Простейшая электронная лампа. Устройство электронной лампы. комментарий Электронная лампа, принцип действия

В электронной лампе, так же как и в полупроводниковом триоде, эффект усиления получается благодаря тому, что слабый электрический сигнал управляет протекающим через лампу током (движением зарядов), а этот ток может развивать значительную мощность за счет энергии внешней батареи.

В отличие от полупроводникового триода, основные процессы в лампе происходят не в микроскопических кристаллах германия или кремния, а в вакууме - в стеклянном (а иногда металлическом или металлокерамическом) баллоне, из которого откачан воздух.

В полупроводниковом триоде и, в частности, в его эмиттере всегда имеются свободные электрические заряды, то есть заряды, которые могут перемещаться под действием какого-либо напряжения, образуя эмиттерный или коллекторный ток. В вакууме свободных зарядов практически нет, и для их получения в лампу вводится специальная деталь - катод.

Во многих лампах катод представляет собой металлическую нить (есть и другие типы катодов), по которой пропускают электрический ток (ток накала), подключив к ней небольшую батарею (батарея накала Б н). Под действием тока катод, подобно спирали электроплитки, нагревается до высокой температуры - от 800° до 2500°, в зависимости от типа катода. Как известно, в металле всегда имеется большое количество свободных электронов (это и отличает проводники от изоляторов), которые беспорядочно двигаются в межатомном пространстве. Чем выше температура металла, тем интенсивнее это беспорядочное движение. При высокой температуре катода многие из электронов выходят за его пределы, и в вакууме вблизи катода появляются свободные электрические заряды (рис. 60).

Теперь заставим свободные электроны, вылетавшие из разогретого катода, упорядоченно двигаться в каком-нибудь определенном направлении, то есть создадим в лампе электрический ток. Для этого поместим в баллон еще один электрод - плоскую металлическую пластинку, расположенную невдалеке от катода. Такой электрод получил название «анод», а двухэлектродная лампа, так же как и полупроводниковый прибор с двумя зонами - n и р , называется диодом.

Если включить между анодом и катодом батарею (анодная батарея Б а), причем «плюс» ее соединить с анодом, то под действием положительного напряжения на аноде к нему будут двигаться вылетевшие из катода электроны, а на смену им в катод будут поступать электроны из батареи Б а (рис. 61). Таким образом, внутри баллона и во внешней цепи появится ток, получивший название анодного тока. Если сменить полярность анодной батареи, - ее минус подключить к аноду лампы, - то никакого тока в лампе не будет, так как отрицательное напряжение на аноде уже не будет притягивать электроны, обладающие, как известно, отрицательным зарядом (рис. 62).

Анодный ток в лампе играет ту же роль, что и коллекторный ток в транзисторе: используя энергию батарей, он создает «мощную копию» усиливаемого сигнала. Однако управление током в лампе осуществляется не так, как в полупроводниковом триоде.

В полупроводниковом триоде коллекторный ток изменяется потому, что под действием усиливаемого сигнала меняется количество зарядов, которые выходят из эмиттера и через базу попадают в коллекторную цепь. Если бы мы хотели таким же образом управлять анодным током в лампе, то нам пришлось бы пропустить усиливаемый ток через катод с тем, чтобы под действием этого тока изменялась температура катода, а следовательно, и количество вылетающих из него электронов. Конечно, такая система практически непригодна хотя бы потому, что усиливаемый сигнал обычно слишком слаб и не может нагреть катод. Кроме того, из-за тепловой инерции катода (на нагревание и остывание катода нужно некоторое время) изменение его температуры не будет поспевать за изменениями усиливаемого сигнала.

Для управления анодным током в лампу вводится третий электрод - металлическая сетка, которую располагают очень близко к катоду (рис. 63). Поэтому, если между сеткой и катодом действует даже небольшое напряжение, то оно очень сильно влияет на величину анодного тока. Во многих лампах достаточно подать на сетку отрицательное напряжение 5-10 в, которое отталкивает электроны обратно к катоду, чтобы анодный ток прекратился, несмотря на притягивающее действие довольно большого (обычно 50-250 в) положительного напряжения на аноде 1 . В этом случае говорят, что лампа заперта сеточным напряжением.

1 Когда говорят о напряжении на каком-либо электроде лампы, например, на сетке или аноде, то имеют ввиду, что это напряжение измерено относительно катода. Иногда для краткости говорят "минус на сетке" или "плюс на катоде", имея ввиду положительное или отрицательное напряжение на соответствующих электродах относительно катода.

Чем меньше отрицательное напряжение на сетке, тем слабее она отталкивает электроны, тем большее их количество, проскочив сетку, направляется к аноду, тем, следовательно, больше анодный ток. При положительных напряжениях на сетке она не только не мешает, но даже помогает движению электронов к аноду, увеличивая тем самым анодный ток.

Важно отметить, что при положительных напряжениях на сетке на нее будет попадать часть электронов, которые, пройдя внешнюю сеточную цепь, вернутся на катод (). Иными словами, при положительных напряжениях на сетке в лампе возникает сеточный ток. График, показывающий, как изменяется анодный и сеточный ток при изменении напряжения на сетке, называется анодно-сеточной характеристикой лампы, а график, в котором имеется несколько кривых, снятых при различных анодных напряжениях, называется семейством характеристик (рис. 65, ).

Если между сеткой и катодом будет действовать переменное напряжение усиливаемого сигнала, то оно вызовет соответствующие изменения анодного тока. Но изменяющийся анодный ток пока еще никакой пользы не приносит, так же как и не выполняет полезной работы двигающийся по шоссе пустой грузовик. Для того чтобы мощный двигатель грузовика, беспрерывно сжигающий бензин, выполнял какую-то полезную работу, нужно кузов этого автомобиля заполнить тяжелыми грузами. Для того же, чтобы использовать энергию изменяющегося анодного тока электронной лампы, то есть выделить «мощную копию» усиливаемого сигнала, в анодную цепь лампы, так же как и в коллекторную цепь транзистора, включают нагрузку (рис. 64).

Нагрузка может представлять собой обычное сопротивление, громкоговоритель, колебательный контур, телефон и т. п. (). Проходя по нагрузке, анодный ток выделит на ней часть своей энергии. Эта энергия будет либо с помощью громкоговорителя или телефона сразу же преобразована в звуковые колебания, либо будет подвергаться дальнейшему усилению с помощью последующих ламп. Как уже говорилось, когда один каскад не дает достаточного усиления, то входной сигнал, несколько усиленный первым каскадом, передается на второй, где он усиливается еще больше, со второго каскада усиливаемый сигнал поступает на третий, и т. д.

В зависимости от назначения усилительного каскада стремятся получить либо большой переменный ток в нагрузке (для этого сопротивление нагрузки делают маленьким), либо большое переменное напряжение (для этого сопротивление нагрузки делают большим). Однако при любых соотношениях напряжения и тока в нагрузке выделяемая на ней мощность, то есть мощность усиленного сигнала, во много раз больше мощности, затраченной в сеточной цепи на управление анодным током. Попутно заметим, что сеточную цепь электронной лампы обычно называют входной цепью, а анодную - выходной.

Усилительная лампа, в которой имеется анод, катод и управляющая сетка, получила название «триод» (трехэлектродная лампа). Триод широко применяется в усилителях низкой частоты, а также в аппаратуре УКВ диапазона.

Наряду со многими достоинствами у триода есть два существенных недостатка. Первый из них состоит в том, что анод и управляющая сетка образуют конденсатор С ас, емкость которого (емкость анод-сетка) обычно составляет несколько пикофарад. Емкость С ас называют проходной емкостью лампы, так как через нее переменный ток «пролезет» из анодной цепи в сеточную (рис. 66). Иными словами, из-за емкости С ас возникает обратная связь между анодом и сеткой (обратное влияние анода на сетку), которая может сильно ухудшить усилительные свойства лампы или привести к самовозбуждению каскада. В результате самовозбуждения (с этим явлением мы подробно познакомимся немного позже) усилитель превращается в генератор и дает на выходе переменное напряжение даже при отсутствии какого-либо входного сигнала.

Второй недостаток триода связан с тем, что при работе лампы в усилительном каскаде изменяется напряжение на ее аноде и иногда оно может очень сильно уменьшиться (). Это объясняется тем, что часть напряжения анодной батареи падает (теряется) на сопротивлении анодной нагрузки. Чем больше анодный ток, тем больше падение напряжения на нагрузке и тем меньшая часть напряжения анодной батареи будет подводиться к аноду ламп. Когда под действием усиливаемого сигнала анодный ток сильно возрастает, минимальное напряжение на аноде - U амин может составлять всего несколько вольт. Из-за уменьшения напряжения на аноде он плохо притягивает электроны, что приводит к нежелательному уменьшению анодного тока.

Сейчас мы привыкли к компактным электронным устройствам и сверхтонким ноутбукам. А чуть больше ста лет назад появился девайс, который сделал это реальностью и произвел настоящую революцию в развитии электроники. Речь идет о радиолампе.

Ламповое вступление

В схемотехнике раньше повсеместно использовались лампы, первые электронные приборы были построены именно с их использованием. Золотое время радиоламп пришлось на первую половину 20 века. Для наших дедов и прадедов гораздо привычнее были гигантские ЭВМ, занимавшие целое помещение и греющиеся как адское пекло. На такой машине сериальчик не посмотришь.

Потом еще было время, когда советские микросхемы стали самыми большими в мире. Но это уже другая история, которая началась после появления полупроводниковых приборов. Как вы поняли, эта статья о работе электронной лампы и ее современном использовании.

Вакуумные приборы

Вакуум – это отсутствие материи. Точнее, практически полное ее отсутствие. В физике разделяют высокий, средний и низкий вакуум. Понятно, что электрического тока в вакууме быть не может, так как ток – это направленное движение (частиц) носителей заряда, которым в вакууме взяться неоткуда.

Но так уж и неоткуда? Металлы при нагревании испускают электроны. Это так называемая термоэлектронная эмиссия. На ней и основана работа электронных вакуумных приборов.

Термоэлектронную эмиссию открыл Томас Эдисон. Точнее ученый выяснил, что при нагреве нити и наличия в вакуумной колбе второго электрода вакуум проводит ток. Тогда Эдисон не в полной мере оценил значение своего открытия, но на всякий случай запатентовал его. Вывод: в любой непонятной ситуации патентуйте!

Вакуумные приборы – герметично запаянные баллоны с электродами внутри. Баллоны делают из стекла, металла или керамики, предварительно откачав из них воздух.

Помимо электронных ламп есть следующие вакуумные приборы:

  • приборы СВЧ, магнетроны, клистроны;
  • кинескопы, электронно-лучевые трубки;
  • рентгеновские трубки.

Принцип работы электронной лампы

Электронная лампа – это электронный вакуумный прибор, который работает за счет управления интенсивностью потока электронов между электродами.

Простейший тип лампы – диод. Вместо того чтобы читать определения, лучше посмотрим на нее.

В любой лампе есть катод, с которого электроны вылетают, и анод, на который они летят. Если на катод подать «минус», а на анод «плюс», электроны, вылетевшие из раскаленного катода, начнут двигаться к аноду. В лампе потечет ток.

Кстати! Если вам нужно произвести расчет усилителя на диодах, для наших читателей сейчас действует скидка 10% на

Диод обладает односторонней проводимостью. Это значит, что если на катод подать плюс, а на анод минус, тока в цепи уже не будет.

Помимо этих двух электродов в лампах могут быть и другие.

Все названия электронных ламп связаны с количеством электродов. Диод – два, триод – три, тетрод – четыре, пентод – пять и т.д.

Возьмем триод. Это диод, в который добавлен дополнительный электрод - управляющая сетка. Такая лампа с тремя электродами уже может работать как усилитель тока.

Если на сетке есть небольшое отрицательное напряжение, она будет задерживать часть электронов, летящих к аноду, и ток уменьшится. При большом отрицательном напряжении сетка «запрет» лампу, и ток в ней прекратится. А если подать на сетку положительное напряжение, анодный ток будет усиливаться.

Небольшое изменение напряжения на сетке, которая устанавливается рядом с катодом, существенно влияет на ток между катодом и анодом. На этом и строится принцип усиления.

Применение электронных ламп

Почти везде лампу вытеснил полупроводниковый транзистор. Однако в некоторых отраслях лампы заняли свое место и остаются незаменимыми.

Например, в космосе. Ламповое оборудование выдерживает больший диапазон температур и радиационный фон, поэтому используется в производстве космических аппаратов.

Лампы с воздушным или водяным охлаждением также находят применение в мощных радиопередатчиках.

Конечно, сложно представить современное музыкальное оборудование без ламповых схем.

Ламповый звук: правда или вымысел?

Усилители низкой частоты или просто усилители звука – самое известное современное применение радиоламп, которое к тому же вызывает много споров.

Доходит вплоть до «холиваров» между адептами лампового и транзисторного звука. Ламповый звук, как говорят, более «душевный» и «мягкий», его приятно слушать. В то время как транзисторный звук – «бездушный» и «холодный».

Ничего не бывает просто так, и вряд ли такие споры и мнения возникали на пустом месте. В свое время вопросом, действительно ли ламповый звук приятнее для слуха, заинтересовались ученые. Было проведено довольно много исследований на тему отличий лампы от транзистора.

По данным одного из них, ламповые усилители добавляют в сигнал четные гармоники, которые субъективно воспринимаются людьми как «теплые», «приятные» и «уютные». Правда, сколько людей, столько и мнений, поэтому споры до сих пор ведутся.

Часто спор – пустая трата времени. А вот студенческий сервис , наоборот, поможет сохранить ценные человеко-часы. Обращайтесь к нашим специалистам за качественной помощью в любой области знаний.

Существенным преимуществом ламповых усилителей является: отличные звуковые эффекты, детальный, красивый, и очень естественный звук. Ламповый усилитель звучит нежно, сладко, и раскрывается перед вами как очаровательная роза, такой усилитель подходит для воспроизведения идиллической простоты блюза, импровизаций джаза и элегантности классической музыки. Такой усилитель является отличным выбором для людей, которые хотят услышать оригинальный настоящий звук.

Ламповый усилитель унесет тебя в совершенно другой музыкальный мир, приводя ваши чувства в истинное удовольствие, вернет вас в истинный звук.

Хотите наслаждаться более естественным звуком? Вас достал звук транзисторного, или на микросхемах усилителя? Вы хотите купить ламповый усилитель, тогда не упустите этот шанс, читайте статью!

История радиолампы

Еще в 1904 году, британский ученый Джон Амброз Флеминг впервые показал свое устройство для преобразования переменного сигнала тока в постоянный ток. Этот диод по существу состоял из ламп накаливания с дополнительным электродом внутри. Когда нить нагревается до белого накала, электроны отталкиваются от его поверхности в вакууме внутри лампы. А поскольку дополнительный электрод холодный и нить горячая, этот ток может течь только из нити к электроду, а не в другую сторону. Таким образом, сигналы переменного тока могут быть преобразованы в DC. Диод Флеминга был впервые использован в качестве чувствительного детектора слабых сигналов, нового телеграфа. Позже (и по сей день), диод вакуумная радиолампа была использована для преобразовывания тока переменного в постоянный ток в источниках питания для электронного оборудования, например, ламповый усилитель.

Многие другие изобретатели пытались улучшить диод Флеминга, но безуспешно. Единственный, кто преуспел был изобретатель Ли де Форест. В 1907 году он запатентовал радиолампу с тем же содержанием, диода Флеминга, но для дополнительного электрода. Это «сетка» был согнута проводом между пластиной и нитью. Форест обнаружил, что, если он применяет сигнал от беспроводной телеграфной антенны к сетке вместо нити, он мог бы получить гораздо более чувствительный детектор сигнала. В самом деле, сетка меняется («модулирует») ток, протекающий от нити к пластине. Это устройство, названо «ламповый усилитель» было первым успешным электронным усилителем.

Между 1907 и 1960, было разработано много различных семейств радиоламп и ламповых усилителей. За некоторыми исключениями, большинство типов ламп, используемых сегодня, были разработаны в 1950-х или 1960-х годов. Одним из очевидных исключений является триод 300B, который был впервые введен Western Electric в 1935 году. SV300B у версии «Светлана», а также многие другие бренды, по-прежнему очень популярны среди меломанов и аудиофилов по всему миру. Различные лампы были разработаны для радио, телевидения, усилителей мощности, радаров, компьютеров и специализированных компьютеров. Подавляющее большинство этих ламп были заменены на полупроводники, оставив лишь несколько типов радиоламп в основное производство и использование. Прежде чем мы обсудим эти устройства, давайте поговорим о структуре современных ламп.

Внутри радиолампы

Каждая радиолампа представляет в основном стеклянный сосуд, (хотя бывают стальные и даже керамические)внутри нее закреплены электроды . Причем, воздух в таком сосуде очень сильно разряжен. Между прочим, сильное разряжение атмосферы внутри данного сосуда, непременное условие для работы лампы. В
любой радиолампе есть также катод — некий отрицательный электрод, который выступает в качестве источника электронов в радиолампе, и положительный анод электрод. Кстати, катодом может быть также вольфрамовая(тонкая) проволока аналогично нити накала электрической лампочки, или цилиндр из металла, разогреваемый нитью накала, а анодом пластина из металла или коробка, которая имеет цилиндрическую форму. Вольфрамовая нитка, которая выполняет роль катода ее называют просто — нитью накала.

Полезно знать . На всех схемах баллон радиолампы обозначаются в виде некой окружности, катод - дугой, вписанной в данную окружность, а вот анод - небольшой жирной чертой, размещенной над катодом, а их выводы - мелкие линия, которые выходят за пределы этой окружности. Лампы, содержащие эти 2 электрода — анод и катод, называются диодами. Кстати, у большинства ламп между катодом и анодом есть некая спираль из очень тонкой проволоки, которая называется сеткой. Она окружает катод и не соприкасается, расположены сетки на различных расстояниях от него. Подобные лампы называются триоды. Число сеток в лампе может быть от 1 до 5.

По числу таких электродов различают радиолампы трёхэлектродные, 4-х электродные, пятиэлектродные и т. п. Подобные радиолампы называют триоды (с 1ой сеткой), тетроды (с 2мя сетками), пентоды (с 3мя сетками). На всех схемах данные сетки обозначают жирной пунктирной линией, расположенной между анодом и катодом.

Тетродами, триодами, и пентодами называют универсальными радиолампами. Их используют для увеличения постоянного и переменного и тока и напряжения, в качестве детектора и в то же время с усилителем, и многих иных целей.

Принцип действия радиолампы

Работа радиолампы создана на потоках электронов между анодом и катодом (движения электронов). «Поставщик» данных электронов внутри радиолампы будет являться катод, причем уже нагретый до мощной температуры от 800 до 2 000° С. Между прочим, электроны оставляют катод, делая вокруг него некое электронное «облако». Данное явление излучения или испускания катодом этих электронов именуют термоэлектронной эмиссией. Чем больше раскален данный катод, тем все больше электронов он излучает, тем «плотнее» это электронное «облако».

Тем не менее, для того чтобы электроны смогли вырываться из подобного катода, необходимо не только сильно нагреть его, но и высвободить охватывающее пространство от данного воздуха. Если подобного не произвести, электроны, которые вылетают, будут увязать в этих молекулах воздуха. Аудиофилы говорят, «лампа утратила эмиссию», это означает, что с поверхности данного катода все незанятые электроны по какой-нибудь причине больше не могут вылетать. Радиолампа с утраченной эмиссией работать больше не будет. Впрочем, если катод соединить с минусом на источнике питания, а на анод подать +, внутри диода появится ток (анод примется притягивать к себе из облака электроны). Хотя если на анод подавать минус, а плюс на катод, то ток в цепи прервется. Это означает, в 2х электродной лампе диода ток сможет идти лишь в одну сторону, то есть диоды обладают только односторонней проводимостью данного тока.
Впрочем, работа триода, как и любой радиолампы, создана на существовании подобного потока электронов между анодом и катодом. Сетка - 3-й электрод - имеет вид спирали проволочной. Она находится возле катода, чем к аноду. Если же на сетку подавать незначительное отрицательное напряжение, тогда она будет сразу отталкивать часть электронов, которые несутся от катода к аноду, причем, сила анодного тока сразу уменьшится. При высоком отрицательном напряжении сетка станет барьером для электронов. Они будут задерживаться в пространстве между сеткой и катодом. При положительных напряжениях на сетке она будет увеличивать анодный ток. Следовательно, если подавать разнообразное напряжение на сетку, можно распоряжаться силой анодного тока радиолампы.

Срок службы радиолампы

Срок службы лампы определяется временем жизни ее эмиссии катода. Жизнь катода зависит от температуры катода, степень вакуума в радиолампе, и чистоты материалов в катоде.

Срок службы радиолампы также зависит от температуры, это означает, что она зависит от нити или рабочего напряжения нагревателя. Управляйте нагревателем/нити, чтобы снизить слишком большой нагрев, и лампа проживет дольше. Срок службы радиолампы может быть сокращен (особенно в торированных нитях, которые зависят от пополнения тория путем диффузии изнутри проволоки накаливания). Несколько исследователей наблюдали, что время жизни оксида-катода может быть значительно увеличен если нагревать радиолампу на 20% ниже номинального напряжения . Как правило, это имеет очень слабое влияние на электронную эмиссии катода, а может быть, хотя стоит экспериментировать, конечно если пользователь желает увеличить время жизни слабой лампы.

Но низкое напряжение не всегда рекомендуется для радиоламп, потому как она не сможет дать номинальную выходную мощность. Я рекомендую использовать номинальный нагрев или напряжение накала, но эксперименты не рекомендую, если вы не являетесь опытным специалистом .

Оксидные катоды как правило, дают более короткие сроки службы радиолампы. Чистота материалов является большой проблемой в создании долгоживущих оксидов катода — некоторые примеси, такие как никелевая трубка, вызывает в катоде потерю преждевременной эмиссии и «состаривание». Дешевые радиолампы низкого качества часто изнашивается быстрее, чем более высокого качества лампы того же типа, из-за нечистых катодов.

Радиолампы со слабым сигналом почти всегда используют оксидные катоды. Высококачественные лампы этого типа, если они работают в правильном напряжении нагревателя, то срок службы может продлиться 100000 и более часов.

Мировой рекорд в жизни радиолампы

Такая радиолампа была на вооружении в передатчике радиостанции Лос-Анджелеса в течение 10 лет, и проработала в общей сложности более 80 000 часов. Когда, наконец ее не списали из эксплуатации, но радиолампа по-прежнему функционирует, причем нормально. Станция сохраняет лампу как запасную. Для сравнения, типичный оксид-катоде в стекле мощной лампы, например, EL34, будет работать около 1500-2000 часов; и радиолампа с нитью с покрытая из оксида, такого как SV 300B, будет работать около 4000-10 000 часов. Срок службы радиолампы зависит от всех перечисленных выше факторов.

Анод

Анод, является электродом, который проявляется на выходном сигнале. Причем, анод умеет принимать электронный поток, может стать горячим. Особенно в силовых радиолампах. Так что специально разработали для охлаждения такой лампы радиатор, которая излучает тепло через стеклянную колбу (если это стеклянная), жидкостное охлаждение (в больших металлокерамических лампах). Некоторые радиолампы используют пластины из графита, так как она выдерживает высокие температуры и потому излучает очень мало вторичных электронов, которые могут перегреваться на сетке лампы и вызывают сбой.

Сетка

Почти все стеклянные аудиофильские лампы, управляются сеткой, которая является частью металлической проволоки, намотанной на двух мягких металлах. В некоторых радиолампах есть покрытие, как правило, позолоченное или золотое, и есть два вывода, сделанные из мягкой меди. Сетки в больших радиолампах (электростанций) должны выдерживать много тепла, поэтому они часто делаются их из вольфрама или молибденовой проволоки в форме корзины. Некоторые крупные в питании используют корзино-образные сетки из графита.

Наиболее широко используется небольшой триод, 12AX7, который является двойным триодом, который стал стандартом в простых ламповых усилителях или в гитарных усилителях. Другие небольшие стеклянные триоды, используются в аудио оборудования такие лампы 6Н1П, 6DJ8/6922, 12AT7, 12AU7, 6CG7, 12BH7, 6SN7 и 6SL7.

Много и стеклянных электрических триодов, которых в настоящее время на рынке, большинство причем, некоторые направлены на любительскую радиосвязь или высокое качество аудио использования: например, « » ламповый усилитель. Типичными примерами являются Светлана , SV811/572 серии, и лампа 572B. Кстати, лампа имеет очень низкий уровень искажений и используется в очень дорогих ламповых усилителях, также ее используют в радиопередатчиках и больших мощных усилителях звуковой частоты.

Большие металлокерамические электрические триоды часто используются в радиопередатчиках и генерируют радио энергию для использования в промышленных целях . Специализированные триоды многих видов сделаны для особых нужд, таких как радары.

Тетрод

Добавление еще одной сетки триода, между управляющей сеткой и пластиной, превращает его в Тетрод. Это «окно» сетка помогает экрану изолировать, управляющую сетку от пластины. На экране появляется эффект электронного ускорения, увеличивая резко усиление. Экранная сетка в а радиолампе несет в себе определенный ток, который заставляет её нагреваться. По этой причине, экранные сетки обычно покрывают графитом, чтобы уменьшить вторичную эмиссию, который помогает сохранять управляющую сетку холодной.

Многие крупные радиостанции и телеканалы используют гигантские металлокерамические тетроды , которые способны с высокой эффективностью использоваться в качестве ВЧ усилителей мощности. Силовые тетроды также иногда используются в любительском радио и промышленном применении.

Большие керамические тетроды часто называют «лучевые тетроды», потому что их электронно-лучевые формы выбросов дискообразные.

Пентод

Добавив третью сетку к тетроду, мы получаем Пентод. Третья сетка называется супрессор-сетка и вставляется между пластиной и экранном сетки. Она имеет очень мало витков, так как её единственная работа заключается в сборе бродячих электроны от вторичной эмиссии, которые отражаются от пластины, и тем самым устраняют » излом Тетрода». Это обычно работает при том же напряжении в качестве катода. Тетроды и Пентоды, как правило, имеют более высокий уровень искажений, чем триоды, если специальные не используются .

EL34, EL84, SV83 и EF86 это истинные Пентоды. EL34 широко используется в гитарных и высокого класса ламповых усилителях на выходную мощность. Кстати, EL84 ставят в более дешевых гитарных усилителях. SV83 используют в высоком классе в ламповых усилителях и гитарных усилителях, в то время как EF86 используется в качестве малошумящего предусилителя в гитарных усилителях и профессиональном звуковом оборудовании. Один из немногих крупных и мощных пентодов является 5CX1500B, часто используют в радиопередатчиках.

Есть также радиолампы с более тремя сетками. Пентагрид , которая была с пятью сетками, широко используются в качестве преобразователя частоты переднего плана в радиоприемниках. Но такие радиолампы больше не находятся в производстве, будучи полностью заменены полупроводниками.

Лучевой Тетрод

Это особый вид пучка тетрода, с парой «пучков пластин», чтобы ограничить электронный пучек в узкую ленту на каждую сторону катода. В отличие от керамических тетродов, сетки находятся на критическом расстоянии от катода, производя эффект «виртуального катода». Все это приводит к повышению эффективности и меньшим искажениями, чем обычный тетрод или пентод. Первые популярные лучевые тетроды были RCA 6L6, в 1936 году SV6L6GC и SV6550C; также являются самыми популярными в гитарных усилителях, в то время как последний является наиболее распространенной радиолампой питания в современном высококачественном ламповом усилителе звуковой частоты для аудиофилов.

Нагреватель внутри катода

С покрытием из оксида, катод не может нагреть себя, но он должен быть горячим, чтобы испускать электроны. Причем, нагреватель должен быть покрыт электрической изоляцией, который не сгорает при высоких температурах, так что он покрыт порошкообразной окисью алюминия. Это иногда может причиной отказа в таких радиолампах; покрытие стирается или появляются трещины, или нагреватель может коснуться катода. Это может помешать нормальной работе лампы . Высококачественные радиолампы имеют очень прочный и надежный нагреватель из покрытия.

Геттерный

Нам нужно, чтобы был хороший, твердый вакуум внутри лампы, или он не будет работать должным образом. Мы хотим, что вакуум оставался, так долго, насколько это возможно. Иногда, очень небольшие утечки могут появляться в лампе (часто вокруг электрических соединений в нижней части).

Геттерный в большинстве стеклянных радиоламп является маленькой чашкой или держателем, содержащий немного металла, который реагирует с кислородом и поглощает его сильно. (В большинстве современных стеклянных радиоламп, газопоглотитель из металл бария, который окисляет ОЧЕНЬ легко.) Когда лампу откачивают и опечатывают, последний шаг в обработке является «огонь» газопоглотителя, который производит «геттерную вспышку «внутри лампы оболочки. Это серебристый цвет, который вы видите на внутренней стеклянной трубки. Это гарантия того, что радиолампа имеет хороший вакуум. Если такое не удается сделать, то он станет белым (потому что это превращается в оксид бария).

Существуют слухи, что темные пятна указывают на то что лампа использованная. Это не соответствует действительности. Иногда, газопоглотительная вспышка не идеально однородна, и обесцвеченные или ясные пятна могут проявится на лампе . Единственный надежный способ определить здоровая радиолампа или нет, проверить его ЭЛЕКТРИЧЕСКИ.

Также они используют металл, обычно покрытый цирконием или титаном, который был очищен, чтобы окислить. Светлана 812A и SV811 использует такие методы.

Наиболее мощные стеклянные трубки имеют графитовые пластины. Графит термостойкий (на самом деле, он может работать долго в течение длительного времени без сбоев). Графит не склонен к вторичной эмиссии, как отмечалось выше. И, горячая пластина графита будет вступать в реакцию и поглощать, любой свободный кислород в лампе. Серия Светлана SV572 и 572B использует графитовые пластины, покрытые очищены титаном, комбинации, которая дает превосходное действие газопоглощения. Графитовая пластина гораздо дороже в производстве, чем металлическая пластина того же размера , поэтому как максимальной допустимой мощности не требуется. Большие керамические используют цирконий. Поскольку вы не можете видеть «вспышку» с таких ламп, состояние вакуума лампы должна быть определена с помощью электрических устройств.

Сборка радиолампы

Обычная стеклянная аудио радиолампа выполнена на конвейере людьми владеющими пинцетом и малой электрической сваркой. Они собирают катод, анод, сетки и другие детали внутри набора слюды или керамических прокладок, в обжимной узел вместе. Электрические соединения затем приваривают точечной сваркой к базовой проводке радиолампы. Эта работа должна быть сделана в довольно чистых условиях, хотя и не столь крайних, как «стерильная комната», которая используется, чтобы сделать полупроводники. Здесь носят халаты и шапки, и каждая рабочая станция оснащена постоянным источником фильтрованной воздушного потока, чтобы не попала пыль на части радиолампы.

После того, как закончена сборка комплектующих, потом прикрепляют к основанию стекло и запаивают к базовому диску. Сборка радиоламп продолжается, в выхлопном трубопроводе, который проходит в многоступенчатом ​​высоко-мощном вакуумном насосе.

Сначала идет вакуумная откачка; когда насос работает, индукционная катушка ВЧ находится над узлом лампы и все металлические части подогреваются. Это помогает удалить все газы, а также активизировать катодное покрытие.

Через 30 минут или более (в зависимости от типа радиолампы и вакуума), труба автоматически поднимается вверх и небольшое пламя герметизирует его.

Вращается поднос, когда в лампу вводится серия оперативных напряжений, более высоких, чем номинальное напряжение нагревателя.

Наконец остальная часть радиолампы будет удалена, базовая проводка прикреплена к внешней базе (если это восьмеричный базовый тип) с помощью специального термостойкого цемента, и готовый радиолампа готова к старению и выгорания в стойке. Если радиолампа отвечает ряду оперативных спецификации в специальном тестере, то она отмечается и отправляется.

Металлокерамические

Если вы хотите контролировать много энергии, то хрупкая стеклянная радиолампа сложнее в использовании. Так, действительно большие радиолампы сегодня полностью выполнены из керамического изолятора и металлических электродов.

В этих больших радиолампах, пластина также является частью внешней оболочки радиолампы. Такая пластина проводит ток по лампе и умеет рассеивать много тепла, это сделано как радиатор, через который будет продуваться охлаждающий воздух, или она имеет отверстия, через которые вода или другая жидкость закачивается для охлаждения радиолампы.

Лампы с воздушным охлаждением часто используются в радиопередатчиках, в то время как радиолампы с жидкостным охлаждением используются для создания радио энергии для отопления в промышленност и. Такие радиолампы используются в качестве «индукционных нагревателей «, чтобы сделать другие виды продуктов — даже другие радиолампы.

Керамические лампы изготавливаются на другом оборудовании, чем стеклянные радиолампы, хотя процессы схожи. Мягкий металл, а не стекло, и его, как правило, обжимают на гидравлическом прессе. Керамические части, как правило, в форме кольца и металлические пломбы припаяны к их краям ; они присоединены и свариваются с металлическими деталями с помощью сварки или пайки.

ПОЧЕМУ радиолампы еще используются?

Многие большие радио-станции продолжают использовать большие радиолампы электростанций, особенно для уровней мощности выше 10000 Вт и для частот выше 50 МГц. Мощные UHF телеканалы и крупные FM станций исключительно на питание от радиоламп. Причина: стоимость и эффективность! Но на низких частотах транзисторы более эффективные и менее дорогие, чем радиолампы.

Создание большого твердотельного передатчика потребует сотни или тысячи силовых транзисторов параллельно в группы по 4 или 5. Кроме того, они требуют больших теплоотводов Радиолампа, не требует сумматора, а может быть охлаждена воздухом или водой, что делает его лучше, чем твердотельный.

Это уравнение становится еще более выраженным в диапазоне сверхвысоких частот. Почти все коммерческие спутники связи применяют лампы для своих «нисходящих» усилителей мощности. В «восходящей линии связи» наземные станции также используют радиолампы. А для высокой выходной мощности, радиолампы кажется царствовует безраздельно. Экзотические транзисторы еще используются только для усиления слабого сигнала и выходной мощностью менее 40 Вт, даже после значительных достижений в области технологии. Низкая стоимость электроэнергии, вырабатываемой радиолампы сохраняет их экономически жизнеспособным, в уровне развития науки.

Усилители ламповые гитарные

В общем, только очень дешевые гитарные усилители (и несколько специализированных профессиональных моделей) являются преимущественно твердотельными. Мы подсчитали, что не менее 80% рынка для высокого класса гитарных усилителей построены на моделях полностью ламповых или гибридных. Особой популярностью у серьезных профессиональных музыкантов современные версии классических Fender, Маршалл и модели Vox с 1950-ых и 1960-ых. Этот бизнес, как полагают, составляют не менее $ 100 миллионов по всему миру по состоянию на 1997 год.

Почему ламповые усилители? Это звук, который хотят музыканты. Усилитель и динамик становятся частью музыкального . Своеобразные искажения и затухания динамики характеристики луча тетрода или пентодного усилителя, с выходным трансформатором, чтобы соответствовать нагрузке громкоговорителя, является уникальным и трудно имитировать его твердотельными устройствами. И методы по внедрению каменных усилителей, по-видимому, не увенчались успехом; профессиональные гитаристы снова возвращаются к ламповым усилителям .

Даже самые молодые рок-музыканты, кажется, очень консервативны и фактически они используют ламповое оборудование, чтобы сделать свою музыку. И их предпочтения указали им на проверенную годами радиолампу.

Профессиональное аудио

Студии записи немного под влиянием распространенности радиолампы гитарных усилителей в руках музыкантов. Кроме того, классические конденсаторные микрофоны, микрофоны, предусилители, ограничители, эквалайзеры и другие устройства стали ценными предметами коллекционирования, так как различные инженеры записи обнаружили значение радиолампы в оборудовании и в получении специальных звуковых эффектов. Результатом стал огромный рост в продажах и рекламе радиолампового оборудования и аудио процессоров для использования записи.

Высокое качество звука для аудиофилов

На своей нижней точке в начале 1970-х, продажи радиоламп для HIGH-END ламповых усилителей были едва
уловимым против основной массы бума потребительской электроники. Но даже несмотря на закрытие американских и европейских заводов радиоламп после, и начиная с 1985 года были бумом продаж «высокого класса» аудиокомпонентов. И вместе с ними начался бум продаж лампового звукового оборудования для домашнего использования – ламповый усилитель. Использование радиоламп был очень спорным в инженерных кругах, но спрос на радиолампы High End оборудования продолжают расти.

Использование радиолампы

Когда я должен заменить лампу?

Вы должны заменить только радиолампы в ламповом усилителе, тогда когда вы начинаете замечать изменения в качестве звука. Обычно звук станет «тупой» и потом будет казаться, что притупляется еще больше. Кроме того, коэффициент усиления усилителя уменьшится заметно. Обычно этого предупреждения достаточно, для замены
ламп
. Если пользователь имеет очень жесткие требования к радиолампе, то лучший способ проверить лампу с надлежащим тестером. Они все еще доступны на рынке подержанных; хотя новые не были изготовлены в течение многих лет. Один тестер в настоящее время производит сегодня, Maxi-Matche. Тестер подходит для тестирования 6L6, EL34, 6550 и типов. Если вы не можете найти тестер для радиолампы, поговорите с сотрудниками технической службы.

Голубое свечение — чем это вызвано?

Стеклянные радиолампы имеют видимый блеск внутри них. Большинство аудио ламп используют оксидные катоды, которые светятся радостным теплым оранжевым цветом. И торированного-накаливания радиолампы, такие как SV811 и SV572 триоды, показывают бело-горячий жар от своих нитей и (в некоторых усилителях) небольшое оранжевое свечение от своих нитей. Все это нормальные последствия. Некоторые новички в аудио-мире также замечают, что некоторые из их радиоламп излучают голубоватый блеск. Есть две причины для этого свечения в ламповых усилителях; один из них является нормальным и безвредным, другой происходит только в плохом ламповом усилителе.

1) Большинство радиоламп Светлана показывают флуоресцентное свечение. Это очень глубокий синий цвет. Это обусловлено теми, незначительными примесями, такими как кобальт. Быстро движущиеся электроны ударяют в молекулу примеси, возбуждают их, и производят фотоны света характерного цвета. Это обычно наблюдается на внутренней поверхности пластины, на поверхности распорок, или на внутренней стороне стеклянной оболочки. Это свечение безвредно. Это нормально и не указывает на неисправность трубки. Наслаждайтесь этим. Многие аудиофилы считают, что такое свечение улучшает внешний вид радиолампы во время работы.

2) Иногда радиолампа будет светиться под небольшой утечкой. Когда воздух попадает в лампу, и когда высокое напряжение прикладывается к пластине, молекулы воздуха могут ионизировать. Свечение ионизированного воздуха довольно сильно отличается от свечения флуоресцентного, ионизированный воздух является сильным фиолетовым цветом, почти розовым. Этот цвет обычно появляется внутри пластины радиолампы (хотя и не всегда). Он не цепляется к поверхностям, как флуоресценция, но появляется в промежутках между элементами. Радиолампа показывает это свечение и следует заменить её сразу, так как газ может вызвать ток анода утечку и (возможно) приведет повреждению лампового усилителя .

ОБРАТИТЕ ВНИМАНИЕ : некоторые старые High End ламповые и гитарные усилители, и очень немногие современные усилители, используют специальные лампы, которые зависят от ионизированного газа для их нормальной работы.

Некоторые ламповые усилители используют выпрямители ртутные, такие как 83, 816, 866 или 872. Эти радиолампы светятся сильным сини-фиолетовым цветом при нормальной эксплуатации. Они превращаются переменного тока в постоянный ток для запуска других радиоламп.

И иногда, старинные и современные ламповые усилители используют регулятор для радиоламп газоразрядных, например типов 0A2, 0B2, 0C2, 0A3, 0B3, 0C3 или 0D3.

Эти лампы работают на ионизированном газе для контроля напряжения очень плотно, и обычно светятся либо сине-фиолетовым или розовым, когда в нормальном режиме.

Что такое класс А, В, АВ, ультралинейный ламповый усилитель, и т.д.?

1. Класс А означает, что мощность проводит такое же количество тока все время, будь то на холостом ходу или работает на полную мощность. Класс очень неэффективный для электричества, но, как правило, дает очень низкий уровень искажений и отличный звук.

Есть несимметричный класс, или SE, усилители. Они используют одну или несколько радиоламп параллельно, которые работают все в фазе друг с другом. Они обычно используются в небольших гитарных усилителях и в High End высокого класса усилителях. Многие аудиофилы предпочитают ламповый усилитель SE, даже если он имеет относительно высокий уровень искажений четного порядка. Большинство 300B высокого класса ламповые усилители SE. Отрицательная обратная связь(ООС), которая может быть использована, чтобы уменьшить искажение усилителя, не особо ощущается в звуке. Большинство ламповых усилители SE без ООС.

Также двухтактные ламповые усилители класса А — они используют две, четыре или более трубок (всегда в паре), которые приводятся в противофазе друг к другу. Это сводит на нет искажения даже четного порядка и дает очень чистый звук. Примером класса А в двухтактном ламповом усилителе является гитарный усилитель Vox AC-30. Высокие токи могут, как правило, изнашивать катоды радиоламп быстрее, чем в ламповом усилителе АВ.

Есть два вида класса А, которые можно применить к несимметричным или двухтактным

Класс А1 означает, что напряжение сетки всегда более отрицательное, чем напряжение катода. Это дает максимально возможную линейность и используется с триодах, таких как SV300B, и пентодах.

Класс A2 означает, что сетка приводится более положительно, чем для части катода или всего сигнала. Это означает, что сетка будет опираться на ток с катода и нагреваться. А2 не часто используется в пентодах или триодах как SV300B, особенно в аудио ламповых усилителях. Обычно ламповый усилитель класса-A2 будет использовать радиолампы со специальными прочными сетками, таких как SV811 и SV572 серии триодов.

2. Класса АВ относится только к . Это означает, что, когда сетка одной радиолампы управляется, пока его анодный ток не отсекает (останавливает) полностью, то другая радиолампа берет на себя и обрабатывает выходную мощность. Это дает большую эффективность, чем класса А. Он также приводит к увеличению искажений, если усилитель не тщательно спроектирован и использует некоторые негативные отклики. Есть класс-AB1 и класс-AB2 усилители; различия такие же, как было объяснено.

Бестрансформаторные ламповые усилители особая высокотехнологичная продукция. Потому что это дорого и сложно причем, некоторые инженеры решили вообще ликвидировать трансформатор. К сожалению, радиолампы имеют относительно высокие выходные импедансы по сравнению с транзисторами. Хорошо продуманный бестрансформаторный ламповый усилитель способен на качество звука и доступен сегодня. Такой ламповый усилитель, как правило, требуют больше ухода и большую заботу в использовании, чем трансформаторный.

В последние годы, бестрансформаторный ламповый усилитель получил плохую репутацию ненадежности. Это было только проблемой с некоторыми производителями недорогих, которые с тех пор вышли из бизнеса. Хорошо продуманный ламповый усилитель может быть столь же надежный, как трансформаторный.

Скачать отличные книги «Ламповый усилитель своими руками» можно БЕСПЛАТНО Размер 220.47 MB!!!

2 часть книг про Ламповый усилитель можно БЕСПЛАТНО Размер 122.41 MB!!

Я надеюсь, что это объяснение хоть немного помогло. Пожалуйста, оставляйте комментарии ниже, чтобы я мог вернуться к вам. Не бойтесь меня и добавляйтесь в

Это вакуумный электронный прибор, функционирующий благодаря изменению потока электронов. Электроны двигаются в вакууме среди электродов.

Осветительная лампа с угольной нитью накаливания в связи с потускнением баллона постепенно уменьшала отдаваемый свет. С 1883 г. Т. Эдисон своими научными изысканиями пытался усовершенствовать лампу накаливания. Откачав из баллона лампы воздух, он ввел в него металлический электрод. К впаянному электроду и раскаленной с помощью электрического тока нити Эдисон прикрепил и соединил гальванометр и батарею. Как только полярность распределялась, минус батареи перемещался к нити, плюс - к электроду, стрелка гальванометра отклонялась. При противоположной полярности подача тока в цепь прекращалась. Этот опыт, в результате которого получилась термоэлектронная эмиссия, послужил основой для электронных ламп и всей полупроводниковой электроники.
В состав электронных ламп входят по меньшей мере два электрода - анод и катод. Если в лампе находится катод не прямого накала, то рядом с катодом располагается нить накаливания, которая его подогревает. Делает она это для того, чтобы при нагревании увеличивалась эмиссия с катода. Сетки, располагающиеся между анодом и катодом, изменяют поток электронов и устраняют вредные явления, которые возникают при движении потока электронов от положительно заряженного электрода к отрицательному электроду. На стекле электронных ламп находится блестящее напыление, которое предохраняет устройство от излишних газов и воздуха.

Кроме диодов и триодов, к электронным лампам относятся тетроды, пентоды, гексоды и гептоды.
В 1905 г. на опыты Эдисона стал опираться английский ученый Дж. Флеминг, получивший патент на прибор, который преобразовывает переменный ток в постоянный, т. е. на первую электронную лампу. Он впервые использовал диод с практической целью, диод выступал в качестве силового элемента (детектора) в радиотелеграфных приемниках. В следующем году американский инженер Л. Форест создал триод, прибавив к двум электродам управляющую сетку. Лампа, созданная Ли де Форестом, могла усиливать колебания самостоятельно. В 1913 г. на базе триода был создан первый автогенератор . Во многом благодаря триоду Фореста и началась компьютерная эра. С помощью триода он смог усилить звук в своей домашней лаборатории, активно сотрудничал на этой почве с американскими исследователями в области электроники. Первоначально триод был газонаполненной лампой, имевшей плоскую сетку. Уже позднее лампа Фореста стала вакуумной (в 1912 г.), он запатентовал ее в 1907 г. и назвал «Audion». Ученый применял триод в качестве устройства, обрабатывающего данные. Немецкие инженеры под руководством А. Мейс-нера, последователя Фореста, создали цилиндрическую сетку триода из перфорированного алюминиевого листа.

В радиотехнике изобретателем автогенератора считается Армстронг. Кроме всего прочего, Форест применял свой триод в усилителях, приемниках и передатчиках, став пионером радиосвязи. Закончив Йельский университет и защитив диссертацию, Форест начал активно воплощать свои теории на практике. В 1902 г. он создал компанию «Forest Wireless Telegraphy Company», которая уже через два года была основным наладчиком радиосвязи на американском военно-морском флоте. В 1920 г. он предложил записывать звуковую дорожку на кинопленку оптическим способом, чем немало способствовал развитию киноиндустрии.

В России первые радиолампы были созданы петербургским инженером Н. Д. Папалекси в 1914 г. Совершенной откачки не было, поэтому лампы изготавливались газонаполненными со ртутью. Благодаря работе М. А. Бонч-Бруевича в 1913-1919 гг. внедрение электронных ламп в радиотехнику стимулировалось военными интересами радиосвязи. В 1914 г., после начала Первой мировой войны, в Царском Селе и на подмосковном Ходынском поле построили мощные передающие искровые станции для связи с военными союзниками и слежения за вражескими радиостанциями . Военное положение вынудило Бонч-Бруевича изготавливать электронные лампы в России. В Твери находилась радиостанция с ламповыми усилителями. Лампы французского производства стоили около 200 руб. золотом каждая, а время их работы не превышало десяти часов. Собрав необходимое оборудование в аптеках и на заводах, Бонч-Бруевич в небольшой лаборатории стал мастерить радиоприемники и лампы, стоимость которых равнялась 32 руб.

До 1930-х гг. электронные лампы применялись исключительно в радиотехнике. В 1931 г. английский физик
В. Вильямс сконструировал тиратрон-ный счетчик электрических импульсов. В состав электронного счетчика входили несколько триггеров. Сами триггеры были изобретены параллельно М. А. Бонч-Бруевичем в 1918 г. и американскими учеными Ф. Джорданом и У. Икклзом в 1919 г. Триггеры выполнялись в виде электронного реле , состояли из двух ламп и находились в одном из двух своих устойчивых состояний. Электронное реле, как и электромеханическое, могло хранить в себе одну двоичную цифру.

В 1940-х гг. появились компьютеры, разработанные на основе электронных ламп. Электронная лампа стала применяться как основной элемент ЭВМ. Несмотря на многие.положительные характеристики, использование ламп приносило множество проблем. Высота стеклянной лампы равнялась 7 см, за счет чего ЭВМ имели огромные размеры.

В одном компьютере находилось 15-20 тыс. электронных ламп, каждая из которых через 7-8 мин работы выходила из строя. Возникала проблемная ситуация поиска и замены старой лампы, это занимало очень много времени. Такое большое количество ламп выделяло тепло, поэтому для каждого компьютера необходимо было устанавливать охладительные системы. В компьютерах не было устройств ввода, поэтому данные заносились в память благодаря соединению определенного штекера с определенным гнездом. Но все же электронные лампы, несмотря на многие недостатки, внесли неоценимый вклад в развитие мировой радиотехники и электроники.

Первые электронные лампы, или радиолампы, как их иногда называют, были очень похожи на электрические лампы накаливания (см. Источники света). Они имели прозрачные стеклянные баллоны такой же формы, а их нити накала ярко светились.

Еще в конце прошлого века известный американский изобретатель Т. Л. Эдисон обнаружил, что раскаленная нить обычной лампы испускает, «выбрасывает» большое количество свободных электронов. Это явление, получившее название термоэлектронной эмиссии, широко используется во всех электронных лампах.

Любая электронная лампа представляет собой металлический, стеклянный или керамический баллон, внутри которого укреплены электроды (см. рис.). В баллоне создается сильное разрежение воздуха (вакуум), которое необходимо для того, чтобы газы не мешали движению электронов в лампе и чтобы электроды служили дольше. Катод - отрицательный электрод - является источником электронов. В одних лампах роль катода выполняет нить накала, в других нить служит миниатюрной электроплиткой, нагревающей трубчатый катод. Анод - положительный электрод - обычно имеет форму цилиндра или коробки без двух стенок, он окружает катод.

Все названия электронных ламп связаны с числом электродов: диод имеет два электрода, триод - три, тетрод - четыре, пентод - пять и т. д.

До наших дней остался неизменным принцип действия первой электронной лампы - диода, изобретенного англичанином Флемингом в 1904 г. Основные элементы этой простейшей лампы - катод и анод. Из раскаленного катода вылетают электроны и образуют вокруг него электронное «облако». Если катод соединить с «минусом» источника питания, а на анод подать «плюс», внутри диода возникает ток (анод начнет притягивать к себе электроны из «облака»). Если же на анод подать «минус», а на катод - «плюс», ток в цепи диода прекратится. Таким образом, в двухэлектродной лампе - диоде ток может идти только в одном направлении - от катода к аноду, т. е. диод обладает односторонней проводимостью тока.

Диод использовали для выпрямления переменного тока (см. Электрический ток). В 1906 г. американский инженер Ли де Форест предложил ввести между анодом и катодом лампы диода еще один электрод - сетку. Появилась новая лампа - триод, неизмеримо расширившая область использования электронных ламп (см. рис.).

Работа триода, как и всякой электронной лампы, основана на существовании потока электронов между катодом и анодом. Сетка - третий электрод - имеет вид проволочной спирали. Она находится ближе к катоду, чем к аноду. Если на сетку подать небольшое отрицательное напряжение, она будет отталкивать часть электронов, летящих от катода к аноду, и сила анодного тока уменьшится. При большом отрицательном напряжении сетка становится непреодолимым барьером для электронов. Они задерживаются в пространстве между катодом и сеткой, несмотря на то что к катоду приложен «минус», а к аноду - «плюс» источника питания. При положительном напряжении на сетке она будет усиливать анодный ток. Таким образом, подавая различное напряжение на сетку, можно управлять силой анодного тока лампы. Даже незначительные изменения напряжения между сеткой и катодом приведут к значительному изменению силы анодного тока, а следовательно, и к изменению напряжения на нагрузке (например, резисторе), включенной в цепь анода. Если на сетку подать переменное напряжение, то за счет энергии источника питания лампа усилит это напряжение. Происходит это потому, что при переменном напряжении между сеткой и катодом постоянный ток в нагрузке лампы изменяется в такт с этйм напряжением, причем в значительно большей степени, чем изменяется напряжение на сетке. Если этот ток пропустить через фильтр верхних частот (см. Фильтр электрический), то на его выходе потечет переменный ток с большей амплитудой колебаний, а на нагрузке появится большее переменное напряжение.

В дальнейшем конструкции электронных ламп развивались очень быстро - появились лампы, содержащие не одну, а несколько сеток: тетроды (лампы с двумя сетками) и пентоды (лампы с тремя сетками). Они позволили получить большее усиление сигналов.

Триоды, тетроды и пентоды - универсальные электронные лампы. Их применяют для усиления напряжения переменного и постоянного токов, для работы в качестве детекторов и в качестве генераторов электрических колебаний.

Широкое распространение получили комбинированные лампы, в баллонах которых имеются по две или даже по три электронные лампы. Это, например, диод-пентод, двойной триод, триод-пентод. Они могут, в частности, работать в качестве детектора (диод) и одновременно усиливать напряжение (пентод).

Электронные лампы для аппаратуры малой мощности (радиоприемников, телевизоров и т. д.) имеют небольшие размеры. Существуют даже сверхминиатюрные лампы, диаметр которых не превышает толщины карандаша. Полную противоположность миниатюрным лампам представляют лампы, применяемые в мощных усилителях радиоузлов или радиопередатчиках. Эти электронные лампы могут генерировать высокочастотные колебания мощностью в сотни киловатт и достигать значительных размеров.

Из-за огромного количества выделяющегося тепла приходится применять воздушное или водяное охлаждение этих ламп (см. рис.).

Понравилась статья? Поделиться с друзьями: