний, таких как National Semiconductor, NEC, Siemens и AMD. Да, в 70-е годы у AMD еще не было собственных процессоров - фирма занималась исключительно выпуском «ремейков» других кристаллов на собственных мощностях.

Интересно, что существовала и отечественная копия процессора 8080. Она была разработана Киевским НИИ микроприборов и носила название КР580ВМ80А. Было выпущено несколько вариантов этого процессора, в том числе и для применения в военных объектах.

«Незалежный» КР580ВМ80А

В 1976 году появилась обновленная версия чипа 8080, получившая индекс 8085. Новый кристалл изготавливался по 3 мкм техпроцессу, что позволило разместить на чипе 6500 транзисторов. Максимальная тактовая частота процессора составляла 6 МГц. Набор поддерживаемых инструкций содержал 79 команд, среди которых были две новые команды для управления прерываниями.

Zilog Z80

Главным событием после выхода 8080 стало увольнение Федерико Фаджина. Итальянец не был согласен с внутренней политикой компании и решил уйти. Вместе с бывшим менеджером Intel Ральфом Унгерманном и японским инженером Масатоши Шимой он основал компанию Zilog. Сразу после этого началась разработка нового процессора, похожего по своей архитектуре на 8080. Так, в июле 1976 года появился процессор Zilog Z80, бинарно совместимый с 8080.

Федерико Фаджин (слева)

В сравнении с Intel 8080 Zilog Z80 имел много улучшений, например, расширенный набор команд, новые регистры и инструкции для них, новые режимы прерываний, два отдельных блока регистров, а также встроенную схему регенерации динамической памяти. Кроме этого, стоимость Z80 была намного ниже, чем 8080.

Что касается технических характеристик, то процессор производился по 3-мкм технологическим нормам с применением технологий N-МОП и КМОП. Z80 содержал 8500 транзисторов, а его площадь равнялась 22,54 мм 2 . Тактовая частота Z80 варьировалась в пределах от 2,5 до 8 МГц. Разрядность шины данных составляла 8 бит. Процессор обладал 16-битной адресной шиной, а объем адресуемой памяти составлял 64 Кбайт. Z80 производился в нескольких форм-факторах: DIP40 или 44-контактных PLCC и PQFP.

Процессор Zilog Z80

Z80 очень быстро превзошел в популярности все конкурирующие решения, в том числе и 8080. Процессор применялся в компьютерах таких компаний, как Sharp, NEC и других. Также Z80 «прописался» в консолях Sega и Nintendo. Кроме этого, процессор использовался в игровых автоматах, модемах, принтерах, промышленных роботах и многих других устройствах.

ZX Spectrum

Отдельного упоминания достойно устройство под названием ZX Spectrum, несмотря на то, что наше сегодняшнее повествование не касается решений 80-х годов прошлого столетия. Компьютер разрабатывался британской компанией Sinclair Research и был выпущен в 1982 году. ZX Spectrum был далеко не первой разработкой SR. В начале 1970-х годов глава компании и ее главный инженер Клайв Синклейр (Clive Sinclair) занимались тем, что продавали радиодетали по почте. Ближе к середине 70-х Клайв создал карманный калькулятор, который стал первым успешным изобретением фирмы. Отметим, что в компании не занимались непосредственно разработкой калькулятора. Им удалось найти удачное сочетание дизайна, функциональности и стоимости, благодаря которому устройство отлично продавалось. Следующим устройством Sinclair также стал калькулятор, но с более богатым набором функций. Устройство предназначалось для более «продвинутой» аудитории, но снискать особого успеха ему не удалось.

Клайв Синклейр - «отец» ZX Spectrum

После калькуляторов Синклейр решил сосредоточиться на разработке полноценных компьютеров, и в промежутке между 1980 и 1981 годами появились домашние компьютеры линейки ZX: ZX80 и ZX81. Но самым популярным решением стала выпущенная в 1982 году система под названием ZX Spectrum. Изначально она должна была выйти на рынок под названием ZX83, но в последний момент было принято решение переименовать девайс, чтобы подчеркнуть поддержку компьютером цветного изображения.

ZX Spectrum стал популярным, прежде всего, благодаря своей простоте и дешевизне. Компьютер внешне напоминал игровую приставку. К нему через внешние интерфейсы подключались телевизор, который использовался в качестве монитора, и кассетный магнитофон, выполняющий функцию накопителя. На корпусе «Спектрума» располагалась многофункциональная клавиатура на 40 резиновых клавиш. Каждая кнопка имела до семи значений при работе в разных режимах.

Компьютер ZX Spectrum

Внутренняя архитектура ZX Spectrum также была довольно простой. Благодаря использованию технологии ULA (Uncommitted Logic Array) основную часть схемы компьютера удалось разместить на одной микросхеме. В качестве центрального процессора использовался Zilog Z80 с тактовой частотой 3,5 МГц. Объем оперативной памяти составлял 16 или 48 Кбайт. Правда, некоторые сторонние производители выпускали модули памяти объемом 32 Кбайт, которые вставлялись в один из портов расширения «Спектрума». Объем ПЗУ составлял 16 Кбайт, причем в память был вшит диалект языка BASIC под названием Sinclair BASIC. ZX Spectrum поддерживал вывод лишь однобитного звука через встроенный динамик. Компьютер работал лишь в графическом режиме (8 цветов и 2 уровня яркости). Следовательно, поддержки текстового режима не было. Максимальное разрешение при этом составляло 256x192 пикселов.

Начальная цена на ZX Spectrum была установлена на отметке 125 фунтов стерлингов. Интересно, что Sinclair Research всё ещё продавали свои устройства с помощью почты. За первые 17 месяцев после выхода «Спектрума» было продано более миллиона компьютеров.


Министерство Образования и Науки Российской Федерации

Федеральное Агентство по Образованию

Санкт-Петербургский Государственный Университет Сервиса и Экономики

РЕФЕРАТ

по дисциплине « Информатика »

«История развития микропроцессора»

Выполнил:

Студент 1 курса

заочной формы обучения

Романенко К.А.

Научный руководитель:

Дата представления работы

« »____________ 2010 г.

Санкт-Петербург

Введение ………………………………………………………………………..3

1. Теоретическая часть ………………………………………………………4

1.1. Определение микропроцессора…………………………………………4

1.2. Классификация микропроцессоров………………………………….....5

1.3. Функции и строение микропроцессора………………………………...8

1.4. Основные характеристики микропроцессоров ПК……………………14

2. История развития микропроцессора …………………………………….17

2.1. Этапы технологии производства………………………………………17

2.2.Современная технология изготовления………………………………..19

3. Российские микропроцессоры ……………………………………………25

4. Микропроцессоры будущего ……………………………………………...29

Заключение ……………………………………………………………………35

Список используемой литературы……………………………………………37

Введение.

Компьютерная техника лежит в основе современного прогресса. Она обеспечивает работу современных станков, контроль технологических процессов на производстве, связь на всех уровнях (от межгосударственного до бытового). С помощью нее проводятся сложные и трудоемкие расчеты, что значительно ускоряет процессы конструирования, разработки, фундаментальные исследования, то есть задает темпы прогресса.

Важнейший компонент любого персонального компьютера - это микропроцессор, который управляет работой компьютера и выполняет большую часть обработки информации.

И в зависимости от того, как будет в будущем меняться мощность этой маленькой детали, будет зависеть производительность всей компьютерной техники в целом. Полученные в ходе написания работы знания могут пригодиться и в обыденной жизни, например при приобретении персонального компьютера.

Цель данной работы – рассмотреть классификацию, структуру, основные характеристики и историю развития микропроцессоров ПК.

Для достижения поставленной цели необходимо решить следующие задачи:

Раскрыть основные понятия темы;

Дать общую схему классификации микропроцессоров;

Рассмотреть структуру и основные характеристики микропроцессоров ПК;

Рассмотреть историю развития микропроцессоров и усовершенствования основных характеристик.

1. Теоретическая часть.

1.1. Определение микропроцессора.

Вернемся к истории. Так случилось, что отдельные транзисторы и интегральные схемы были вытеснены с рынка новым устройством - микропроцессором. Это и было началом новой компьютерной эры, которая длится вот уже без малого четыре десятилетия. Отсчет нового летоисчисления компьютерной эры ведут с

1971 г., когда командой во главе с талантливым изобретателем, доктором Тэдом Хоффом был создан первый микропроцессор Intel 4004.

Первый чип Intel 4004 работал на частоте 750 кГц, содержал 2300 транзисторов и стоил около 200$. Производительность его оценивалась в 60 тыс. операций в секунду. На сегодняшний день рекордные показатели принадлежат микропроцессорам Alpha 21264 фирмы DEC и составляют: 600 МГц, 15,2 млн. транзисторов, 2 млрд. операций в секунду. Стоят они около 300$.

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.

Основные функции процессора: выработка синхронизирующих сигналов; формирование исполнительных адресов для обращения к оперативной памяти; организация обмена информацией между оперативной памятью и внешними устройствами; организация многопрограммной работы.

Поразительно - но за эти годы старому доброму процессору так и не нашлось достойного преемника! Хотя сегодняшние процессоры от Intel быстрее своего прародителя более чем в десять тысяч раз, а любой домашний компьютер обладает мощностью и «сообразительностью» во много раз большей, чем компьютер, управлявший полетом космического корабля «Аполлон» к Луне, процессор остается процессором.

1.2. Классификация микропроцессоров.

В современном мире трудно найти область техники, где не применялись бы микропроцессоры. Они применяются при вычислениях, они выполняют функции управления, они используются при обработке звука и изображения. В зависимости от области применения микропроцессора меняются требования к нему.

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями.

По системе команд микропроцессоры отличаются огромным разнообразием, зависящим от фирмы-производителя. Тем не менее можно определить две крайние политики построения микропроцессоров:

    Аккумуляторные микропроцессоры

    Микропроцессоры с регистрами общего назначения

В микропроцессорах с регистрами общего назначения математические операции могут выполняться над любой ячейкой памяти. В зависимости от типа операции команда может быть одноадресной, двухадресной или трёхадресной.

Принципиальным отличием аккумуляторных процессоров является то, что математические операции могут производиться только над одной особой ячейкой памяти - аккумулятором. Для того, чтобы произвести операцию над произвольной ячейкой памяти её содержимое необходимо скопировать в аккумулятор, произвести требуемую операцию, а затем скопировать полученный результат в произвольную ячейку памяти.

В настоящее время в чистом виде не существует ни та ни другая система команд. Все выпускаемые в настоящее время процессоры обладают системой команд с признаками как аккумуляторных процессоров, так и микропроцессоров с регистрами общего назначения.

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет.

По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры - цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных.

По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции.

По организации структуры микропроцессорных систем различают микроЭВМ одно- и многомагистральные.

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.

В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям.

Поколения процессоров отличаются друг от друга скоростью работы, архитектурой, исполнением и внешним видом... словом, буквально всем. Причем отличаются не только количественно, но и качественно. Так, при переходе от Pentium к Pentium II и затем - к Pentium III была значительно расширена система команд (инструкций) процессора.

Если брать за точку отсчета изделия «королевы» процессорного рынка, корпорации 1п1е1, то за всю 27-летнюю историю процессоров этой фирмы сменилось восемь их поколений: 8088, 286, 386, 486, Pentium, Pentium II, Pentium III, Pentium 4.

В пределах одного поколения все ясно: чем больше тактовая частота, тем быстрее процессор. А как же быть, если на рынке имеются два процессора разных поколений, но с одинаковой тактовой частотой? Например, Pentium III и Pentium 4... Конечно, второй процессор поколения будет работать быстрее - на 10-15 %, в зависимости от задачи. Связано это с тем, что в новых процессорах часто бывают встроены новые системы команд-инструкций, оптимизирующих обработку некоторых видов информации.

1.3. Функции и строение микропроцессора.

Функции процессора:

    обработка данных по заданной программе путем выполнения арифметических и логических операций;

    программное управление работой устройств компьютера.

Модели процессоров включают следующие совместно работающие устройства:

    Устройство управления (УУ). Осуществляет координацию работы всех остальных устройств, выполняет функции управления устройствами, управляет вычислениями в компьютере.

    Арифметико-логическое устройство (АЛУ). Так называется устройство для целочисленных операций. Арифметические операции, такие как сложение, умножение и деление, а также логические операции (OR, AND, ASL, ROL и др.) обрабатываются при помощи АЛУ. Эти операции составляют подавляющее большинство программного кода в большинстве программ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. В процессоре может быть несколько АЛУ. Каждое способно исполнять арифметические или логические операции независимо от других, что позволяет выполнять несколько операций одновременно. Арифметико-логическое устройство выполняет арифметические и логические действия. Логические операции делятся на две простые операции: "Да" и "Нет" ("1" и "0"). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

    AGU (Address Generation Unit) - устройство генерации адресов. Это устройство не менее важное, чем АЛУ, т.к. оно отвечает за корректную адресацию при загрузке или сохранении данных. Абсолютная адресация в программах используется только в редких исключениях. Как только берутся массивы данных, в программном коде используется косвенная адресация, заставляющая работать AGU.

    Математический сопроцессор (FPU). Процессор может содержать несколько математических сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высокоточные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления. Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.

    Дешифратор инструкций (команд). Анализирует инструкции в целях выделения операндов и адресов, по которым размещаются результаты. Затем следует сообщение другому независимому устройству о том, что необходимо сделать для выполнения инструкции. Дешифратор допускает выполнение нескольких инструкций одновременно для загрузки всех исполняющих устройств.

    Кэш-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале. Для хранения этих инструкций необходим совсем небольшой объём памяти. Если инструкции в процессор поступают достаточно быстро, то микропроцессор не будет тратить время на ожидание. Таким образом экономиться время на выполнение инструкций. Но для самых быстродействующих микропроцессоров этого недостаточно. Решение данной проблемы заключается в улучшении организации памяти. Память внутри микропроцессора может работать со скоростью самого процессора.

    Кэш первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов.

    Кэш второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня.

    Основная память. Намного больше по объёму, чем кэш-память, и значительно менее быстродействующая.

Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обязательно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.

Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

    Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.

Типы шин:

    Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.

    Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.

    Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).

BTB (Branch Target Buffer) - буфер целей ветвления. В этой таблице находятся все адреса, куда будет или может быть сделан переход. Процессоры Athlon еще используют таблицу истории ветвлений (BHT - Branch History Table), которая содержит адреса, по которым уже осуществлялись ветвления.

Регистры - это внутренняя память процессора. Представляют собой ряд специализированных дополнительных ячеек памяти, а также внутренние носители информации микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.

Некоторые важные регистры имеют свои названия, например:

  1. сумматор - регистр АЛУ, участвующий в выполнении каждой операции.

    счетчик команд - регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти.

    регистр команд - регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные - для хранения кодов адресов операндов.

1.4. Основные характеристики микропроцессоров ПК

К основным характеристикам микропроцессора можно отнести такие показатели как тактовую частоту, разрядность процессора, размер кэш-памяти, тип ядра, форм-фактор и т.д. Рассмотрим вышесказанное более подробно.

1. Тактовая частота. Самый важный показатель, определяющий скорость работы процессора. Тактовая частота, измеряемая в мегагерцах (МГц) и гигагерцах (ГГц), обозначает лишь то количество циклов, которые совершает работающий процессор за единицу времени (секунду). Пик спроса сегодня приходится на процессоры с частотой от 3 до 4 ГГц.

2. Разрядность процессора. Если тактовую частоту процессора можно уподобить скорости течения воды в реке, то разрядность процессора - ширине ее русла. Понятно, что процессор со вдвое большей разрядностью может «заглотнуть» вдвое больше данных в единицу времени - в том случае, конечно, если это позволяет сделать специально оптимизированное программное обеспечение. Разpядность пpоцессоpа - максимальное количество pазpядов двоичного кода, котоpые могут обpабатываться или пеpедаваться одновpеменно.

3. Размер кэш-памяти. В эту встроенную память процессор помещает все часто используемые данные. Кэш-память в процессоре имеется двух видов. Самая быстрая - кэш-память первого уровня (16-32 кб у процессоров Intel и до 128 кб - в последних моделях AMD).

Существует еще чуть менее быстрая, но зато более объемная кэш-память второго уровня - и именно ее объемом отличаются различные модификации процессоров.

4. Тип микpопpоцессоpа. Тип установленного в компьютеpе микpопpоцессоpа является главным фактоpом, опpеделяющим облик ПК. Именно от него зависят вычислительные возможности компьютеpа. В зависимости от типа используемого микpо­пpоцессоpа и опpеделенных им аpхитектуpных особенностей компьютеpа pазличают пять классов ПК:

    компьютеры класса XT;

    компьютеpы класса AT;

    компьютеpы класса 386;

    компьютеpы класса 486;

    компьютеpы класса Pentium.

5. Быстpодействие микpопpоцессоpа - это число элементаpных опеpаций, выполняемых микpопpоцессоpом в единицу вpемени (опеpации/секунда).

6. Аpхитектуpа микpопpоцессоpа. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.

В соответствии с аpхитектуpными особенностями, опpеделяющи­ми свойства системы команд, pазличают:

    микропроцессоры типа CISC с полным набором системы команд;

    микропроцессоры типа RISC с усеченным набором системы команд;

    микропроцессоры типа VLIW со сверхбольшим командным словом;

микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

  1. История развития микропроцессора.

      Этапы технологии производства .

История развития технологии производства процессоров полностью соответствует истории развития технологии производства элементной базы.

Первым этапом затронувшим период с сороковых по конец пятидесятых годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины пятидесятых до середины шестидесятых, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине шестидесятых годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы - элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора - микропрограммное устройство, арифметико-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом стало создание микропроцессора, при котором на одной микросхеме физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-х разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Но из-за распространённости 8-разрядных модулей памяти был выпущен 8088, клон 8086 с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

2.2. Современная технология изготовления.

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

Первоначально перед разработчиками ставится техническое задание, исходя из которого принимается решение о том, какова будет архитектура будущего процессора, его внутреннее устройство, технология изготовления. Перед различными группами ставится задача разработки соответствующих функциональных блоков процессора, обеспечения их взаимодействия, электромагнитной совместимости. В связи с тем, что процессор фактически является цифровым автоматом, полностью отвечающим принципам булевой алгебры, с помощью специализированного программного обеспечения, работающего на другом компьютере, строится виртуальная модель будущего процессора. На ней проводится тестирование процессора, исполнение элементарных команд, значительных объёмов кода, отрабатывается взаимодействие различных блоков устройства, ведётся оптимизация, ищутся неизбежные при проекте такого уровня ошибки.

После этого из цифровых базовых матричных кристаллов и микросхем, содержащих элементарные функциональные блоки цифровой электроники, строится физическая модель процессора, на которой проверяются электрические и временные характеристики процессора, тестируется архитектура процессора, продолжается исправление найденных ошибок, уточняются вопросы электромагнитной совместимости (например, при практически рядовой тактовой частоте в 10 ГГц отрезки проводника длиной в 7 мм уже работают как излучающие или принимающие антенны).

Затем начинается этап совместной работы инженеров-схемотехников и инженеров-технологов, которые с помощью специализированного программного обеспечения преобразуют электрическую схему, содержащую архитектуру процессора, в топологию кристалла. Современные системы автоматического проектирования позволяют, в общем случае, из электрической схемы напрямую получить пакет трафаретов для создания масок. На этом этапе технологи пытаются реализовать технические решения, заложенные схемотехниками, с учётом имеющейся технологии. Этот этап является одним из самых долгих и сложных в разработке и иногда требует компромиссов со стороны схемотехников по отказу от некоторых архитектурных решений. Следует отметить, что ряд производителей заказных микросхем (foundry) предлагает разработчикам (дизайн-центру или fabless) компромиссное решение, при котором на этапе конструирования процессора используются представленные ими стандартизованные в соответствии с имеющейся технологией библиотеки элементов и блоков (Standard cell). Это вводит ряд ограничений на архитектурные решения, зато этап технологической подгонки фактически сводится к игре в конструктор «Лего». В общем случае, изготовленные по индивидуальным проектам микропроцессоры являются более быстрыми по сравнению с процессорами, созданными на основании имеющихся библиотек.

Следующим этапом является создание прототипа кристалла микропроцессора. При изготовлении современных сверхбольших интегральных схем используется метод литографии. При этом, на подложку будущего микропроцессора (тонкий круг из монокристаллического кремния, либо сапфира) через специальные маски, содержащие прорези, поочерёдно наносятся слои проводников, изоляторов и полупроводников. Соответствующие вещества испаряются в вакууме и осаждаются сквозь отверстия маски на кристалле процессора. Иногда используется травление, когда агрессивная жидкость разъедает не защищённые маской участки кристалла. Одновременно на подложке формируется порядка сотни процессорных кристаллов. В результате появляется сложная многослойная структура, содержащая от сотен тысяч до миллиардов транзисторов. В зависимости от подключения транзистор работает в микросхеме как транзистор, резистор, диод или конденсатор. Создание этих элементов на микросхеме отдельно, в общем случае, не выгодно. После окончания процедуры литографии подложка распиливается на элементарные кристаллы. К сформированным на них контактным площадкам (из золота) припаиваются тонкие золотые проводники, являющиеся переходниками к контактным площадкам корпуса микросхемы. Далее, в общем случае, крепится теплоотвод кристалла и крышка микросхемы.

Затем начинается этап тестирования прототипа процессора, когда проверяется его соответствие заданным характеристикам, ищутся оставшиеся незамеченными ошибки. Только после этого микропроцессор запускается в производство. Но даже во время производства идёт постоянная оптимизация процессора, связанная с совершенствованием технологии, новыми конструкторскими решениями, обнаружением ошибок.

Следует отметить, что параллельно с разработкой универсальных микропроцессоров, разрабатываются наборы периферийных схем ЭВМ, которые будут использоваться с микропроцессором и на основе которых создаются материнские платы. Разработка микропроцессорного набора (chipset) представляет задачу, не менее сложную, чем создание микросхемы микропроцессора.

В последние несколько лет наметилась тенденция переноса части компонентов чипсета (контроллер памяти, контроллер шины PCI Express) в состав процессора. См. подробнее Система на кристалле.

В начале 1970-х годов благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микросхем, стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц (в документе говорится, что цикл инструкции длится 10,8 микросекунд, а в рекламных материалах Intel - 108 кГц) и стоил 300 долл.

За годы существования технологии микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

Большинство процессоров, используемых в настоящее время, являются Intel-совместимыми, то есть имеют набор инструкций и интерфейсы программирования, реализованные в процессорах компании Intel.

Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM. Среди процессоров от Intel: 8086, i286 (в компьютерном сленге называется «двойка», «двушка»), i386 («тройка», «трёшка»), i486 («четвёрка»), Pentium («пень», «пенёк», «второй пень», «третий пень» и т. д. Наблюдается также возврат названий: Pentium III называют «тройкой», Pentium 4 - «четвёркой»), Pentium II, Pentium III, Celeron (упрощённый вариант Pentium), Pentium 4, Core 2 Quad, Core i7, Xeon (серия процессоров для серверов), Itanium, Atom (серия процессоров для встраиваемой техники) и др. AMD имеет в своей линейке процессоры архитектуры x86 (аналоги 80386 и 80486, семейство K6 и семейство K7 - Athlon, Duron, Sempron) и x86-64 (Athlon 64, Athlon 64 X2, Phenom, Opteron и др.). Процессоры IBM (POWER6, POWER7, Xenon, PowerPC) используются в суперкомпьютерах, в видеоприставках 7го поколения, встраиваемой технике; ранее использовались в компьютерах фирмы Apple.

Доли компаний на рынке.

По данным компании IDC, по итогам 2009 г. доля корпорации Intel составила 79,7%, доля AMD – 20,1%.

Доли по годам:

    Российские микропроцессоры .

Разработкой микропроцессоров в России занимаются ЗАО «МЦСТ» и НИИСИ РАН. Также разработку специализированных микропроцессоров, ориентированных на создание нейронных систем и цифровую обработку сигналов, ведут НТЦ «Модуль» и ГУП НПЦ «ЭЛВИС». Ряд серий микропроцессоров также производит ОАО «Ангстрем».

НИИСИ разрабатывает процессоры серии Комдив на основе архитектуры MIPS. Техпроцесс - 0.5 мкм, 0.3 мкм; КНИ.

    КОМДИВ32, 1890ВМ1Т, в том числе в варианте КОМДИВ32-С (5890ВЕ1Т), стойком к воздействию факторов космического пространства (ионизирующему излучению)

    КОМДИВ64, КОМДИВ64-СМП

    Арифметический сопроцессор КОМДИВ128

НТЦ Модуль разработал и предлагает микропроцессоры семейства NeuroMatrix:

    1998 год, 1879ВМ1 (NM6403) - высокопроизводительный специализированный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой. Технология изготовления - КМОП 500 нм, частота 40 МГц.

    2007 год, 1879ВМ2 (NM6404) - модификация 1879ВМ1 с увеличенной до 80 МГц тактовой частотой и 2Мбитным ОЗУ, размещённым на кристалле процессора. Технология изготовления - 250 нм КМОП.

    2009 год, 1879ВМ4 (NM6405) - высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления - 250 нм КМОП, тактовая частота 150 МГц.

Благодаря ряду аппаратных особенностей микропроцессоры этой серии могут быть использованы не только в качестве специализированных процессоров цифровой обработки сигналов, но и для создания нейронных сетей.

ГУП НПЦ ЭЛВИС разрабатывает и производит микропроцессоры серии «Мультикор», отличительной особенностью которых является несимметричная многоядерность. При этом физически в одной микросхеме содержатся одно CPU RISC-ядро с архитектурой MIPS32, выполняющее функции центрального процессора системы, и одно или более ядер специализированного процессора-акселератора для цифровой обработки сигналов с плавающей/фиксированной точкой ELcore-xx (ELcore = Elvees’s core), основанного на «гарвардской» архитектуре. CPU-ядро является ведущим в конфигурации микросхемы и выполняет основную программу. Для CPU-ядра обеспечен доступ к ресурсам DSP-ядра, являющегося ведомым по отношению к CPU-ядру. CPU микросхемы поддерживает ядро ОС Linux 2.6.19 или ОС жесткого реального времени QNX 6.3 (Neutrino).

    2004 год, 1892ВМ3Т (MC-12) - однокристальная микропроцессорная система с двумя ядрами. Центральный процессор - MIPS32, сигнальный сопроцессор - SISD ядро ELcore-14. Технология изготовления - КМОП 250 нм, частота 80 МГц. Пиковая производительность 240 MFLOPs (32 бита).

    2004 год, 1892ВМ2Я (MC-24) - однокристальная микропроцессорная система с двумя ядрами. Центральный процессор - MIPS32, сигнальный сопроцессор - SIMD ядро ELcore-24. Технология изготовления - КМОП 250 нм, частота 80 МГц. Пиковая производительность 480 MFLOPs (32 бита).

    2006 год, 1892ВМ5Я (MC-0226) - однокристальная микропроцессорная система с тремя ядрами. Центральный процессор - MIPS32, 2 сигнальных сопроцессора - MIMD ядро ELcore-26. Технология изготовления - КМОП 250 нм, частота 100 МГц. Пиковая производительность 1200 MFLOPs (32 бита).

    2008 годNVCom-01 («Навиком») - однокристальная микропроцессорная система с тремя ядрами. Центральный процессор - MIPS32, 2 сигнальных сопроцессора - MIMD DSP-кластер DELCore-30 (Dual ELVEES Core). Технология изготовления - КМОП 130 нм, частота 300 МГц. Пиковая производительность 3600 MFLOPs (32 бита). Разработан в качестве телекоммуникационного микропроцессора, содержит встроенную функцию 48-канальной ГЛОНАСС/GPS навигации.

В качестве перспективного проекта НПЦ ЭЛВИС представлен MC-0428 - процессор MultiForce - однокристальная микропроцессорная система с одним центральным процессором и четырьмя специализированными ядрами. Технология изготовления - КМОП 130 нм, частота до 340 МГц. Пиковая производительность ожидается не менее 8000 MFLOPs (32 бита).

ОАО «Ангстрем (компания)» производит (не разрабатывает) следующие серии микропроцессоров:

    1839 - 32-разрядный VAX-11/750-совместимый микропроцессорный комплект из 6 микросхем. Технология изготовления - КМОП, тактовая частота 10 МГц.

    1836ВМ3 - 16-разрядный LSI-11/23-совместимый микропроцессор. Программно совместим с PDP-11 фирмы DEC. Технология изготовления - КМОП, тактовая частота 16 МГц.

    1806ВМ2 - 16-разрядный LSI/2-совместимый микропроцессор. Программно совместим с LCI-11 фирмы DEC.Технология изготовления - КМОП, тактовая частота 5 МГц.

    Л1876ВМ1 32-разрядный RISC микропроцессор. Технология изготовления - КМОП, тактовая частота 25 МГц.

Из собственных разработок Ангстрема можно отметить однокристальную 8-разрядную RISC микроЭВМ Тесей.

Компанией МЦСТ разработано и внедрено в производство семейство универсальных SPARC-совместимых RISC-микропроцессоры с проектными нормами 130 и 350 нм и частотами от 150 до 500 МГц (подробнее см. статью о серии - МЦСТ-R и о вычислительных комплексах на их основе Эльбрус-90микро). Также разработан VLIW-процессор Эльбрус с оригинальной архитектурой ELBRUS, используется в комплексах Эльбрус-3М1). Основные потребители российских микропроцессоров - предприятия ВПК.

В советское время одним из самых востребованных из-за его непосредственной простоты и понятности, стал задействованный в учебных целях МПК КР580 - набор микросхем, аналогичных набору микросхем Intel 82xx. Использовался в отечественных компьютерах, таких как Радио 86РК, ЮТ-88, Микроша, и т. д.

    Микропроцессоры будущего.

Не технология, а стоимость станет самым серьезным препятствием при разработках микропроцессоры будущего.

Через 15 лет микропроцессоры будут работать на гигагерцевых частотах, а число транзисторов на кристалл размером с ноготь составит миллионы. Протяженность многослойных межсоединений, выполненных на кристалле с молекулярной точностью, составит более километра. На первом плане окажется проблема достижения максимального быстродействия межкомпонентных соединений, с которой поставщики ПК пытаются справиться и сегодня, поскольку скорости внутри ИС в грубом приближении впятеро выше, чем при обмене сигналами между ИС и платой. Большие трудности для разработчиков ИС создадут и задержки распространения сигналов между многочисленными металлическими слоями.

Более производительные ИС откроют в будущем возможности реализации многочисленных приложений ПК, ограниченных лишь нашей изобретательностью. Уже теперь микропроцессоры позволяют осуществлять такие функции, как распознавание рукописного текста и перевод с одного языка на другой. И все же препятствия на пути дальнейшего развития микросхемотехники существуют. Если это не технология, то что же?

Стоимостные барьеры

Одно из препятствий, мешающих развитию микропроцессорной техники и технологии, связано с высокой стоимостью строительства предприятия (завода) для полупроводникового производства, которая ныне превышает 1 млрд. долл. Сегодня существует около тысячи таких заводов; строительство порядка сотни таких заводов в период до 2012 г. обойдется еще дороже. К тому же эти затраты не идут ни в какое сравнение с расходами, которые потребуются для доведения новых микросхем до рынка. Например, разработка и внедрение первого микропроцессора Pentium обошлись компании Intel в сумму более 5 млрд. долл. Разработка микросхем 2012 г., независимо от того, будут ли они выполнены на основе RISC - или CISC -архитектуры, может обойтись в сумму около 10 млрд. долл.

Расходы на изготовление микросхем фактически признал в качестве ограничивающего фактора Гордон Мур из компании Intel. Муру это хорошо известно, так как он первым указал в 1965 г. на стратегическую тенденцию пропорционального уменьшения размера транзисторов в целях экономически эффективного изготовления более миниатюрных и быстродействующих микросхем повышенной функциональности (эту тенденцию затем стали называть «Законом Мура»). В соответствии с ней каждый год в продажу поступают все более быстродействующие и миниатюрные компьютеры.

Есть специалисты, утверждающие, что для развития микросхемотехники нет реальных препятствий и что при должном использовании технологии можно достичь гораздо большего, чем повышение продуктивности. Возможности воплощения в жизнь любых достижений, видимо, значительно шире. Можно ли воспользоваться завтрашней технологией, чтобы добиться большего прогресса в таких сферах, как образование и восприятие культурных ценностей? Ведь встречались и еще более странные вещи, даже в электронной промышленности.

Архитекторы кремниевых пластин

В попытках ускорить обработку информации путем минимизации задержек распространения сигналов разработчики стали размещать металлические токопроводящие дорожки возрастающей длины слоями. В то время как в конце восьмидесятых годов в ИС использовался только один слой металлизации, сегодня число таких слоев достигает четырех или пяти.

Хотя такая слоистая структура будет быстро прогрессировать и число слоев увеличится до восьми и более, возможности подобных металлических структур, связанные с прохождением сигналов, достигнут в конце концов предела и потребуются какие-то новые методы. Токопроводящие дорожки будут, скорее всего, медными, а не алюминиевыми, так как медь обладает лучшей электропроводностью. А вместо изолирующей пленки из двуокиси кремния для разделения токопроводящих дорожек на пластину будут осаждаться либо наноситься - с использованием центрифуги - фторированные окислы.

Это чудесное сочетание материалов понизит резистивно-емкостную постоянную времени проводников. Благодаря сведению к минимуму сопротивления металла и уменьшению диэлектрической проницаемости изолирующей пленки разработчики добьются ускорения прохождения сигналов. Именно в этом отношении решающую роль приобретает выбор технологий.

Важнейшие технологические достижения

Стоимостные и технологические вопросы в полупроводниковой промышленности тесно взаимосвязаны. Сегодня существует несколько технологических процессов изготовления микросхем; определяющая доля суммарных затрат на изготовление приборов приходится на процессы производства пластин. В число таких процессов в настоящее время входят литография, ионная имплантация, диффузия и окисление, осаждение, травление, очистка, планаризация и измерения.

Процесс производства микросхем начинается с закупки кремниевых пластин размером 100, 125, 150 и 200 мм. Крупные (pizza-size) пластины (300 мм), как ожидается, поступят в производство после 1998 г. Ведется, правда, в небольших масштабах разработка и 400-мм пластин.

Литография играет здесь ведущую роль. Это метод воспроизведения изображений, при котором точно копируется каждый схемный элемент, причем требуемый инструментарий также относится к числу наиболее дорогостоящих видов технологического оборудования. В ходе этого процесса установки фотолитографии с последовательным шаговым экспонированием, оснащенные прецизионной оптикой, фокусируют луч с длиной волны 365 нм (в скором времени это будет 248 нм, а затем и 193 нм) на пластину, покрытую светочувствительной пленкой фоторезиста. (К изготовителям установок с последовательным шаговым экспонированием, кварца и других материалов предъявляются все более жесткие требования, обусловленные переходом на более короткие длины волн). Далее следует травление или ионная имплантация. В результате селективного травления экспонированных пленок образуются канавки, заполняемые в дальнейшем металлом. Совершенно другой процесс представляет собой ионная имплантация, которая дает инженерам возможность с высокой точностью изменять электрические свойства кристалла путем внедрения в поверхность кремния заряженных атомов (ионов), ускоренных электрическим полем.

Диффузия и окисление осуществляются в реакторах, выполненных в виде 3,7-м вертикальной трубы, в которых помещаются сотни пластин. Данная технология нуждается в переходе к печам с быстрой загрузкой, но существующий метод доведен практически существу до совершенства и экономически эффективен.

Осаждение пленок также проводится в реакторах, но одновременно обрабатывается только одна пластина, чтозначительно замедляет производственный процесс. Если бы не громадные достижения в области вычислительной техники и программного обеспечения, работа заводской службы материально-технического обеспечения была бы просто кошмаром; по иронии судьбы она держится на той самой технике, созданию которой она способствует.

Реакторы для травления также обрабатывают по одной пластине и производят селективное удаление пленок алюминия, вольфрама, кремния, поликремния, двуокиси кремния и фоторезиста, а также бесчисленных остатков (загрязнений). Каждая пластина сотни раз подвергается очистке; поразительно, что ежедневный расход воды на типичном заводе составляет примерно 61 тыс. м3, что соответствует 15 футбольным полям, покрытым слоем воды толщиной 30 см. Это обычно создает серьезные проблемы для служб материально-технического обеспечения, а страны, лишенные доступа к дешевым водным ресурсам, могут столкнуться с экономическими трудностями. В этом процессе расходуется также очень много электроэнергии.

Планаризация (получение плоских пленок) может осуществляться способом влажной химической и механической полировки на установке, представляющей собой модифицированный станок для предварительной полировки кремния. Этот метод лишь в последнее время начинает получать широкое распространение в полупроводниковой промышленности, что обусловлено проблемами однородности пленок, надежности оборудования и наличием конкурирующих технологий.

Наконец, коснемся измерений. Попросту говоря, дело заключается в следующем. Если вы не можете измерить ширину 0,1-мкм токопроводящей дорожки, то вы не знаете, действительно ли эта дорожка имеет ширину 0,1-мкм. Чтобы обеспечить получение высокой точности, средствам контроля размеров на заводской производственной линии пришлось пройти долгий путь. Однако, если учесть, что по затратам эти средства соперничают с установками фотолитографии с последовательным шаговым экспонированием, вы, возможно, предпочтете заменить техника, уставившегося в замысловатый микроскоп, какой-либо «разумной» системой.

Путь прогресса

Пределы, обусловленные существующими технологиями, и законы физики не помешают лучшим в мире инженерам создать в течение предстоящих 15 лет поражающие воображение микросхемы. Необходимые затраты производят впечатление, но и они, видимо, не станут реальным препятствием. Представляя себе микропроцессоры 2012 г. с сотнями миллионов транзисторов, мы видим открывающийся новый мир. Не будем использовать штампы типа «цифровая эра» или «эра информации», так как теперь это уже устаревшие термины. Но независимо от терминологии или времени перед нами всегда будет возникать вопрос: «Какие же еще препятствия встретятся на пути прогресса?»

Заключение

ЭВМ получили широкое распространение, начиная с 50-х годов. Прежде это были очень большие и дорогие устройства, используемые лишь в государственных учреждениях и крупных фирмах. Размеры и форма цифровых ЭВМ неузнаваемо изменились в результате разработки новых устройств, называемых микропроцессорами.

В данной работе объектом изучения послужили микропроцессоры ПК. Были раскрыты основные понятия, используемые в выбранной теме; дана классификация микропроцессоров и краткая характеристика их элементов; рассмотрена структура, основные характеристики, история развития микропроцессоров ПК, российские микропроцессоры, микропроцессоры настоящего и будущего.

Успехи, достигнутые за время существования микропроцессора, четверть века назад невозможно было и вообразить. Если так будет продолжаться и впредь, то, вполне возможно, к 2011 г. микропроцессоры будут работать на тактовой частоте 10 гигагерц (ГГц). При этом число транзисторов на каждом таком процессоре достигнет 1 миллиарда, а вычислительная мощность – 100 миллиардов операций в секунду. Трудно себе даже представить, насколько возросшая мощь процессоров расширит сферу их применения, причем не только в бизнесе и в области коммуникаций. Как дома, так и на рабочих местах возникнет новая информационная среда, откроются невиданные ранее возможности.

Будущее микропроцессорной техники связано сегодня с двумя новыми направлениями - нанотехнологиями и квантовыми вычислительными системами. Эти пока еще главным образом теоретические исследования касаются использования в качестве компонентов логических схем молекул и даже субатомных частиц: основой для вычислений должны служить не электрические цепи, как сейчас, а положение отдельных атомов или направление вращения электронов. Если "микроскопические" компьютеры будут созданы, то они обойдут современные машины по многим параметрам.

После рассмотрения этой темы, стало более чёткое представление устройстве процессора, его характеристиках и его функциях. Так же было узнано о разнообразии микропроцессоров, их фирм производителей, а так же об их эволюции на протяжении всей истории ПК.

Список используемой литературы

История развития средств вычислительной техники Первые... вычислительные машины: XX век В истории вычислительной техники существует своеобразная периодизация... пятого поколения: компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, ...

Сейчас, даже более мене продвинутые мобильные телефоны не обходятся без микропроцессора, что уже говорить о планшетных, переносных и настольных персональных компьютерах. Что же такое микропроцессор и как развивалась история его создания? Если говорить на понятном языке, то микропроцессор – это более сложная и многофункциональная интегральная схема.

История микросхемы (интегральной схемы) начинается с 1958 года , когда сотрудник американской фирмы Texas Instruments Джек Килби изобрел некое полупроводниковое устройство, содержащее в одном корпусе несколько транзисторов, соединенных между собой проводниками. Первая микросхема – прародительница микропроцессора – содержала всего лишь 6 транзисторов и представляла собой тонкую пластину из германия с нанесёнными на неё дорожками, выполненными из золота, Расположено всё это было на стеклянной подложке. Для сравнения, сегодня счет идет на единицы и даже десятки миллионов полупроводниковых элементов.

К 1970 году достаточно много производителей занимались разработкой и созданием интегральных схем различной емкости и разной функциональной направленности. Но именно этот год можно считать датой рождения первого микропроцессора. Именно в этом году фирма Intel создает микросхему памяти емкостью всего лишь 1 Кбит – ничтожно мало для современных процессоров, но невероятно велико для того времени. На то время это было огромнейшее достижение – микросхема памяти способна была хранить до 128 байт информации – намного выше подобных аналогов. Кроме этого примерно в тоже время японский производитель калькуляторов Busicom заказала той же Intel 12 микросхем различной функциональной направленности. Специалистам Intel удалось реализовать все 12 функциональных направленностей в одной микросхеме. Более того, созданная микросхема оказалась многофункциональной, поскольку позволяла программно менять свои функции, не меняя при этом физической структуры. Микросхема выполняла определенные функции в зависимости от подаваемых на ее управляющие выводы команд.

Уже через год в 1971 Intel выпускает первый 4-разрядный микропроцессор под кодовым именем 4004. По сравнению с первой микросхемой в 6 транзисторов, он содержал аж 2,3 тыс. полупроводниковых элементов и выполнял 60 тыс. операций в секунду. На то время – это был огромнейший прорыв в области микроэлектроники. 4-разрядный означало то, что 4004 мог обрабатывать сразу 4-х битные данные. Еще через два года в 1973 фирма выпускает 8-ми разрядный процессор 8008, который работал уже с 8-ми битными данными. Начиная с 1976 года , компания начинает разрабатывать уже 16-разрадную версию микропроцессора 8086. Именно он начал применяться в первых персональных компьютерах IBM и, по сути заложил один из кирпичиков в историю ЭВМ.

Типы микропроцессоров

По характеру исполняемого кода и организации устройства управления выделяется несколько типов архитектур:

    Процессор со сложным набором инструкций. Эту архитектуру характеризует большое количество сложных инструкций, и как следствие сложное устройство управления. В ранних вариантах CISC-процессоров и процессоров для встроенных приложений характерны большие времена исполнения инструкций (от нескольких тактов до сотни), определяемые микрокодом устройства управления. Для высокопроизводительных суперскалярных процессоров свойственны глубокий анализ программы, внеочередное исполнение операций.

    Процессор с упрощённым набором инструкций. В этой архитектуре значительно более простое устройство управления. Большинство инструкций RISC-процессора сожержат одинаковое малое число операций (1, иногда 2-3), а сами командные слова в подавляющем числе случаев имеют одинаковую ширину (PowerPC, ARM), хотя бывают исключения (Coldfire). У суперскалярных процессоров - простейшая группировка инструкций без изменения порядка исполнения.

    Процессор с явным параллелизмом. Отличается от прочих прежде всего тем, что последовательность и параллельность исполнения операций и их распределение по функциональным устройствам явно определены программой. Такие процессоры могут обладать большим количеством функциональных устройств без особого усложнения устройства управления и потерь эффективности. Обычно такие процессоры используют широкое командное слово, состоящее из нескольких слогов, определяющих поведение каждого функционального устройства в течение такта.

    Процессор с минимальным набором инструкций. Эта архитектура определяется прежде всего свехмалым количеством инструкций (несколько десятков), и почти все они нуль-операндные. Такой подход даёт возможность очень плотно упаковать код, выделив под одну инструкцию от 5 до 8 бит. Промежуточные данные в таком процессоре обычно хранятся на внутреннем стеке, и операции производятся над значениям на вершине стека. Эта архитектура тесно связана с идеологией программирования на языке Forth и обычно используется для исполнения программ, написанных на этом языке.

    Процессор с изменяемым набором инструкций. Архитектура, позволяющая перепрограммировать себя, изменяя набор инструкций, подстраивая его под решаемую задачу.

    Транспорт-управляемый процессор. Архитектура изначально ответвилась от EPIC, но принципиально отличающаяся от остальных тем, что инструкции такого процессора кодируют функциональные операции, а так называемые транспорты - пересылки данных между функциональными устройствами и памятью в произвольном порядке.

По способу хранения программ выделяется две архитектуры:

    Архитектура фон Неймана . В процессорах этой архитектуры используется одна шина и одно устройство ввода-вывода для обращения к программе и данным.

    Гарвардская архитектура. В процессорах этой архитектуры для выборки программ и обмена данным существуют отдельные шины и устройства ввода-вывода. Во встроенных микропроцессорах, микроконтроллерах и ПЦОС это также определяет существование двух независимых запоминающих устройств для хранения программ и данных. В центральных процессорах это определяет существование отдельного кэша инструкций и данных. За кэшем шины могут быть объединены в одну посредством мультиплексирования.

Первые микропроцессоры на четыре разряда (бита) состояли из одного кристалла.  

Первые микропроцессоры были выполнены на р - МОП-схе-мах. Современные микропроцессоры выполняются на и - МОП-схемах, имеющих низкую стоимость и среднее быстродействие, на предельно-маломощных КМОП-схемах и на ТТЛ-схемах с высоким быстродействием.  

Первые микропроцессоры (МП) появились в начале 70 - х годов в результате совместных усилий системотехников, решающих проблемы архитектурной организации средств вычислительной техники, и схемотехников, занимающихся вопросами конструирования и технологии производства радиоэлектронных средств.  

Первый микропроцессор - 4-разрядный Intel 404 - поступил на неподготовленный к этому событию рынок в 1971 г. МП 4004 разработанный с ориентацией на требования изготовителей калькуляторов, предстал перед миром как знамение новой эры интегральной электроники.  

В первых микропроцессорах применялся способ управления памятью, известный как чисто машинный.  

Стоит напомнить, что первые микропроцессоры, импортированные в Японию в 1971 г., стоили около тысячи долларов.  

За более чем 30 лет, прошедших с момента появления первых микропроцессоров, были выработаны определенные правила обмена, которым следуют и разработчики новых микропроцессорных систем. Правила эти не слишком сложны, но твердо знать и неукоснительно соблюдать их для успешной работы необходимо.  

Операционные системы создаются для какого-либо типа микропроцессоров на основе той системы команд, которая закладывается в микропроцессор при разработке. Первый микропроцессор был создан в фирме Intel, лидировавшей в производстве микросхем.  

Может ли какое-либо техническое достижение компьютерной эры соперничать по своей значимости с микропроцессором. Первые микропроцессоры, короткая история которых началась всего десятилетие назад, основывались главным образом на достижениях микроэлектроники - технологии, возникшей гораздо позднее появления самих ЭВМ и в значительной степени независимо от них. С самого начала конструкторы и изготовители микропроцессоров вызывали бурное одобрение, как только им удавалось продемонстрировать, что каждая их новая разработка еще на какой-то шажок становится ближе по структуре к современной средней или большой вычислительной машине. Наблюдатели без труда приходили к выводу, что если плотность монтажа, быстродействие и возможности автоматического проектирования будут продолжать возрастать в соответствии с ожиданиями, то микропроцессоры вскоре по мощности и логике сравняются с крупными мини - ЭВМ, а возможно, и с большими вычислительными машинами.  

В 1970 г. был сделан еще один важный шаг на пути к персональному компьютеру - Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intel-4004 (см. рис. справа), который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда, возможности Intel-4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, - он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле.  

Создание такой операционной системы, как PC-DOS, не является ни делом случая, ни результатом чисто технократического планирования. Экономическая конкуренция давно привела к появлению операционных систем для больших ЭВМ еще до появления первых микропроцессоров.  

Он представляет собой одну-единственную микросхему, управляющую всем, что происходит в ПК. Микросхема эта работает на определенной тактовой частоте, измеряемой некоторым количеством мегагерц. По сегодняшним меркам первые микропроцессоры (8088 или 80286) были до ужаса медлительны и не смогли бы управлять современными программами.  

Переконструировать большую интегральную схему всякий раз, когда компания пожелает обновить ассортимент выпускаемой продукции, что случается очень часто, действительно колоссальная работа. Микропроцессор появился на свет благодаря идее, выдвинутой специалистами из Бизиком: необходимо CKOEI-струировать такую интегральную схему, которую легко можно приспособить к любому новому изделию, осваиваемому их фирмой. Увы, тогда Япония была еще слишком слаба в сфере опытно-конструкторских разработок; поэтому Соединенным Штатам удалось подхватить мячик и убежать, создав первый микропроцессор.  

Однако фирма Intel продолжала придерживаться прототипа, средства на разработку которого уже были израсходованы. Таким образом, хорошо известный МП Intel 8008 стал первым микропроцессором на мировом рынке.  

Кто и когда изобрел первый микропроцессор в мире

О том, кто изобрел микропроцессор, знает каждый сотрудник компании Intel. В 1969 году в этой, тогда еще не известную, фирму пришли работать японские разработчики, которые раньше занимались проектированием калькуляторов. Инженеры использовали двенадцать интегральных схем, чтобы создать обычный настольный вычислитель. Главную роль в данном проекте играл Масатоши Шима. В то время Тед Хофсор управлял одним из отделов Intel. Он, как будущий создатель микропроцессора, понял вместо калькулятора с возможностью программирования лучше сделать компьютер, который будет программировать работу калькулятора.

Создание первого процессора в мире началось с разработки его архитектуры. В 1969 году один из сотрудников Интел предложил назвать первую серию микропроцессоров как семейство 4000. Каждая модель семейства имело шестнадцать выходных микросхем. Это помогает понять, какой был первый микропроцессор. Модель 4001 имело память на 2 Кб. В модели 4003 был десятибитовый расширитель со связью для клавиатуры и различными индикаторам. А версия 4004 уже было четырехбитовым процессорным устройством. Многие считают, что и был самый первый микропроцессор. В модели 4004 работало две тысячи триста транзисторов. Устройство работало на частоте 108 кГц.

Сегодня можно встретить разные мнения касательно того, когда был создан первый процессора Однако большинство считает, что 15 ноября 1971 года это дата и год создания первого микропроцессора в мире. Первоначально эту разработку выкупила японская фирма Busicom за шестьдесят тысяч долларов, но Интел позже вернула деньги, чтобы оставаться единственными правообладателями изобретения.

Первый процессор использовали в системах управления дорожными движением, в частности в светофорах. Кроме того, устройство применялось в анализаторах крови. Чуть позже 4004 нашел место в космическом зонде Пионер-10, который запустили в 1972 году.

Первый отечественный микропроцессор был создан в начале семидесятых годах в Специальном Вычислительном Центре под руководством Д.И. Юдицкого.

Таким образом, в 70-е года микропроцессоры стали постепенно проникать в самые разные области деятельности человека. Все процессоры позже разделились на непосредственно микропроцессоры и микроконтроллеры. Первые используются в персональных компьютерах, а микроконтроллеры нашли применение в управлении разными системами. В них более слабое вычислительное ядро, но имеется множество дополнительных узлов. Микроконтроллеры иногда называют микро-ЭВМ, поскольку все узлы и модули у них расположены прямо на кристалле.

Фирма Intel выпустила свой первый микропроцессор - модель 4004

Компания Intel выпустила первый в мире микропроцессор, который был доступен всем коммерческим структурам и простым людям. За год до этого военными был разработан микропроцессор F14 CADC(en), который носил гриф «совершенно секретно» до 1998 года.

Японская компания Busicom Corp (ранее называлась Nippon Calculating Machine, Ltd) занималась производством калькуляторов, но микросхемы, требуемые для работы вычислительной машинки, разрабатывала фирма Intel. Поэтому компания Busicom Corp для своего нового калькулятора заказала 12 микросхем. Стоит отметить, что микросхема обладала минимальным количеством функций и способна была выполнять определенный перечень работы. Когда появлялось новое действие, приходилось разрабатывать дополнительную микросхему. Сотрудники компании Intel считали, что это экономически и практически не выгодно. Стоит все имеющиеся микросхемы заменить одним центральным процессором, который будет выполнять все необходимые задачи.

Идею поддержали обе компании. С 1969 года Тэд Хофф, разработчик проекта и представитель компании Intel, и Стэнли Мейзор сотрудник компании Busicom Corp, который ранее занимался общим дизайном микросхем, занялись проектированием процессора. Разработки начались с сокращения количества микросхем до 4. Они включили в себя – центральный процессор, 4-х разрядный центральный процессор, постоянное запоминающее устройство для хранения постоянной информации и оперативное запоминающее устройство для хранения информации пользователя.

Когда в компанию Intel пришел работать итальянский физик Федерико Фаджин, разработки микропроцессора перешли на новый этап. Его потом назовут главным разработчиком микропроцессоров семьи MCS-4. До этого времени Фаджин разрабатывал похожие схемы. В 1961 году в компании Olivetti Федерико занимался логическим проектированием компьютеров. В 1968 году для фирмы Fairchil разработал коммерческую микросхему с технологией silicon gate: Fairchild 3708. Этот опыт помог ему свести в одно целое микропроцессор CPU. Фаджин сделал огромный вклад в развитие и разработку микросхемы. Совместная работа итальянского физика с Масатоси Симой, инженером по программному обеспечению фирмы Busicom Corp, привела к разработке первого микропроцессора 4004, который был представлен всему миру 15 ноября 1971 году. Стоимость микропроцессора составляла 200 долларов.

Почему микропроцессору присвоили имя 4004? Первая цифра обозначает номер изделия. Каждое изделие фирмы Intel имело свой номер. Под первым номером выпускались микросхемы памяти (PMOS-чипы). Под вторым номером выпускались микросхемы NMOS. Под третьим номером проектировались биполярные микросхемы. Соответственно, четвертый номер получили микропроцессоры. Под пятым номером стали выпускать микросхемы CMOS. Под номером семь – магнитные домены. Под восьмым номером – разрядные микропроцессоры и микроконтроллеры. Шестой и девятый номер отсутствовал.

Понравилась статья? Поделиться с друзьями: