Средства шифрования и криптографии. Криптографические средства защиты информации

Криптографические средства - это специальные математические и алгоритмические средства защиты информации, передаваемой по системам и сетям связи, хранимой и обрабатываемой на ЭВМ с использованием разнообразных методов шифрования.
Техническая защита информации путем ее преобразования, исключающего ее прочтение посторонними лицами, волновала человека с давних времен. Криптография должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями - такими, как мафия, транснациональные корпорации и крупные государства. Криптография в прошлом использовалась лишь в военных целях. Однако сейчас, со становлением информационного общества, она становится инструментом для обеспечения конфиденциальности, доверия, авторизации, электронных платежей, корпоративной безопасности и бесчисленного множества других важных вещей. Почему проблема использования криптографических методов стала в настоящий момент особо актуальна?
С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.
С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем, еще недавно считавшихся практически не раскрываемыми.
Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.
Криптография занимается поиском и исследованием математических методов преобразования информации.
Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.
Современная криптография включает в себя 4 крупных раздела.



· Симметричные криптосистемы.

· Криптосистемы с открытым ключом.

· Системы электронной подписи.

· Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.


Терминология.
Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.
В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее.
Алфавит - конечное множество используемых для кодирования информации знаков.
Текст - упорядоченный набор из элементов алфавита.
Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.
Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.
Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.
Криптографическая система представляет собой семейство Т [Т1, Т2, ..., Тк] преобразований открытого текста. Члены этого семейства индексируются, или обозначаются символом «к»; параметр к является ключом. Пространство ключей К - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.
Криптосистемы разделяются на симметричные и с открытым ключом.
В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.
В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.
Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.
Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.
Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т. е. криптоанализу).
Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.
Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей (М). По сути, это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.
Однако этот критерий не учитывает других важных требований к криптосистемам:

· невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры;

· совершенство используемых протоколов защиты;

· минимальный объем применяемой ключевой информации;

· минимальная сложность реализации (в количестве машинных операций), ее стоимость;

· высокая оперативность.

Часто более эффективным при выборе и оценке криптографической системы является применение экспертных оценок и имитационное моделирование.
В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

Такое деление средств защиты информации (техническая защита информации ), достаточно условно, так как на практике очень часто они взаимодействуют и реализуются в комплексе в виде программно - аппаратных модулей с широким использованием алгоритмов закрытия информации.


Заключение

В данной курсовой работе, я рассмотрел локально вычислительную сеть Администрации, и сделал выводы, что для полной защиты информации необходимо применять все средства защиты, что бы минимизировать потерю той или иной информации.

В результате проделанной организации работы: компьютеризация рабочих мест с объединением их в локальную вычислительную сеть, с наличием сервера и доступом к сети Интернет. Выполнение данной работы обеспечит наиболее скоростную и производительную работу рабочего персонала.

Задачи, которые ставились при получении задачи, на мой взгляд, достигнуты. Схема локальной вычислительной сети Администрации приведена в Приложении Б.


Список литературы.

1. ГОСТ Р 54101-2010 «Средства автоматизации и систем управления. Средства и системы обеспечения безопасности. Техническое обслуживание и текущий ремонт»

2. Организационная защита информации: учебное пособие для вузов Аверченков В.И., Рытов М.Ю. 2011 год

3. Халяпин Д.Б., Ярочкин В.И. Основы защиты информации.-М.:ИПКИР,1994

4. Хорошко В.А., Чекатков А.А. Методы и средства защиты информации(под редакцией Ковтанюка) К.: Издательство Юниор, 2003г.-504с.

5. Аппаратные средства и сети ЭВМ Илюхин Б.В. 2005

6. Ярочкин В.И. Информационная безопасность: Учебник для студентов вузов.-М.:Академический Проект!?! Фонд "Мир",2003.-640с.

7. http://habrahabr.ru

8. http://www.intel.com/ru/update/contents/st08031.htm

9. http://securitypolicy.ru

10. http://network.xsp.ru/5_6.php


Примечание А.

Примечание Б.


Криптографические методы защиты информации

Криптографическое преобразование - это преобразование информации, основанное на некотором алгоритме, зависящем от изменяемого параметра (обычно называемого секретным ключом), и обладающее свойством невозможности восстановления исходной информации по преобразованной, без знания действующего ключа, с трудоемкостью меньше заранее заданной.

Основным достоинством криптографических методов является то, что они обеспечивают высокую гарантированную стойкость защиты, которую можно рассчитать и выразить в числовой форме (средним числом операций или временем, необходимым для раскрытия зашифрованной информации или вычисления ключей).

К числу основных недостатков криптографических методов следует отнести:

Значительные затраты ресурсов (времени, производительности процессоров) на выполнение криптографических преобразований информации;
. трудности совместного использования зашифрованной (подписанной) информации, связанные с управлением ключами (генерация, распределение и т.д.);
. высокие требования к сохранности секретных ключей и защиты открытых ключей от подмены.

Криптография делится на два класса: криптография с симметричными ключами и криптография с открытыми ключами.

Криптография с симметричными ключами
В криптографии с симметричными ключами (классическая криптография) абоненты используют один и тот же (общий) ключ (секретный элемент) как для шифрования, так и для расшифрования данных.

Следует выделить следующие преимущества криптографии с симметричными ключами:
. относительно высокая производительность алгоритмов;
. высокая криптографическая стойкость алгоритмов на единицу длины ключа.

К недостаткам криптографии с симметричными ключами следует отнести:
. необходимость использования сложного механизма распределения ключей;
. технологические трудности обеспечения неотказуемости.

Криптография с открытыми ключами

Для решения задач распределения ключей и ЭЦП были использованы идеи асимметричности преобразований и открытого распределения ключей Диффи и Хеллмана. В результате была создана криптография с открытыми ключами, в которой используется не один секретный, а пара ключей: открытый (публичный) ключ и секретный (личный, индивидуальный) ключ, известный только одной взаимодействующей стороне. В отличие от секретного ключа, который должен сохраняться в тайне, открытый ключ может распространяться публично. На Рисунке 1 представлены два свойства систем с открытыми ключами, позволяющие формировать зашифрованные и аутентифицированные сообщения.

Два важных свойства криптографии с открытыми ключами




Рисунок 1 Два свойства криптографии с открытыми ключами


Схема шифрования данных с использованием открытого ключа приведена на Рисунке 6 и состоит из двух этапов. На первом из них производится обмен по несекретному каналу открытыми ключами. При этом необходимо обеспечить подлинность передачи ключевой информации. На втором этапе, собственно, реализуется шифрование сообщений, при котором отправитель зашифровывает сообщение открытым ключом получателя.

Зашифрованный файл может быть прочитан только владельцем секретного ключа, т.е. получателем. Схема расшифрования, реализуемая получателем сообщения, использует для этого секретный ключ получателя.

Шифрование




Рисунок 2 Схема шифрования в криптографии с открытыми ключами.


Реализация схемы ЭЦП связанна с вычислением хэш-функции (дайджеста) данных, которая представляет собой уникальное число, полученное из исходных данных путем его сжатия (свертки) с помощью сложного, но известного алгоритма. Хэш-функция является однонаправленной функцией, т.е. по хэш-значению невозможно восстановить исходные данные. Хэш-функция чувствительна к всевозможным искажениям данных. Кроме того, очень трудно отыскать два набора данных, обладающих одним и тем же значением хэш-функции.

Формирование ЭЦП с хэшированием
Схема формирования подписи ЭД его отправителем включает вычисление хэш-функции ЭД и шифрование этого значения посредством секретного ключа отправителя. Результатом шифрования является значение ЭЦП ЭД (реквизит ЭД), которое пересылается вместе с самим ЭД получателю. При этом получателю сообщения должен быть предварительно передан открытый ключ отправителя сообщения.




Рисунок 3 Схема ЭЦП в криптографии с открытыми ключами.


Схема проверки (верификации) ЭЦП, осуществляемая получателем сообщения, состоит из следующих этапов. На первом из них производится расшифрование блока ЭЦП посредством открытого ключа отправителя. Затем вычисляется хэш-функция ЭД. Результат вычисления сравнивается с результатом расшифрования блока ЭЦП. В случае совпадения, принимается решение о соответствии ЭЦП ЭД. Несовпадение результата расшифрования с результатом вычисления хеш-функции ЭД может объясняться следующими причинами:

В процессе передачи по каналу связи была потеряна целостность ЭД;
. при формировании ЭЦП был использован не тот (поддельный) секретный ключ;
. при проверке ЭЦП был использован не тот открытый ключ (в процессе передачи по каналу связи или при дальнейшем его хранении открытый ключ был модифицирован или подменен).

Реализация криптографических алгоритмов с открытыми ключами (по сравнению с симметричными алгоритмами) требует больших затрат процессорного времени. Поэтому криптография с открытыми ключами обычно используется для решения задач распределения ключей и ЭЦП, а симметричная криптография для шифрования. Широко известна схема комбинированного шифрования, сочетающая высокую безопасность криптосистем с открытым ключом с преимуществами высокой скорости работы симметричных криптосистем. В этой схеме для шифрования используется случайно вырабатываемый симметричный (сеансовый) ключ, который, в свою очередь, зашифровывается посредством открытой криптосистемы для его секретной передачи по каналу в начале сеанса связи.

Комбинированный метод




Рисунок 4 Схема комбинированного шифрования.


Доверие к открытому ключу и цифровые сертификаты

Центральным вопросом схемы открытого распределения ключей является вопрос доверия к полученному открытому ключу партнера, который в процессе передачи или хранения может быть модифицирован или подменен.

Для широкого класса практических систем (системы электронного документооборота, системы Клиент-Банк, межбанковские системы электронных расчетов), в которых возможна личная встреча партнеров до начала обмена ЭД, эта задача имеет относительно простое решение - взаимная сертификация открытых ключей.

Эта процедура заключается в том, что каждая сторона при личной встрече удостоверяет подписью уполномоченного лица и печатью бумажный документ - распечатку содержимого открытого ключа другой стороны. Этот бумажный сертификат является, во-первых, обязательством стороны использовать для проверки подписи под входящими сообщениями данный ключ, и, во-вторых, обеспечивает юридическую значимость взаимодействия. Действительно, рассмотренные бумажные сертификаты позволяют однозначно идентифицировать мошенника среди двух партнеров, если один из них захочет подменить ключи.

Таким образом, для реализации юридически значимого электронного взаимодействия двух сторон необходимо заключить договор, предусматривающий обмен сертификатами. Сертификат представляет собой документ, связывающий личностные данные владельца и его открытый ключ. В бумажном виде он должен содержать рукописные подписи уполномоченных лиц и печати.

В системах, где отсутствует возможность предварительного личного контакта партнеров, необходимо использовать цифровые сертификаты, выданные и заверенные ЭЦП доверенного посредника - удостоверяющего или сертификационного центра.

Взаимодействие клиентов с Центром Сертификации
На предварительном этапе каждый из партнеров лично посещает Центр Сертификации (ЦС) и получает личный сертификат - своеобразный электронный аналог гражданского паспорта.




Рисунок 5 Сертификат х.509.


После посещения ЦС каждый из партнеров становится обладателем открытого ключа ЦС. Открытый ключ ЦС позволяет его обладателю проверить подлинность открытого ключа партнера путем проверки подлинности ЭЦП удостоверяющего центра под сертификатом открытого ключа партнера.

В соответствии с законом "Об ЭЦП" цифровой сертификат содержит следующие сведения:

Наименование и реквизиты центра сертификации ключей (центрального удостоверяющего органа, удостоверяющего центра);
. Свидетельство, что сертификат выдан в Украине;
. Уникальный регистрационный номер сертификата ключа;
. Основные данные (реквизиты) подписчика - собственника приватного (открытого) ключа;
. Дата и время начала и окончания срока действия сертификата;
. Открытый ключ;
. Наименование криптографического алгоритма, используемого владельцем открытого ключа;
. Информацию об ограничении использования подписи;
. Усиленный сертификат ключа, кроме обязательных данных, которые содержатся в сертификате ключа, должен иметь признак усиленного сертификата;
. Другие данные могут вноситься в усиленный сертификат ключа по требованию его владельца.

Этот цифровой сертификат подписан на секретном ключе ЦС, поэтому любой обладатель открытого ключа ЦС может проверить его подлинность. Таким образом, использование цифрового сертификата предполагает следующую схему электронного взаимодействия партнеров. Один из партнеров посылает другому собственный сертификат, полученный из ЦС, и сообщение, подписанное ЭЦП. Получатель сообщения осуществляет проверку подлинности сертификата партнера, которая включает:

Проверку доверия эмитенту сертификата и срока его действия;
. проверку ЭЦП эмитента под сертификатом;
. проверку аннулирования сертификата.


В случае если сертификат партнера не утратил свою силу, а ЭЦП используется в отношениях, в которых она имеет юридическое значение, открытый ключ партнера извлекается из сертификата. На основании этого открытого ключа может быть проверена ЭЦП партнера под электронным документом (ЭД).
Важно отметить, что в соответствии с законом "Об ЭЦП" подтверждением подлинности ЭЦП в ЭД является положительный результат проверки соответствующим сертифицированным средством ЭЦП с использованием сертификата ключа подписи.

ЦС, обеспечивая безопасность взаимодействия партнеров, выполняет следующие функции:

Регистрирует ключи ЭЦП;
. создает, по обращению пользователей, закрытые и открытые ключи ЭЦП;
. приостанавливает и возобновляет действие сертификатов ключей подписей, а также аннулирует их;
. ведет реестр сертификатов ключей подписей, обеспечивает актуальность реестра и возможность свободного доступа пользователей к реестру;
. выдает сертификаты ключей подписей на бумажных носителях и в виде электронных документов с информацией об их действительности;
. проводит, по обращениям пользователей, подтверждение подлинности (действительности) подписи в ЭД в отношении зарегистрированных им ЭЦП.


В ЦС создаются условия безопасного хранения секретных ключей на дорогом и хорошо защищенном оборудовании, а также условия администрирования доступа к секретным ключам.

Регистрация каждой ЭЦП осуществляется на основе заявления, содержащего сведения, необходимые для выдачи сертификата, а также сведения, необходимые для идентификации ЭЦП обладателя и передачи ему сообщений. Заявление подписывается собственноручной подписью обладателя ЭЦП, содержащиеся в нем сведения подтверждаются предъявлением соответствующих документов. При регистрации проверяется уникальность открытых ключей ЭЦП в реестре и архиве ЦС.

При регистрации в ЦС на бумажных носителях оформляются два экземпляра сертификата ключа подписи, которые заверяются собственноручными подписями обладателя ЭЦП и уполномоченного лица удостоверяющего центра (УЦ) и печатью удостоверяющего центра. Один экземпляр выдается обладателю ЭЦП, второй остается в УЦ.

В реальных системах каждым партнером может использоваться несколько сертификатов, выданных различными ЦС. Различные ЦС могут быть объединены инфраструктурой открытых ключей или PKI (PKI - Public Key Infrastructure). ЦС в рамках PKI обеспечивает не только хранение сертификатов, но и управление ими (выпуск, отзыв, проверку доверия). Наиболее распространенная модель PKI - иерархическая. Фундаментальное преимущество этой модели состоит в том, что проверка сертификатов требует доверия только относительно малому числу корневых ЦС. В то же время эта модель позволяет иметь различное число ЦС, выдающих сертификаты.






Криптография (от древне-греч. κρυπτος – скрытый и γραϕω – пишу) – наука о методах обеспечения конфиденциальности и аутентичности информации.

Криптография представляет собой совокупность методов преобразования данных, направленных на то, чтобы сделать эти данные бесполезными для злоумышленника. Такие преобразования позволяют решить два главных вопроса, касающихся безопасности информации:

  • защиту конфиденциальности;
  • защиту целостности.

Проблемы защиты конфиденциальности и целостности информации тесно связаны между собой, поэтому методы решения одной из них часто применимы для решения другой.

Известны различные подходы к классификации методов криптографического преобразования информации. По виду воздействия на исходную информацию методы криптографического преобразования информации могут быть разделены на четыре группы:

Отправитель генерирует открытый текст исходного сообщения М , которое должно быть передано законному получателю по незащищённому каналу. За каналом следит перехватчик с целью перехватить и раскрыть передаваемое сообщение. Для того чтобы перехватчик не смог узнать содержание сообщения М , отправитель шифрует его с помощью обратимого преобразования Ек и получает шифртекст (или криптограмму) С=Ек(М) , который отправляет получателю.

Законный получатель, приняв шифртекст С , расшифровывает его с помощью обратного преобразования Dк(С) и получает исходное сообщение в виде открытого текста М .

Преобразование Ек выбирается из семейства криптографических преобразований, называемых криптоалгоритмами. Параметр, с помощью которого выбирается отдельное преобразование, называется криптографическим ключом К .

Криптосистема имеет разные варианты реализации: набор инструкций, аппаратные средства, комплекс программ, которые позволяют зашифровать открытый текст и расшифровать шифртекст различными способами, один из которых выбирается с помощью конкретного ключа К .

Преобразование шифрования может быть симметричным и асимметричным относительно преобразования расшифрования. Это важное свойство определяет два класса криптосистем:

  • симметричные (одноключевые) криптосистемы;
  • асимметричные (двухключевые) криптосистемы (с открытым ключом).

Симметричное шифрование

Симметричное шифрование, которое часто называют шифрованием с помощью секретных ключей, в основном используется для обеспечения конфиденциальности данных. Для того чтобы обеспечить конфиденциальность данных, пользователи должны совместно выбрать единый математический алгоритм, который будет использоваться для шифрования и расшифровки данных. Кроме того, им нужно выбрать общий (секретный) ключ, который будет использоваться с принятым ими алгоритмом шифрования/дешифрования, т.е. один и тот же ключ используется и для зашифрования, и для расшифрования (слово "симметричный" означает одинаковый для обеих сторон).

Пример симметричного шифрования показан на рис. 2.2 .

Сегодня широко используются такие алгоритмы шифрования, как Data Encryption Standard (DES), 3DES (или "тройной DES") и International Data Encryption Algorithm (IDEA). Эти алгоритмы шифруют сообщения блоками по 64 бита. Если объем сообщения превышает 64 бита (как это обычно и бывает), необходимо разбить его на блоки по 64 бита в каждом, а затем каким-то образом свести их воедино. Такое объединение, как правило, происходит одним из следующих четырех методов:

  • электронной кодовой книги (Electronic Code Book, ECB);
  • цепочки зашифрованных блоков (Cipher Block Changing, CBC);
  • x-битовой зашифрованной обратной связи (Cipher FeedBack, CFB-x);
  • выходной обратной связи (Output FeedBack, OFB).

Triple DES (3DES) – симметричный блочный шифр, созданный на основе алгоритма DES, с целью устранения главного недостатка последнего – малой длины ключа (56 бит), который может быть взломан методом полного перебора ключа. Скорость работы 3DES в 3 раза ниже, чем у DES, но криптостойкость намного выше. Время, требуемое для криптоанализа 3DES, может быть намного больше, чем время, нужное для вскрытия DES.

Алгоритм AES (Advanced Encryption Standard), также известный как Rijndael – симметричный алгоритм блочного шифрования – шифрует сообщения блоками по 128 бит, использует ключ 128/192/256 бит.

Шифрование с помощью секретного ключа часто используется для поддержки конфиденциальности данных и очень эффективно реализуется с помощью неизменяемых "вшитых" программ (firmware). Этот метод можно использовать для аутентификации и поддержания целостности данных.

С методом симметричного шифрования связаны следующие проблемы:

  • необходимо часто менять секретные ключи, поскольку всегда существует риск их случайного раскрытия (компрометации);
  • достаточно сложно обеспечить безопасность секретных ключей при их генерировании, распространении и хранении.

Термин «криптография» происходит от древнегреческих слов «скрытый» и «пишу». Словосочетание выражает основное назначение криптографии – это защита и сохранение тайны переданной информации. Защита информации может происходить различными способами. Например, путем ограничения физического доступа к данным, скрытия канала передачи, создания физических трудностей подключения к линиям связи и т. д.

Цель криптографии В отличие от традиционных способов тайнописи, криптография предполагает полную доступность канала передачи для злоумышленников и обеспечивает конфиденциальность и подлинность информации с помощью алгоритмов шифрования, делающих информацию недоступной для постороннего прочтения. Современная система криптографической защиты информации (СКЗИ) – это программно-аппаратный компьютерный комплекс, обеспечивающий защиту информации по следующим основным параметрам.

+ Конфиденциальность – невозможность прочтения информации лицами, не имеющими соответствующих прав доступа. Главным компонентом обеспечения конфиденциальности в СКЗИ является ключ (key), представляющий собой уникальную буквенно-числовую комбинацию для доступа пользователя в определенный блок СКЗИ.

+ Целостность – невозможность несанкционированных изменений, таких как редактирование и удаление информации. Для этого к исходной информации добавляется избыточность в виде проверочной комбинации, вычисляемой по криптографическому алгоритму и зависящая от ключа. Таким образом, без знания ключа добавление или изменение информации становится невозможным.

+ Аутентификация – подтверждение подлинности информации и сторон, ее отправляющих и получающих. Передаваемая по каналам связи информация должна быть однозначно аутентифицирована по содержанию, времени создания и передачи, источнику и получателю. Следует помнить, что источником угроз может быть не только злоумышленник, но и стороны, участвующие в обмене информацией при недостаточном взаимном доверии. Для предотвращения подобных ситуации СКЗИ использует систему меток времени для невозможности повторной или обратной отсылки информации и изменения порядка ее следования.

+ Авторство – подтверждение и невозможность отказа от действий, совершенных пользователем информации. Самым распространенным способом подтверждения подлинности является электронная цифровая подпись (ЭЦП). Система ЭЦП состоит из двух алгоритмов: для создания подписи и для ее проверки. При интенсивной работе с ЭКЦ рекомендуется использование программных удостоверяющих центров для создания и управления подписями. Такие центры могут быть реализованы как полностью независимое от внутренней структуры средство СКЗИ. Что это означает для организации? Это означает, что все операции с электронными подписями обрабатываются независимыми сертифицированными организациями и подделка авторства практически невозможна.

На текущий момент среди СКЗИ преобладают открытые алгоритмы шифрования с использованием симметричных и асимметричных ключей с длиной, достаточной для обеспечения нужной криптографической сложности. Наиболее распространенные алгоритмы:

симметричные ключи – российский Р-28147.89, AES, DES, RC4;
асимметричные ключи – RSA;
с использованием хеш-функций - Р-34.11.94, MD4/5/6, SHA-1/2. 80

Многие страны имеют свои национальные стандарты алгоритмов шифрования. В США используется модифицированный алгоритм AES с ключом длиной 128-256 бит, а в РФ алгоритм электронных подписей Р-34.10.2001 и блочный криптографический алгоритм Р-28147.89 с 256-битным ключом. Некоторые элементы национальных криптографических систем запрещены для экспорта за пределы страны, деятельность по разработке СКЗИ требует лицензирования.

Cистемы аппаратной криптозащиты

Аппаратные СКЗИ - это физические устройства, содержащие в себе программное обеспечение для шифрования, записи и передачи информации. Аппараты шифрации могут быть выполнены в виде персональных устройств, таких как USB-шифраторы ruToken и флеш-диски IronKey, плат расширения для персональных компьютеров, специализированных сетевых коммутаторов и маршрутизаторов, на основе которых возможно построение полностью защищенных компьютерных сетей.

Аппаратные СКЗИ быстро устанавливаются и работают с высокой скоростью. Недостатки – высокая, по сравнению с программными и программно-аппаратными СКЗИ, стоимость и ограниченные возможности модернизации. Также к аппаратным можно отнести блоки СКЗИ, встроенные в различные устройства регистрации и передачи данных, где требуется шифрование и ограничение доступа к информации. К таким устройствам относятся автомобильные тахометры, фиксирующие параметры автотранспорта, некоторые типы медицинского оборудования и т.д. Для полноценной работы таким систем требуется отдельная активация СКЗИ модуля специалистами поставщика.

Системы программной криптозащиты

Программные СКЗИ - это специальный программный комплекс для шифрования данных на носителях информации (жесткие и флеш-диски, карты памяти, CD/DVD) и при передаче через Интернет (электронные письма, файлы во вложениях, защищенные чаты и т.д.). Программ существует достаточно много, в т. ч. бесплатных, например, DiskCryptor. К программным СКЗИ можно также отнести защищенные виртуальные сети обмена информацией, работающие «поверх Интернет»(VPN), расширение Интернет протокола HTTP с поддержкой шифрования HTTPS и SSL – криптографический протокол передачи информации, широко использующийся в системах IP-телефонии и интернет-приложениях.
Программные СКЗИ в основном используются в сети Интернет, на домашних компьютерах и в других сферах, где требования к функциональности и стойкости системы не очень высоки. Или как в случае с Интернетом, когда приходится одновременно создавать множество разнообразных защищенных соединений.

Программно-аппаратная криптозащита

Сочетает в себе лучшие качества аппаратных и программных систем СКЗИ. Это самый надежный и функциональный способ создания защищенных систем и сетей передачи данных. Поддерживаются все варианты идентификации пользователей, как аппаратные (USB-накопитель или смарт-карта), так и «традиционные» - логин и пароль. Программно-аппаратные СКЗИ поддерживают все современные алгоритмы шифрования, обладают большим набором функций по созданию защищенного документооборота на основе ЭЦП, всеми требуемыми государственными сертификатами. Установка СКЗИ производится квалифицированным персоналом разработчика.

Post Views: 295

Основными задачами защиты информации при ее хранении, обработке и передаче по каналам связи и на различных носителях, решаемыми с помощью СКЗИ, являются: 1.

Обеспечение секретности (конфиденциальности) информации. 2.

Обеспечение целостности информации. 3.

Подтверждение подлинности информации (документов). Для решения этих задач необходима реализация следующих

процессов: 1.

Реализация собственно функций защиты информации, включая:

шифрование/расшифрование; создание/проверка ЭЦП; создание/проверка имитовставки. 2.

Контроль состояния и управление функционированием средств КЗИ (в системе):

контроль состояния: обнаружение и регистрация случаев нарушения работоспособности средств КЗИ, попыток НСД, случаев компрометации ключей;

управление функционированием: принятие мер в случае перечисленных отклонений от нормального функционирования средств КЗИ. 3.

Проведение обслуживания средств КЗИ: осуществление ключевого управления;

выполнение процедур, связанных с подключением новых абонентов сети и/или исключением выбывших абонентов; устранение выявленных недостатков СКЗИ; ввод в действие новых версий программного обеспечения СКЗИ;

модернизация и замена технических средств СКЗИ на более совершенные и/или замена средств, ресурс которых выработан.

Ключевое управление является одной из важнейших функций криптографической защиты информации и заключается в реализации следующих основных функций:

генерация ключей: определяет механизм выработки ключей или пар ключей с гарантией их криптографических качеств;

распределение ключей: определяет механизм, по которому ключи надежно и безопасно доставляются абонентам;

сохранение ключей: определяет механизм, по которому ключи надежно и безопасно сохраняются для дальнейшего их использования;

восстановление ключей: определяет механизм восстановления одного из ключей (замена на новый ключ);

уничтожение ключей: определяет механизм, по которому производится надежное уничтожение вышедших из употребления ключей;

ключевой архив: механизм, по которому ключи могут надежно сохраняться для их дальнейшего нотаризованного восстановления в конфликтных ситуациях.

В целом для реализации перечисленных функций криптографической защиты информации необходимо создание системы криптографической защиты информации, объединяющей собственно средства КЗИ, обслуживающий персонал, помещения, оргтехнику, различную документацию (техническую, нормативно-распорядительную) и т.д.

Как уже отмечалось, для получения гарантий защиты информации необходимо применение сертифицированных средств КЗИ.

В настоящее время наиболее массовым является вопрос защиты конфиденциальной информации. Для решения этого вопроса под эгидой ФАПСИ разработан функционально полный комплекс средств криптографической защиты конфиденциальной информации, который позволяет решить перечисленные задачи по защите информации для самых разнообразных приложений и условий применения.

В основу этого комплекса положены криптографические ядра "Верба" (система несимметричных ключей) и "Верба-О" (система симметричных ключей). Эти криптоядра обеспечивают процедуры шифрования данных в соответствии с требованиями ГОСТ 28147-89 "Системы обработки информации. Защита криптографическая" и цифровой подписи в соответствии с требованиями ГОСТ Р34.10-94 "Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма".

Средства, входящие в комплекс СКЗИ, позволяют защищать электронные документы и информационные потоки с использованием сертифицированных механизмов шифрования и электронной подписи практически во всех современных информационных технологиях, в том числе позволяют осуществлять: использование СКЗИ в автономном режиме;

защищенный информационный обмен в режиме off-line; защищенный информационный обмен в режиме on-line; защищенный гетерогенный, т.е. смешанный, информационный обмен.

Для решения системных вопросов применения СКЗИ под руководством Д. А. Старовойтова разработана технология комплексной криптографической защиты информации "Витязь", которая предусматривает криптографическую защиту данных сразу во всех частях системы: не только в каналах связи и узлах системы, но и непосредственно на рабочих местах пользователей в процессе создания документа, когда защищается и сам документ.

Кроме того, в рамках общей технологии "Витязь" предусмотрена упрощенная, легко доступная пользователям технология встраивания лицензированных СКЗИ в различные прикладные системы, что делает весьма широким круг использования этих СКЗИ.

Ниже следует описание средств и способов защиты для каждого из перечисленных режимов.

Использование СКЗИ в автономном режиме.

При автономной работе с СКЗИ могут быть реализованы следующие виды криптографической защиты информации: создание защищенного документа; защита файлов;

создание защищенной файловой системы; создание защищенного логического диска. По желанию пользователя могут быть реализованы следующие виды криптографической защиты документов (файлов):

шифрование документа (файла), что делает недоступным его содержание как при хранении документа (файла), так и при его передаче по каналам связи либо нарочным;

выработка имитовставки, что обеспечивает контроль целостности документа (файла);

формирование ЭЦП, что обеспечивает контроль целостности документа (файла) и аутентификацию лица, подписавшего документ (файл).

В результате защищаемый документ (файл) превращается в зашифрованный файл, содержащий, при необходимости, ЭЦП. ЭЦП, в зависимости от организации процесса обработки информации, может быть представлена и отдельным от подписываемого документа файлом. Далее этот файл может быть выведен на дискету или иной носитель, для доставки нарочным, либо отправлен по любой доступной электронной почте, например по Интернет.

Соответственно по получению зашифрованного файла по электронной почте либо на том или ином носителе выполненные действия по криптографической защите производятся в обратном порядке (расшифрование, проверка имитовставки, проверка ЭЦП).

Для осуществления автономной работы с СКЗИ могут быть использованы следующие сертифицированные средства:

текстовый редактор "Лексикон-Верба", реализованный на основе СКЗИ "Верба-О" и СКЗИ "Верба";

программный комплекс СКЗИ "Автономное рабочее место", реализованный на основе СКЗИ "Верба" и "Верба-О" для ОС Windows 95/98/NT;

криптографический дисковый драйвер PTS "DiskGuard".

Защищенный текстовый процессор "Лексикон-Верба".

Система "Лексикон-Верба" - это полнофункциональный текстовый редактор с поддержкой шифрования документов и электронной цифровой подписи. Для защиты документов в нем используются криптографические системы "Верба" и "Верба-О". Уникальность этого продукта состоит в том, что функции шифрования и подписи текста просто включены в состав функций современного текстового редактора. Шифрование и подпись документа в этом случае из специальных процессов превращаются просто в стандартные действия при работе с документом.

При этом система "Лексикон-Верба" выглядит как обычный текстовый редактор. Возможности форматирования текста включают полную настройку шрифтов и параграфов документа; таблицы и списки; колонтитулы, сноски, врезки; использование стилей и многие другие функции текстового редактора, отвечающего современным требованиям. "Лексикон-Верба" позволяет создавать и редактировать документы в форматах Лексикон, RTF, MS Word 6/95/97, MS Write.

Автономное рабочее место.

СКЗИ "Автономное рабочее место" реализовано на основе СКЗИ "Верба" и "Верба-О" для ОС Windows 95/98/NT и позволяет пользователю в диалоговом режиме выполнять следующие функции:

шифрование /расшифрование файлов на ключах; шифрование/расшифрование файлов на пароле; проставление/снятие/проверка электронно-цифровых подписей (ЭЦП) под файлами;

проверку шифрованных файлов;

проставление ЭЦП + шифрование (за одно действие) файлов; расшифрование + снятие ЭЦП (за одно действие) под файлами;

вычисление хэш-файла.

СКЗИ "Автономное рабочее место" целесообразно применять для повседневной работы сотрудников, которым необходимо обеспечить:

передачу конфиденциальной информации в электронном виде нарочным или курьером;

отправку конфиденциальной информации по сети общего пользования, включая Интернет;

защиту от несанкционированного доступа к конфиденциальной информации на персональных компьютерах сотрудников.

Понравилась статья? Поделиться с друзьями: