Что такое intel core 2 duo. Процессоры

Построено большинство микропроцессоров Intel , исключая процессоры с архитектурой NetBurst . Введя новый бренд, от названий Pentium и Celeron Intel не отказалась, в 2007 году переведя их также на микроархитектуру Core, и на данный момент доступны процессоры Pentium Dual-Core (не путать с Pentium D) и Core Celeron (400-я серия). Но теперь воссоединились мобильные и настольные серии продуктов (разделившиеся на Pentium M и Pentium 4 в 2003 году).

Первые процессоры Core 2 официально представлены 27 июля 2006 года . Также как и их предшедственники, процессоры Intel Core , они делятся на модели Solo (одноядерные), Duo (двухъядерные) , Quad (четырёхъядерные) и Extreme (двух- или четырёхъядерные с повышенной частотой и разблокированным множителем). Процессоры получили следующие кодовые названия - «Conroe» (двухъядерные процессоры для настольного сегмента), «Merom» (для портативных ПК), «Kentsfield» (четырёхъядерный Conroe) и «Penryn» (Merom, выполненный по 45 нанометровому техпроцессу). Хотя процессоры «Woodcrest» также основаны на архитектуре Core, они выпускаются под маркой Xeon. . С декабря 2006 года все процессоры Core 2 Duo производятся на 300-миллиметровых листах на заводе Fab 12 в Аризоне , США и на заводе Fab 24-2 в County Kildare, Ирландия .

В отличие от процессоров архитектуры NetBurst (Pentium 4 и Pentium D), в архитектуре Core 2 ставка делается не на повышение тактовой частоты , а на улучшение других параметров процессоров, таких как кэш , эффективность и количество ядер. Рассеиваемая мощность этих процессоров значительно ниже, чем у настольной линейки Pentium . С параметром TDP , равным 65 Вт, процессор Core 2 имеет наименьшую рассеиваемую мощность из всех доступных в продаже настольных чипов, в том числе на ядрах Prescott (в системе кодовых имён Intel) с TDP, равным 130 Вт, и на ядрах San Diego’s (в системе кодовых имён AMD) с TDP, равным 89 Вт.

Особенностями процессоров Intel Core 2 являются EM64T (поддержка архитектуры EM64T), технология поддержки виртуальных x86 машин Vanderpool (), NX-бит и набор инструкций SSSE3 . Кроме того, впервые реализованы следующие технологии: LaGrande Technology, усовершенствованная технология, SpeedStep (EIST) и Active Management Technology (iAMT2).

Процессорные ядра

Conroe

Intel Core 2 Duo E6600 «Conroe»

Allendale

Intel Core 2 Duo E6300 «Allendale»

Allendale - это кодовое имя для процессоров Conroe с урезанным до 2 Мб L2-кэшем и с 800 МГц FSB. Есть некоторые предположения считать новые процессоры E6300 и E6400 относящимися к семейству Allendale, однако, Intel утверждает, что эти процессоры продолжают называться «Conroe».

Подтверждение этого факта можно обнаружить в различных частотах FSB серий E6000 (Conroe) и E4000 (Allendale) (4х266 МГц у E6000 и 4х200 МГц у E4000). Также семейство E4000 лишилось технологии поддержки аппаратной виртуализация Intel VT .

Производимые сейчас Core 2 Duo E4300, выпущенные 21 января 2007 года , несомненно основываются на ядре Allendale. Из-за уменьшения кэша второго уровня до 2 Мб появилась возможность производить больше процессоров на одной подложке. На момент выпуска процессоры E4300 продавались по цене $163 USD за штуку, в партиях от 1000 штук. После выхода 22 апреля 2007 года процессора E4400 ($133 USD за штуку) цена на младшую модель упала до $113 USD .

Процессоры Allendale с ещё вдвое уменьшенным кэшем L2 вышли в середине мая под маркой Pentium Dual-Core (часто называется Pentium E).

Merom

Merom - первая мобильная версия Core 2, выпущенная 27 июля 2006 года (хотя, без привлечения всеобщего внимания Merom начал поступать к производителям ПК ещё в середине июля вместе с Conroe ).

Merom - премьер-линейка мобильных процессоров Intel с преимущественно теми же функциональными возможностями как у Conroe, но с большим вниманием к низкому энергопотреблению, чтобы достичь более длительной работы ноутбука на одном заряде аккумулятора. Intel заявил, что Merom обеспечит на 20 % бо́льшую производительность при том же энергопотреблении, как у основанных на Yonah процессорах Core Duo . Merom - первый мобильный процессор Intel, расширенный до 64-битных инструкций (EM64T).

Conroe-L

Intel предлагает дешевую одноядерную версию Conroe, с кодовым названием «Conroe-L», начиная со второго квартала 2007, согласно статье на DailyTech . Новые процессоры Conroe-L не будут придерживаться терминологии Core. Вместо этого Intel планирует «оживить» бренды Pentium и Celeron для продуктов, основанных на Conroe-L .

Penryn

Новая микроархитектура, являющаяся модернизированной архитектурой Intel Core , кодовое имя Penryn, дебютировала, будучи первой архитектурой производимой по 45 нанометровому технологическому процессу изготовления, использующий металлические затворы и диэлектрики High-k, который также будет использован в микроархитектуре Nehalem. На основе новой микроархитектуры появятся такие дизайны ядер как Wolfdale и Yorkfield. Сообщения о выходе Penryn появились в 2007 году .

Wolfdale

Core 2 Duo E8400 на ядре Wolfdale

Wolfdale - это преемник двухъядерного процессора Conroe, созданный по 45 нанометровому процессу и основанный на микроархитектуре Penryn . Процессоры Intel Core 2 Duo серий Е7ххх и Е8ххх основаны именно на этом дизайне ядер. Процессоры Pentium Dual-Core серий Е5ххх и Е6ххх построены на дизайне ядер Wolfdale-2М и имеют 2Мб L2 кеша.

Yorkfield

Yorkfield - это преемник четырёхъядерного Kentsfield. Создан по 45 нанометровому процессу и так же как и Kentsfield, представляет по сути два размещенных в одном сокете корпуса Wolfdale(45 нанометровый потомок Conroe). Yorkfield располагает 6 или 12 МБ L2 разделённой кэш-памяти , по 3 или 6 МБ на каждую пару ядер соответственно. Скорости шины (подключение к северному мосту) до 1333 МГц или более (1600 Мгц в некоторых редакциях Extreme Edition), как и для большинства процессоров скорость ограничена полосой пропускания шины на материнской плате . Процессоры Yorkfield выпускаются под именами: Intel Core 2 Quad (Q9300, Q9450, Q9550, Q9650) и Intel Core 2 Extreme (QX9650, QX9770)

Nehalem

Основная статья : Intel Nehalem

Новая процессорная микроархитектура созданная на основе микроархитектуры Intel Core , но имеющая множество отличий от своего предшественника, такие как интерфейс QuickPath Interconnect (QPI) или Direct Media Interface (DMI) в бюджетных решениях, первый позволяет повысить пропускную способность до 25Гб/сек против 12,5Гб/сек у Intel Core, поддержка модернизированной технологии Hyper-Threading , носящей название Simulation Multi-Threading (SMT), позволяющая задействовать два потока на одно ядро, интегрированный контроллер оперативной памяти стандарта DDR3 SDRAM или даже полностью интегрированный северный мост набора системной логики в более поздних решениях, поддержка технологии Turbo Boost , позволяющая повысить тактовую частоту на пять пунктов множителя одного, наиболее загруженного ядра и т. д. Первые процессоры основанные на этой микроархитектуре, имеющие дизайн ядер Bloomfield вышли в открытую продажу 17 ноября 2008 года.

Bloomfield

Первый дизайн ядер на основе микроархитектуры нового поколения Nehalem . Так как он является флагманским, в нём осуществлены все нововведения новой микроархитектуры. Дизайн Bloomfield обладает четырёмя физическими ядрами и находится на одной кремниевой подложке изготовленной с соблюдением норм 45-нм . Он уступает дизайну Yorkfield по количеству транзисторов, 731 млн против 820 млн, но несмотря на это у него больше площадь, 263 кв. мм против 214 кв. мм . Поддержка технологии Simulation Multi-Threading обеспечивает до 8 потоков одновременно. Так же особенностью дизайна можно назвать технологию Turbo Boost. Системная шина QuickPath Interconnect использующаяся для связи с северным мостом имеет два стандарта 4.8ГТ/с и 6.4ГТ/с и пропускную способность 19 200Мбайт/с и 25 600Мбайт/с соответственно. В нём используется впервые, за всю историю процессоростроения, поддержка трехканальной оперативной памяти стандарта DDR3 SDRAM . Интеграция контроллера памяти - переходное решение от традиционно отдельного северного моста до его полной интеграции начиная с решения Lynnfield. Для него требуется разъем LGA1366 и набор системной логики Intel X58. Процессоры под торговой маркой Intel Core i7 вышли в продажу в конце 2008 года.

Lynnfield

Более экономичная и упрощенная версия дизайна Bloomfield, в которой удалены такие характеристики, как трехканальный контроллер оперативной памяти, системная шина QuickPath Interconnect и поддержка Simulation Multi-Threading в бюджетных моделях. Вместо этого в процессор интегрирован двухканальный контроллер памяти с поддержкой DDR3 1333МГц и системная шина Direct Media Interface , однако её пропускная способность остается в пределах 2 ГБ/с, что очень мало по сравнению с 25 ГБ/с, которые обеспечивает шина QPI в случае использования Bloomfield. Но несмотря на это, процессор не испытывает проблем с быстродействием, за счет интегрированных контроллеров PCI Express 2.0 и оперативной памяти. Этот дизайн не имеет связи с северным мостом, так как в наборе системной логики P55 Express фактически отсутствует северный мост. Ведь северный мост представляет собой сочетание контроллеров оперативной памяти, PCI Express 2.0 и интерфейса с процессором, но все это находится непосредственно в самом дизайне ядер, а скорости 2 ГБ/с хватает для полноценной связи с южным мостом. Благодаря интеграции северного моста в дизайн ядер уровень производительности повышается, и старшие модели по производительности близки к младшим моделям Bloomfield. Благодаря некоторым доработкам техпроцесса уровень энергопотребления не будет превышать отметку 95 Вт. Этот дизайн также обладает четырёмя ядрами на одной подложке, 8Мб общего кеша третьего уровня и поддержкой SMT в дорогих моделях. Для него требуется разъем LGA1156. Первые продукты на основе этого дизайна - Intel Core i5 750 с частотой 2667МГц, Intel Core i7 860 и 870 с частотами 2800МГц и 2933МГц соответственно, вышли в открытую продажу 8 сентября 2009 года.

Будущие процессоры

Westmere & Sandy Bridge

Решения на основе микроархитектуры Westmere производятся с соблюдением норм 32-нм техпроцесса. Это должно снизить стоимость изготовления процессоров, а также снизить потребляемую мощность. Осуществлена доработка решений, впервые примененных в микроархитектуре Nehalem . Благодаря более тонкому техпроцессу площадь кристаллов будет меньше, что позволит увеличить количество ядер.

Первый представитель новой микроархитектуры - Clarkdale, который обладает двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу, что позволит избавится от интегрированной графики в системной логике. Процессоры на основе дизайна Clarkdale созданы в исполнении LGA1156, но для реализации интегрированной графики требуется специальные наборы системной логики, в них входят Intel H55, Intel H57 и Intel Q57. Это решение заменит собой процессоры на основе Wolfdale (Intel Core 2 Duo). Продукты на основе дизайна ядер Clarkdale поступили в открытую продажу 7 января 2010 года.

Потом в серийное производство вошел флагманский дизайн ядер данной архитектуры - Gulftown, он обладает шестью ядрами, двенадцатью потоками, 12Мб общего кеша третьего уровня, системной шиной QuickPath Interconnect, но несмотря на это, его энергопотребление не превышает 130Вт . Он требует сокет LGA1366 и набор системной логики Intel X58 Express. Фактически этот дизайн представляет собой полтора чипа с дизайном Bloomfield (Intel Core i7) на одной подложке, произведенной с соблюдением норм 32-нм техпроцесса. Этот дизайн ядер является первым, который перешагнул за психологическую отметку - один миллиард транзисторов. Он обладает 1,17 млрд транзисторов, однако за счет 32-нм техпроцесса его площадь осталась в разумных пределах - 245 кв. мм . На основе этого дизайна вышел единственный процессор под названием Intel Core i7 980X Extreme Edition с частотой 3333МГц. Однако в третьем квартале текущего года планируется выпустить процессор Intel Core i7 970 с частотой 3200МГц, который будет обладать четыремя ядрами (два ядра будут заблокированы). Процессоры на основе дизайна ядер Gulftown поступили в открытую продажу 16 марта 2010 года.

Микроархитектура Sandy Bridge основана на 32-нм техпроцессе принесет поддержку новых SIMD инструкций для работы с векторными вычислениями Advanced Vector Extensions (AVX) , которые сменят SSE расширения. Новый набор, оставаясь обратно совместимым с SSE, увеличит разрядность рeгистров в два раза - до 256 бит, а также даст в распоряжение программистам дополнительные трёх- и четырёхоперандные команды. При этом Intel обещает, что использование AVX будет способно поднять скорость работы некоторых алгоритмов на величину, достигающую 90 %. Так же будут поддерживаться технологии Advanced Encryption Standard (AES) и Virtualization Machine Extensions (VMX) .

Первый дизайн ядер на основе этой архитектуры (название не известно) будет представлять сочетание CPU с частотой от 3,0 ГГц до 3,8 ГГц, обладающего четырёмя ядрами и высокопроизводительного GPGPU с частотой от 1,0 ГГц до 1,4 ГГц, также в чип будет интегрирован северный мост набора системной логики (контроллер PCI Express 2.0 и двухканальный контроллер памяти стандарта DDR3 SDRAM с частотой до 1600 МГц). Дизайн будет иметь по 256 КБ кеша второго уровня и 8 МБ объединенного кеша третьего уровня. Все это будет находиться на одной кремниевой подложке, производимой по 32-нм техпроцессу площадью 225 мм². Энергопотребление данного дизайна не должно выходить за пределы 85 Вт. По планам корпорации Intel начало производства намечено на начало 2011 года. В 2011 году корпорация Intel планирует выпустить двухъядерные модели начального уровня.

Larrabee

Новое решение от Intel, которое будет содержать в себе центральный (CPU) и графический (GPGPU) процессоры на одной кремниевой пластине. Фактически, в отличие от большинства продуктов Intel, у Larrabee нет специального назначения. Он будет фигурировать на рынке процессоров, на рынке GPGPU и даже на рынке дискретных графических акселераторов (это вызвано тем, что Intel планирует снова занять устойчивою позицию на рынке видеокарт). Процессор Intel Larrabee будет обладать тридцатью двумя х86 совместимыми ядрами, что приведет к огромному увеличению площади кристалла. Ядра будут действовать по прогрессивной схеме Multiple Instructions Multiple Data , хотя они были созданы на основе устаревшей архитектуры Intel P5, которая применялась в процессорах Intel Pentium . Intel Larrabee по производительности на уровне NVIDIA Fermi (GF100) , у которого 512 унифицированных суперскалярных процессоров. Процессор Larrabee будет производиться с соблюдением норм 32-нм технологического процесса изготовления, но несмотря на это его площадь будет около 600 мм², а энергопотребление - около 300 Вт из-за большого количества блоков, наличие которых требует архитектура х86. Выход продукта намечен на середину 2010 года.

Системные требования

Conroe, Conroe XE и Allendale

Conroe, Conroe XE и Allendale используют сокет LGA775 ; однако не каждая материнская плата совместима с этими процессорами. Поддерживаемые чипсеты - это Intel: P31, P35, P45, 945P/PL/G, 965, 955X, 975X, P/G/Q965, Q963, 946GZ/PL (обратите внимание, что 865PE поддерживает 800 MHz FSB QDR, тогда как процессор использует 1066 MHz FSB QDR); ATI Radeon Xpress 200, RD600 и RS600; NVidia nForce 4 SLI Intel Edition и nForce 570/590 Intel Edition; VIA PT880/PT880 Ultra, PT890, PM880 и PM890.

Даже, если материнская плата основана на требуемом чипсете, она может не поддерживать Conroe. Это происходит, потому что любые процессоры, основанные на Conroe, требуют более новый модуль регуляции напряжения (VRM), VRM 11, так как по сравнению с ЦПУ предыдущего поколения (Pentium 4/D) Conroe потребляет значительно меньше энергии. Если плата имеет и поддерживаемый чипсет, и VRM 11, необходима последняя версия BIOS для распознавания Conroe.

ВведениеВыход новых процессоров Intel с микроархитектурой Core оказался воистину революционным событием. Произошло это в первую очередь благодаря тому, что процессоры с данной микроархитектурой оказались чрезвычайно удачным предложением для рынка настольных систем. Особенно на фоне своих предшественников, CPU семейств Pentium 4 и Pentium D, в основе которых лежала микроархитектура NetBurst. Процессоры Core 2 Duo для настольных PC оказались не только значительно более быстрыми, но и гораздо более экономичными, чем Pentium 4 и Pentium D. Думается, не будет преувеличением, если сказать, что микроархитектура Core стала мощным прорывом, практически одномоментно сделавшим процессоры с микроархитектурой NetBurst малоконкурентными предложениями, по меньшей мере, в качестве CPU верхней ценовой категории. Кроме того, процессоры Intel Core 2 Duo стали отличным аргументом в соперничестве с компанией AMD, продукты семейств Athlon 64 и Athlon 64 X2 которой в течение нескольких последних лет предлагали лучшее соотношение потребительских качеств. Иными словами, микроархитектура Intel Core стала огромным событием для рынка настольных систем, а появление процессоров на её основе в корне поменяло сложившуюся ситуацию. Как показали многочисленные независимые тестирования новых процессоров Intel, Core 2 Duo, вне всяких сомнений, на данный момент можно смело назвать самыми быстрыми десктопными процессорами, которые, кроме того, имеют и выигрышное относительно других изделий соотношение производительности и энергопотребления.
Наш сайт уделил немало внимания процессорам с микроархитектурой Core, ориентированным на использование в составе настольных PC. Однако следует напомнить, что одним из преимуществ этой микроархитектуры, которым козырял Intel во время её презентации, является её универсальность. Согласно концепции разработчиков, процессоры, основанные фактически на одном и том же ядре с новой микроархитектурой, могут с незначительными изменениями быть использованы не только в настольных PC, но и в составе серверов или мобильных компьютеров.


Столь поразительная гибкость Core достигается за счет возможности варьирования соотношением максимальной тактовой частоты и энергопотребления в достаточно высоких пределах. Иными словами, работая на несколько более низких, чем настольные процессоры, частотах, CPU с микроархитектурой Core могут с успехом применяться и в экономичных мобильных системах. Именно такому применению новой микроархитектуры и будет посвящена настоящая статья.
Иными словами, в данном материале речь пойдёт о мобильных процессорах с микроархитектурой Core, известных также под кодовым именем Merom, и о мобильных компьютерах на их основе. Надо заметить, что исследование новой микроархитектуры Core под таким углом может скорее дать свежую пищу для размышлений, нежели очередное рассмотрение последних процессоров для настольных систем. Дело в том, что процессоры Merom пришли на смену CPU семейства Core Duo (кодовое имя Yonah), которые использовали отнюдь не микроархитектуру NetBurst. Поэтому, говорить о том, что исход поединка Core Duo против Core 2 Duo предрешён, было бы неправомерно. Процессоры Yonah имеют собственную мобильную микроархитектуру, они с определёнными допущениями могут быть охарактеризованы как двухъядерные CPU, построенные на базе Pentium M, микроархитектура которых позаимствована ещё у Pentium III. Процессоры же семейства Core (Conroe, Merom и Woodcrest) могут считаться дальнейшим развитием Yonah. То есть, мобильные процессоры Core Duo и Core 2 Duo – близкие родственники, и их сравнение, как с теоретической, так и с практической точек зрения, весьма интересно. Именно этим мы и займёмся.

От Yonah к Merom: что изменилось

Несмотря на то, что Intel пытается убедить неискушённых пользователей в том, что процессоры с микроархитектурой Core представляют собой дальнейшее развитие как мобильной микроархитектуры, так и микроархитектуры NetBurst, на самом деле это утверждение вызывает определённые сомнения. С нашей точки зрения, процессоры Conroe, Merom и Woodcrest не наследуют от NetBurst практически ничего, а микроархитектуру Core следует рассматривать как следующий шаг в эволюционной ветви Pentium III – Pentium M – Core Duo. Это следует хотя бы из того факта, что новые CPU, обладая коротким конвейером из 14 стадий, отнюдь не рассчитаны на покорение запредельных тактовых частот. На это же, кстати, указывает и название CPU, построенных на новой микроархитектуре: Core 2 Duo (оно единое как для десктопных и мобильных процессоров).
Подробный рассказ об особенностях микроархитектуры Core можно найти в соответствующей статье "Секрет высокой производительности Intel Core 2 Duo: микроархитектура Core ". Однако при рассмотрении особенностей процессоров Conroe, которые архитектурно не отличаются и от главных героев сегодняшнего материала, мобильных CPU Merom, мы не задавались целью сопоставления характеристик новых процессоров и Core Duo (Yonah). Сегодня же для этого выдался вполне подходящий случай.
Давайте посмотрим, какими же усовершенствованиями обладает Merom по сравнению со своим предшественником, Yonah. Однако в первую очередь следует обратить внимание на те общие детали, которые роднят эти два процессора между собой. Сразу бросается в глаза тот факт, что и Yonah и Merom построены по двухъядерной схеме с общей на два ядра разделяемой L2 кэш-памятью. В обоих процессорах используется одна и та же технология Intel Smart Cache, позволяющая обоим ядрам совместно использовать одни и те же области кэш-памяти, а также задействовать объём кэш-памяти в соответствие со своими потребностями. При этом общий размер L2 кеша в Yonah и Merom может различаться, однако сути это не меняет.
Кроме того, оба процессора обладают одинаковой кэш-памятью первого уровня, сходной не только по объёму, но и по организации. Её размер – по 32 Кбайта на код и на данные.
Схема исполнения инструкций у Yonah и Merom также похожа. Длина исполнительного конвейера у процессоров близка, однако конвейер более нового CPU длиннее на две стадии. Это уже обусловлено различиями между процессорами, которые, несмотря на имеющиеся сходства, всё-таки весьма существенны. Команда инженеров, работавшая над Merom, внесла в этот процессор массу усовершенствований, главными из которых следует считать поддержку этим продуктом 64-битных расширений архитектуры x86 Intel 64 и, так называемую, технологию Intel Wide Dynamic Execution, означающую увеличенное число декодеров и исполнительных блоков в процессорном ядре.


Дабы не перегружать изложение большим количеством технических характеристик, просто приведём таблицу, сопоставляющую основные микроархитектурные характеристики процессоров Yonah и Merom.


Следует отметить, что, помимо увеличения числа декодеров и исполнительных устройств, более новые процессоры Merom могут похвастать технологией macrofusion, благодаря которой в ряде случаев (при наличии в коде условных переходов) скорость декодирования инструкций может дополнительно вырасти на одну инструкцию за такт. Таким образом, процессоры с микроархитектурой Core совершенно определённо способны обрабатывать больше инструкций за такт, нежели CPU предыдущего поколения Yonah, на всех этапах.
Как видно из таблицы, к числу преимуществ Merom над Yonah может быть отнесена и более высокая скорость работы с SSE и FP инструкциями. Это достигается как за счёт увеличения числа соответствующих функциональных блоков, так и за счёт расширения разрядности обрабатываемых за такт SSE операндов.
К числу дополнительных плюсов Merom, которые не нашли отражения в таблице, относятся значительно усовершенствованная предварительная выборка, а также технология memory disambiguation, повышающая эффективность внеочередного исполнения команд.
Иными словами, несмотря на значительное родство между процессорами Yonah и Merom, последний является значительным шагом вперёд с точки зрения микроархитектуры. Поэтому, судя по теоретическим выкладкам, Merom должен быть значительно более производительным мобильным продуктом. Однако для процессоров, применяющихся в ноутбуках, важной является не только производительность, но и энергопотребление, прямо влияющее на продолжительность работы компьютера от батарей. Поэтому, прежде чем делать окончательные выводы о перспективности Merom в роли мобильного CPU, мы должны познакомиться не только с микроархитектурными, но и прочими его характеристиками.

Модельный ряд Core 2 Duo для мобильных компьютеров

Хотя мобильные процессоры Merom мало отличаются от их "настольных" аналогов Conroe, определённые различия между соответствующими линейками процессоров всё-таки имеются. Впрочем, это совершенно неудивительно, ведь в ноутбучных применениях чистая производительность системы никогда не является главным параметром. Мобильных пользователей волнует соотношение быстродействия и затраченной на это энергии. Именно поэтому, линейка процессоров Merom отличается по своему составу от семейства Conroe даже несмотря на то, что процессоры для портативных компьютеров продаются под тем же маркетинговым именем – Core 2 Duo.


Фактически, отличия между процессорами Core 2 Duo для настольных и мобильных систем состоят лишь в тактовых частотах и в тепловых и электрических характеристиках. Иными словами, уменьшив напряжение питания и предельные тактовые частоты, инженеры Intel добились того, что процессоры Conroe превратились в Merom и получили возможность использования в ноутбуках. Так, максимальное напряжение питания процессорного ядра у мобильных Core 2 Duo составляет 1.3 В, предельная тактовая частота на сегодняшний день ограничивается величиной в 2.33 ГГц. Иными словами, мобильные процессоры с микроархитектурой Core отстают от настольных аналогов по тактовой частоте на 25%. Но зато типичное тепловыделение мобильных CPU укладывается в тепловой пакет 34 Вт, в то время как типичное тепловыделение процессоров для настольных PC достигает 65 Вт (или даже 75 Вт для Extreme моделей).
Впрочем, в то время как мобильные Core 2 Duo кажутся чрезвычайно экономичными на фоне процессоров для настольных применений, своим предшественникам по энергопотреблению они всё-таки проигрывают. Двухъядерные процессоры Core Duo (Yonah) обладали более низким типичным тепловыделением, не превышающим 31 Вт. И это при том, что в тактовых частотах более старые Core Duo своим современным последователям не уступают.
Для того чтобы более явно проиллюстрировать вышесказанное, приведём полный список двухъядерных процессоров для ноутбуков, предлагаемых Intel на данный момент.


Как видим, основные формальные характеристики процессоров семейств Yonah и Merom мало отличаются друг от друга. Тоже самое можно сказать и про цены. Ноутбуки с одинаковыми характеристиками, основанные на Core Duo и Core 2 Duo, относятся к одной и той ж ценовой категории. Иными словами, Intel не делает принципиальной разницы между этими процессорами.

Тестовая платформа: ASUS F3Ja

Родство между Yonah и Merom проявляется и в том, что и те, и другие процессоры, входят в состав одной и той же мобильной платформы Centrino Duo с кодовым именем Napa. Эта платформа была анонсирована одновременно с процессорами Core Duo, а потому является уже достаточно зрелой. Её подробный обзор на нашем сайте можно найти тут . Мы же просто напомним, что в состав этой платформы, помимо двухъядерных мобильных CPU входят наборы логики Intel 945PM/GM и беспроводной сетевой адаптер Intel PRO/Wireless 3945ABG.


Следует отметить, что использование одной и той же платформы Centrino Duo для процессоров Yonah и Merom – явление временное. В апреле следующего года Intel готовит обновление своей мобильной платформы, которое известно на сегодня под кодовым именем Santa Rosa.


Хотя процессор в этой платформе останется тем же, изменится его физический разъём, а также поменяются чипсет и коммуникационный модуль. В состав Santa Rosa войдут процессоры Core 2 Duo с 800-мегагерцовой шиной в Socket P исполнении, чипсет Crestline (мобильный аналог семейства Intel 965 для настольных компьютеров) и коммуникационный модуль Kedron. Основными особенностями перспективной платформы станут на порядок лучшая встроенная графика, оптимизированная для работы с операционными системами семейства Microsoft Windows Vista, поддержка 802.11n WiFi со значительно увеличенной пропускной способностью, и Intel NAND Technology (Robson), подразумевающая встроенный в систему кэш из флэш-памяти, ускоряющий загрузку операционной системы и приложений.


Однако это - день завтрашний. Сегодня же Core Duo и Core 2 Duo могут использоваться в одних и тех же платформах, они совместимы и по выводам. Иными словами, современные ноутбуки, построенные на платформе Centrino Duo, могут безо всяких проблем укомплектовываться как процессорами Yonah, так и Merom.
Именно этим фактом мы и воспользовались при выборе оборудования для тестирования. В наших испытаниях приняло участие два совершенно одинаковых мобильных компьютера, различие между которыми состояло лишь в используемом процессоре. Этими компьютерами стали ноутбуки ASUS серии F3Ja, которые могут комплектоваться двухъядерными CPU различного типа.



Сам по себе мобильный компьютер ASUS F3Ja представляет собой мультимедийный двухшпиндельный ноутбук с 15.4-дюймовым широкоформатным экраном, имеющим стандартное разрешение 1280x800. Особенностью серии ASUS F3Ja является и то, что в этих ноутбуках вместе с мобильной платформой Napa используются внешние видеокарты с шиной PCI Express.



Ноутбуки, полученные нами на тестирование, были построены с применением процессоров Intel Core Duo T2400 и Intel Core 2 Duo T5600. Это – Yonah и Merom, работающие на одной и той же тактовой частоте 1.83 ГГц и оснащённые кэш-памтью одинакового объёма, 2 Мбайта.


Intel Core Duo T2400


Intel Core 2 Duo T5600


В основе тестовых систем лежал набор системной логики Intel 945PM Express (Calistoga) с южным мостом ICH7-M. Этот набор логики позволяет использовать в мобильных системах производительную двухканальную DDR2-667 SDRAM, которая и была установлена в наших ноутбуках в количестве 1 Гбайт. Надо заметить, что, к сожалению, используемая в настоящее время ASUS память от Nanya работает при такой частоте лишь с таймингами 5-5-5-15.


Ноутбуки серии ASUS F3J могут комплектоваться различными дискретными мобильными графическими картами, основанными на чипах как от ATI, так и от NVIDIA. Полученные нами тестовые компьютеры модификации F3Ja были укомплектованы графическими адаптерами ATI Mobility Radeon X1600 с 256 Мбайтами видеопамяти, динамически расширяемой до 512 Мбайт благодаря технологии HyperMemory.


Подробные характеристики ноутбуков, использованных нами в составе тестовых систем, можно почерпнуть на сайте производителя , мы же добавим информацию лишь о тех особенностях, которые оказывают прямое влияние на результаты тестов. Как следует из того, что в основе ноутбуков ASUS F3Ja лежит платформа Centrino Duo, эти мобильные компьютеры снабжаются беспроводным сетевым адаптером Intel PRO/Wireless 3945ABG с шиной PCI Express. Также, в тестовых мобильных компьютерах использовались Serial ATA жёсткие диски Fujitsu MHV2120BH ёмкостью 120 Гбайт со скоростью вращения шпинделя 5400RPM и 8-скорстные приводы DVD RW. Оба ноутбука были снабжены идентичными батареями ёмкостью 4800 mAh.

Результаты тестов производительности

SYSmark2004 SE

По традиции, производительность систем в приложениях "общего" характера мы определяли при помощи теста SYSMark 2004 SE. Этот бенчмарк моделирует работу пользователя в популярных приложениях, активно используя многозадачность. Перед тем, как перейти к результатам, хочется отметить, что SYSMark 2004 SE в первую очередь позиционируется как тестовое приложение для определения производительности настольных систем. Тем не менее, в состав данного пакета входят и приложения, которые, вообще говоря, характерны в качестве типичной нагрузки и для мобильных компьютеров, в особенности такого класса, который обеспечивает высокопроизводительная мобильная платформа Napa. Именно поэтому результаты бенчмарка мы приведём в "развёрнутом" виде, фокусируясь отдельно на каждом типе создаваемой им нагрузки.


В данном случае моделируется работа пользователя, который в пакете 3ds max 5.1 рендерит в bmp файл изображение, и, в это же время готовит web-страницы в Dreamweaver MX. После окончания этих операций выполняется создание 3D анимации в векторном графическом формате.
Несмотря на то, что в данном тесте системы нагружаются достаточно "тяжёлыми" задачами, требовательными к вычислительным ресурсам процессоров, разница между результатами, показанными системами на основе процессоров Merom и Yonah не так уж и велика. Смена процессора от Core Duo T2400 к Core 2 Duo T5600 позволяет получить в данном случае лишь 5-процентный прирост в производительности. Откровенно говоря, от 25-процентного (в теории) увеличения количества обрабатываемых за такт инструкций вместе с улучшенной предвыборкой данных можно было бы ожидать и большего. Но, что характерно, столь небольшую прибавку в скорости можно наблюдать не только в специально подобранных задачах.


В этом случае моделируется работа пользователя в Premiere 6.5, который создает видео из нескольких роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
В данном случае использование более нового процессора, благодаря его усовершенствованной микроархитектуре, позволяет получить более весомый выигрыш, достигающий 8%. Однако до теоретических цифр этот результат вновь не дотягивает. К сожалению, это наводит на мысли о достаточно невысокой эффективности проведённого в Merom увеличения числа декодеров и исполнительных устройств.


В данном бенчмарке моделируется работа профессионального вебмастера. Гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
При такой нагрузке процессор Core 2 Duo демонстрирует уже 13-процентное преимущество над своим предшественником, работающим на аналогичной тактовой частоте. Очевидно, что основная заслуга за этот результат лежит на значительно ускоренных FP и SSE блоках. Впрочем, даже несмотря на это впечатляющим преимущество новой микроархитектуры назвать нельзя.


В данном случае при измерении производительности используется вполне привычный для типичного пользователя ноутбука сценарий. Пользователь в Outlook 2002 получает письмо, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Выигрыш, который даёт в данном случае применение нового процессора Core 2 Duo, составляет 5%. Это совсем непохоже на то сногсшибательное преимущество, которые демонстрируют процессоры Core 2 Duo в настольных системах. Похоже, это можно считать свидетельством хороших характеристик мобильных процессоров Core Duo, которые в настольных компьютерах не использовались.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf формат с использованием Acrobat 5.0.5. Затем, при задействовании сформированного документа создается презентация в PowerPoint 2002.
Величина превосходства Core 2 Duo в быстродействии в данном случае составляет 7%, что ещё раз даёт нам возможность восхититься эффективностью представленной в 1999 году микроархитектуры Pentium III, которая, в конечном итоге, легла в основу современных процессоров с микроархитектурой Core.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма.
Усовершенствованные алгоритмы предварительной выборки данных, вместе с реализованными в Core 2 Duo техниками эффективного задействования шины памяти, наконец-то находят подходящее поле для демонстрации своих возможностей. В данном тестовом сценарии мобильная система, построенная на новом CPU, превосходит платформу прошлого поколения на 14%. Впрочем, если вспомнить про теоретические преимущества микроархитектуры процессоров Merom над Yohah, то и это отнюдь не кажется впечатляющим результатом.
В целом же, усреднённый уровень превосходства производительности, который можно получить с помощью мобильных процессоров семейства Core 2 Duo при решении типичных офисных задач и задач по созданию цифрового контента, составляет порядка 9%.

Синтетические тесты: PCMark05, 3DMark05

PCMark05 – тест, позволяющий оценить не только общую производительность системы, но и скорости отдельных подсистем.


Принципиально новых данных на приведённой диаграмме не видно. Ноутбук, построенный на процессоре Core 2 Duo T5600 опережает аналог с процессором Core Duo T2400 примерно на 7%.


При сравнении производительности в алгоритмах, максимально нагружающих именно вычислительные ресурсы CPU, величина превосходства новой микроархитектуры несколько увеличивается и достигает уже 10%.


Однако самые интересные результаты даёт тест памяти. Две совершенно аналогичные мобильные системы, в которых установлена одинаковая двухканальная память DDR2-667 SDRAM с таймингами 5-5-5-15, демонстрируют здесь кардинально различные показатели. Учитывая, что оба исследуемых процессора, и Core 2 Duo T5600, и Core Duo T2400, обладают одинаковой кэш-памятью второго уровня, а также функционируют на равной тактовой частоте, 25-процентное превосходство CPU с микроархитектурой Core остаётся отнести только на счёт реализованных в новинке технологий работы с памятью, объединённых под маркетинговым термином Intel Smart Memory Access. На деле, речь здесь в первую очередь идёт, очевидно, о чрезвычайно агрессивной предвыборке данных.
Что же касается производительности тестовых ноутбуков в игровых графических приложениях, то для её оценки мы в первую очередь воспользовались тестом 3DMark06. Надо заметить, что благодаря использованию в составе мобильных компьютеров ASUS F3Ja видеоадаптеров ATI Mobility Radeon X1600, они демонстрируют очень неплохое быстродействие в современных графических 3D приложениях. Иными словами, играть в современные игры на этих ноутбуках вполне возможно, о чём и свидетельствуют полученные нами результаты.


Уровень быстродействия графических подсистем тестовых ноутбуков в 3D режиме вполне приемлем. Система, оснащённая процессором Core 2 Duo, при этом обгоняет конкурирующую платформу примерно на 3%. Столь небольшое различие в результатах легко объяснимо тем, что данный тест ориентирован в первую очередь на оценку производительности видеокарт.
Впрочем, в состав бенчмарка 3DMark06 входит и тест, позволяющий оценить процессорную производительность при типовых вычислениях, выполняемых современными играми. То есть, при расчёте физики среды и логики противников.


Хотя в данном случае производительность графики отходит на второй план, разница в результатах вновь невелика. Core 2 Duo T5600 обгоняет Core Duo T2400 всего лишь на 3.5%.

3D игры

Итак, ноутбуки с видеоадаптером ATI Mobility Radeon X1600, подобные нашей тестовой платформе, ASUS F3Ja, вполне могут применяться для игр. Поэтому, не протестировать производительность в реальных игровых приложениях мы не могли.






Вне зависимости от используемого процессора, тестируемые мобильные компьютеры показали вполне приемлемый уровень FPS в относительно современных 3D играх. Но, следует отметить, что использование более новых процессоров семейства Core 2 Duo позволяет получить нескольку лучший результат. Тестовый компьютер, основанный на Core 2 Duo T5600, обогнал свой аналог на базе Core Duo T2400 на 12% в Quake 4 и на 4% - в Half Life 2. Эти результаты несколько разнородны, соответственно, различие в скорости платформ с различными процессорами в различных играх будет зависеть от параметров игрового движка. Однако не следует забывать, что процессоры с микроархитектурой Core в любом случае имеют несколько преимуществ, важных для игр: они более эффективно работают с шиной памяти, а также значительно более быстры в FP и SSE операциях.

Кодирование медиа-контента

Как мы уже убедились, современные ноутбуки не отстают по производительности и функциональности от настольных компьютеров среднего уровня. Поэтому, кодирование аудио и видео вполне может стать типичной задачей и для мобильных PC.
В первую очередь мы измерили скорость преобразования аудио файлов в популярный формат mp3.


Превосходство нового мобильного процессора в Apple iTunes 7 достаточно типично – оно составляет около 7%.


Кодирование видео с использованием популярного кодека Xvid выявляет гораздо большее различие в быстродействии Yonah и Merom. Благодаря тому, что Merom гораздо быстрее работает с SSE инструкциями, его превосходство над Yonah составляет почти 20%.


В целом похожая картина наблюдается и в Windows Media Encoder 9, который мы также применили для измерения быстродействия при кодировании видео. Здесь превосходство Core 2 Duo над аналогичным по тактовой частоте Core Duo достигает 15%.

Тестирование в приложениях

Для этого раздела мы отобрали несколько задач, использование которых на ноутбуках современного уровня весьма вероятно.


Архиватор WinRAR, несмотря на то, что производительность при сжатии информации сильно зависит от скорости работы подсистемы памяти, не выявляет существенного различия в скорости тестируемых процессоров. Вероятно, продвинутые алгоритмы предвыборки данных, реализованные в Merom, в данном случае оказываются неэффективны.


Adobe Photoshop, напротив, на Core 2 Duo работает ощутимо быстрее, обеспечивая преимущество системы с ним примерно на 12%.


Ещё более впечатляющее превосходство процессора с микроархитектурой Core выявляется в популярном приложении для нелинейного видеомонтажа, Adobe Premiere Pro. Здесь ноутбук с более новым CPU получает преимущество в 15%. Очевидно, что залогом успеха Core 2 Duo в двух последних случаях является быстрый блок SSE операций.






Core 2 Duo опережает своего предшественника и при тестировании в 3ds max. Если при работе с окнами проекции различие в скорости систем не столь бросается в глаза, финальный рендеринг силами Merom выполняется существенно быстрее.

Время работы от батарей

Продолжительность работы от аккумуляторной батареи – не менее важная, чем производительность, характеристика мобильного компьютера. Поэтому, измерению этой величины при наиболее типичных моделях нагрузки мы уделили отдельное внимание. Тестирование выполнялось с использованием тестового пакета MobileMark2005. Отметим, что все тесты по измерению времени автономной работы мы проводили при максимальной яркости экранов и при отключении переходов ноутбуков и их подсистем в состояния StandBy.
Первый сценарий, который мы задействовали для измерения продолжительности работы ноутбуков от батарей, основывался на моделировании обычной работы пользователя в типичных офисных приложениях. Также как и при измерении быстродействия, в данном случае на ноутбуке исполнялись следующие приложения: Microsoft Word 2002, Microsoft Excel 2002, Microsoft PowerPoint 2002, Microsoft Outlook 2002, Netscape Communicator 6.01, WinZip Computing WinZip 8.0, McAfee VirusScan 5.13, Adobe Photoshop 6.0.1 и Macromedia Flash 5. Используемый в данном случае тестовый скрипт изображал реальное использование ноутбука в профессиональной деятельности сотрудником автомобильной компании.


Сопоставление результатов тестирования производительности со временем работы от батарей даёт новую пищу для размышлений. Как оказывается, большая производительность Core 2 Duo имеет и обратную сторону. Ноутбук с этим процессором работает от батареи несколько меньше, чем его аналог с несколько более медленным Core Duo. Получается, что примерно 10-процентный прирост производительности, отмеченный нами в тестировании, стоит Merom примерно 8-процентного снижения времени автономной работы мобильного компьютера. Именно поэтому процессоры Core Duo пока ещё рано списывать со счетов: они прекрасно уживутся в тех случаях, когда автономность имеет большее значение, нежели производительность.
Второй сценарий, который мы использовали в наших испытаниях, моделировал использование мобильных компьютеров для проигрывания видео. Конкретнее, проведённый тест демонстрирует время работы ноутбуков от батарей при просмотре DVD-фильма с использованием плеера InterVideo WinDVD 6.0.


Качественно, соотношение результатов такое же, как и при эксплуатации ноутбуков в бизнес приложениях. Система с процессором Core Duo даст возможность своему хозяину обеспечить слегка более длительное время просмотра DVD видео.
Третий эксперимент заключался в измерении времени работы ноутбуков при работе от аккумуляторной батареи в случае простого чтения текста. В качестве программы, отображающей текст на экране, применялся Netscape Navigator 6.01.


Хотя при чтении текста с экрана батарея ноутбука расходуется медленнее, чем во всех других случаях, соотношение результатов качественно не изменяется. Мобильный компьютер на базе процессора Core Duo работает в данном сценарии на 6 минут больше.
Последний, четвёртый сценарий был ориентирован на измерение продолжительности автономной работы при использовании сети Интернет. Модель поведения пользователя в данном случае чрезвычайно проста: используя Microsoft Internet Explorer, выполняется обращение к различным веб-ресурсам. При этом подключение ноутбуков к сети осуществляется посредством встроенных беспроводных сетевых контроллеров, которые в нашем случае были совершенно одинаковы.


В этом сценарии время автономной работы ноутбуков на процессорах Core Duo и Core 2 Duo практически уравнивается. Однако система с более новым процессором Core 2 Duo работает от батареи всё-таки на 4 минуты меньше.
Суммируя полученные результаты, отметим, что заявленное типичное тепловыделение процессоров Core 2 Duo превышает эту же характеристику процессоров Core Duo отнюдь не просто так. На практике это означает, что стремление к более высокой производительности выливается в уменьшение времени автономной работы системы. Впрочем, максимальная разница во времени полной разрядки аккумуляторной работы, которую нам удалось зафиксировать, составила всего лишь 8%, что вряд ли можно назвать принципиальным преимуществом.

Выводы

Глядя на полученные в рамках данного исследования результаты, сделать однозначные выводы очень непросто. Дело в том, что в памяти ещё свежи впечатления от того головокружительного успеха, который способствовал появлению процессоров с микроархитектурой Core для рынка настольных компьютеров. К сожалению, в случае с мобильными процессорами Core 2 Duo ситуация выглядит далеко не так радужно. В то время как десктопные CPU семейства Core 2 Duo вывели производительность настольных систем на новый рубеж, более чем значительно увеличив их скорость, мобильные Core 2 Duo не обеспечивают такого же прироста быстродействия по сравнению с их мобильными предшественниками, процессорами Core Duo.
Как показали тесты, Core 2 Duo превосходят Core Duo в скорости во всех приложениях, однако средняя величина этого преимущества (при одинаковой тактовой частоте) оказывается в среднем менее 10%. А это – не более чем эволюционное изменение. Иными словами, несмотря на все значительные микроархитектурные усовершенствования, сделанные при переходе от Core Duo к Core 2 Duo, практический прирост производительности в мобильных системах оказался не столь значительным, как того хотелось бы. Некоторым утешением на этом фоне может стать ускорение работы с видео, в задачах такого типа увеличение производительности может достигать даже 20%, но видеообработку всё-таки тяжело назвать типичным применением для мобильных компьютеров. Таким образом, более важным результатом выхода мобильных процессоров Core 2 Duo следует считать не возросшее быстродействие, а появление поддержки ноутбучными платформами Intel 64-битных режимов, которая до сих пор не была реализована в предшествующих CPU этого производителя.
В дополнение к сказанному остаётся отметить, что достигнутое увеличение производительности мобильных процессоров Core 2 Duo проходит не бесследно, а влечёт за собой и рост энергопотребления. В конечном итоге это выражается в том, что мобильные компьютеры на базе Core 2 Duo работают от батареи несколько меньше, чем их аналоги с более старыми процессорами Core Duo. Впрочем, справедливости ради следует отметить, что прирост быстродействия всё-таки превосходит увеличение энергопотребления.
Суммируя вышесказанное, хочется ещё раз отметить, что появление мобильных процессоров Core 2 Duo пока явно не вызовет революционных изменений на рынке ноутбуков. Тем более что Intel в данный момент не обновляет свою мобильную платформу целиком, а лишь предлагает использовать новые CPU в старой платформе Napa. Поэтому, если вы уже владеете ноутбуком на базе платформы Napa с двухъядерным процессором Core Duo, заменять или совершенствовать его нет практически никакого смысла.
Настоящая же революция на рынке мобильных решений ожидается весной следующего года, когда в дополнение к расширенной линейке Core 2 Duo с увеличенными тактовыми частотами и возросшей частотой системной шины Intel предложит новый чипсет с высокопроизводительной графикой и технологией Robson, а также новый беспроводной сетевой компонент с увеличенной скоростью передачи данных.


Тестирование новых и старых моделей по новой версии тестовой методики

3D-визуализация

Как и ожидалось, прироста от увеличения количества ядер более двух нет, а вот тактовая частота и архитектура процессора имеют значение. Ну и кэш-память тоже, однако ее «нехватку» вполне можно скомпенсировать более высокой частотой - Е7400 догоняет Е8200, Е7600 же его обгоняет. В общем-то, ничего удивительного в том, что компания Intel отказалась от дорогого Е8200 как только тот же уровень производительности удалось получить от более дешевых процессоров с большей тактовой частотой, нет. А в остальном - видим, что даже для работы с профессиональными пакетами 3D-моделирования вполне достаточно недорогих процессоров. Разумеется, в том случае, когда данный конкретный компьютер применяется исключительно для ее креативной составляющей, а конечный просчет ведется на выделенном рендер-компьютере или даже целой рендер-ферме.

Рендеринг трёхмерных сцен

Поскольку вот тут уже разница бросается в глаза - никакой двухъядерный процессор не способен конкурировать с производительными трехъядерными и даже младшими четырехъядерными устройствами. Соотношение результатов таково, что для того, чтобы догнать хотя бы Q8200, двухъядерным процессорам пришлось бы освоить частоту в 4 ГГц, при текущем максимуме в 3,33 ГГц (замечание о том, что до таких частот процессор семейства Core 2 Duo можно разогнать и самостоятельно не принимается - Core 2 Quad также вполне пригодны для разгона, а у Phenom II X3 720 так и вовсе - даже множитель разблокирован на повышение:)). Как, в общем-то, и ожидалось: для этих задач никакое разумное количество ядер «лишним» не бывает: прирост в рендеринге наблюдается даже в тех случаях, когда мы «скармливаем» задаче восемь физических ядер, выполняющих 16 потоков одновременно (т.е., например, систему на двух Xeon). А в настольных системах до точки насыщения, тем более, далеко. Прирост не линейный, да и тактовая частота сказывается (поэтому, например, Q8200 и Х3 720 показали почти одинаковый результат), но общая картина очевидна.

Научные и инженерные расчёты

В этой группе приложений она тоже очевидна, вот только не в пользу многоядерных кристаллов: лучше уж иметь пару ядер, но работающих на более высокой тактовой частоте. Кроме того, хорошо заметно, что 2М кэш-памяти явно маловато, что сильно портит результаты Pentium или Core 2 Quad Q8000, не говоря уже об Athlon II, где этот объем поровну разделен между ядрами и не может применяться для обмена информацией между ними, а вот больше 3М - уже, похоже, и не нужно. Впрочем, опять же, различия между процессорами столь невелики, что делать выбор на основании этой группы приложений нерационально - тут, возможно, даже Celeron будет вполне к месту. Хотя, казалось бы, «серьезная» группа программ, а не какая-нибудь там «домашняя мультимудия».

Растровая графика

Здесь у нас в целом есть какой-никакой прирост от увеличения количества ядер, но нельзя сказать, что значительный. Результат? Pentium E6300 продемонстрировал такую же производительность, как Core 2 Quad Q8200, а Core 2 Duo E7600 сравнялся с Core 2 Quad Q9300. Да, разумеется, двухъядерные процессоры работают на более высокой тактовой частоте, нежели сравнимые с ними по итоговой производительности четырехъядерные, но разница не столь уж велика, чтобы считать последние более адекватными решениями для этих задач. Короче говоря, для работы с растровой графикой вполне достаточно даже средних моделей двухъядерных процессоров, а чуть ли не единственный фактор, который может помешать выбрать именно их, это господство среди решений максимальной производительности четырехъядерных кристаллов. Да, все это очень знакомо - в свое время именно таким способом и Intel, и AMD «выдавливали» с рынка одноядерные процессоры. Сейчас, впрочем, делается это в более мягкой форме - в частности старшие модели Core 2 Duo по частоте пока обгоняют своих «композитных» родственников, причем иногда сильно, что позволяет им «сохранять лицо», однако тенденция более чем заметна. Даже на привычных и давно освоенных платформах, не говоря уже о перспективных - в частности, для LGA1156 уже готовы три четырехъядерных процессора, а двухъядерные придется подождать до следующего года.

Сжатие данных

Больше двух ядер - не надо, много кэш-памяти - надо, поэтому однозначным победителем оказался Core 2 Duo E8200. А вот сравнение результатов Е7400 и Е7600 заставляет не совсем прилично высказаться о переходе на DDR3 для LGA775. Как мы уже убедились в прошлый раз даже переход с DDR2 1066 на DDR3 1333 приводит к снижению производительности в этой группе тестов, ну а для процессоров с FSB 1066 использование DDR3 вообще дает плачевный результат: такая частота памяти достижима и для DDR2, пропускная способность получается, соответственно, той же, зато задержки много меньше. Почему мы не видим такого фиаско у Pentium? E5300 имеет вообще FSB 800 и тестировался с DDR2 800. Так что Е6300 чисто объективно способен «переварить» более быструю память, но в данном случае, как говорится, весь пар ушел в свисток - на компенсацию вредительского эффекта от DDR3. В итоге получили баш на баш (имеющийся же прирост результатов наблюдается из-за большей тактовой частоты), ну и на том спасибо.

Компиляция (VC++)

Число ядер, их частота и в некоторой степени емкость кэш-памяти - вот слагаемые успеха, а когда присутствуют хотя бы два из этих пунктов одновременно, так и вообще хорошо: уже не в первый раз видим, как достаточно высокочастотный трехъядерный процессор AMD способен на равных конкурировать не только с Core 2 Duo (что ему по рангу положено), но и вторгается в ареал обитания младших четырехъядерных устройств обеих компаний. Двухъядерные же процессоры намного медленнее. Причем любые, но особенно Pentium:) При этом «гигантский» объем кэш-памяти позволяет Core 2 Duo Е8200 отыграть аж 400 МГц частоты, отделяющих его от старшего представителя линейки Е7000.

Java

Здесь результаты еще более «канонически правильные», поскольку трехъядерные процессоры не пытаются конкурировать с четырехъядерными. Двухъядерным, впрочем, от этого легче не становится. А если еще и учесть меньшую потребность виртуальной Java-машины к емкости кэш-памяти, так и вовсе все плачевно для старших их семейств.

Кодирование аудио

И еще один «удар на добивание», но совсем не последний. Тут более любопытно другое - как мы уже не раз видели, на этом подтесте процессоры AMD традиционно хуже в остальном аналогичных решений от Intel. Однако «секретный прием» в виде третьего ядра вполне позволяет им в среднем классе конкурировать практически на равных. Жалко, конечно, что не удалось добыть Core 2 Duo E8600, чтобы чуть сместить картину в сторону более-менее привычной:) Впрочем, очевидно, что лучшее, что мог бы сделать этот дорогостоящий процессор - немного обогнать Х3 720, но совсем не приблизиться к уровню аналогичного «Феному» по цене Core 2 Quad Q8200.

Но можно на сложившуюся ситуацию взглянуть и вообще совсем с другой стороны. Самым медленным из современных процессоров у нас оказался Athlon II X2 250. Самый худший результат у него при кодировании OGG Vorbis. Так вот - равен он «всего» 32, что означает, что часовой альбом этим процессором будет сжат… менее чем за две минуты. Т.е. с точки зрения абсолютных результатов сложно придумать ситуацию, в которой скорость аудикодирования будет иметь реальное значение. Это лет десять назад нужно было пол-часа копировать аудиодиск на винчестер в виде файлов, а потом на несколько часов оставлять компьютер, чтобы он сжал это в МР3. Сегодня самой медленной операцией практически всегда будет получение исходников, а сжимать их можно быстро. Например, параллельно с получением или закачивая итоговые файлы в переносной плеер.

Кодирование видео

А вот тут все несколько выходит за рамки бытовых предположений о том, что для видеокодирования необходимо иметь многоядерный процессор. Получилось так из-за того, что два из пяти кодеков (по крайней мере, используемые нами их версии) относительно прохладно относятся к количеству ядер более двух, один так и вовсе - готов довольствоваться одним ядром, да и из двух оставшихся «степень утилизации» третьего и четвертого ядра не одинаковая. Mainconcept при переходе с C2D E7600 на C2Q Q8200 работает быстрее всего процентов на 20 (т.е. удвоение ядер весьма заметно компенсируется разницей тактовых частот), зато вот x264 показывает, «как надо» - в тех же условиях прирост более чем полуторакратный! Были бы все такими - получили бы мы картину как в предыдущей группе, однако из-за влияния «груза лет» не все гладко. Впрочем, опять же, разница в одном из кодеков такова (еще в двух при сравнении тех же процессоров получаем почти равноценный «размен» ядер на частоту), что становится очевидным то, что даже «в общем зачете» лучшие из серийных двухъядерников могут не более чем приблизиться даже к младшим четырехъядерным процессорам, но не обогнать их. Причем в наибольшей степени этому мы обязаны как раз наиболее «тяжеловесным» задачам, которые имеет смысл ускорять всеми силами и средствами:)

Игровое 3D

До последнего времени считалось, что игры - как раз та область, где высокочастотные двухъядерные процессоры с большим объемом кэш-памяти и быстрой системной шиной (всем этим требованиям в наибольшей степени отвечает как раз семейство Е8000) способны с легкостью не только дать бой, но и победить с разгромным счетом младших «обрезанных» четырехъядерников. Так вот - это не совсем так. Да, «в среднем» (как и в случае видеокодирования) процессоры Core 2 Duo или Athlon II X2 выглядят неплохо, но как только мы обратимся к подробным результатам по отдельным играм, заряд оптимизма начинает таять. Просто потому, что частота кадров в играх, в отличие от, например, времени просчета трехмерной сцены в пакете моделирования куда хуже поддается обычному сравнению по правилам арифметики. Игры - приложения интерактивные, следовательно, всегда имеют определенную нижнюю грань комфорта, переступать которую нельзя. В то же время при кодировании или просчете часто меньшее значение - это просто меньшее значение. К примеру, если вы ночами кодируете фильмы, причем в небольшом количестве и от случая к случаю - нет разницы, выполнится работа за три часа или за пять: результат вы увидите только утром, причем «догрузить» компьютер работой будет невозможно, по причине отсутствия этой самой дополнительной работы. Не то в играх, где «пробивание» комфортной границы просто означает, что играть в данную игру с данными настройками на данном компьютере, по сути, невозможно. Так, например, с настройками, выбранными нами для тестирования не стоит пытаться играть в GTA IV на Pentium или Athlon II:) Средний FPS в районе 30 или меньше при соответствующем минимальном - совсем не то, что хотелось бы видеть. Аналогичная картина и в FarCry2, правда менее катастрофическая. Причем замена процессора на Core 2 Duo E7600 все равно не позволяет нам выйти в этих двух играх за границу в 35 FPS. Для сравнения: Core 2 Quad Q8200 - примерно 49 и 39 FPS, Phenom II X3 720 - 52 и 39 соответственно. Разве что результаты Core 2 Duo E8200 радуют глаз, особенно если учесть, что это младший (и уже снятый с производства) процессор линейки Е8000, а старшие будут еще быстрее, но не забываем, что эти устройства банально дороже. Так что что выбрать в пределах одинакового ограниченного бюджета для современных игр - как нам кажется, вопрос риторический. Для не самых современных тем более - тут обычно и Pentium хватит, а то и Celeron.

Итого

Выше мы намерено не комментировали результаты попавших в сегодняшнее тестирование «старичков» - с ними все и без того ясно:) Да, некогда Core 2 Duo E6600 был предметом вожделения многих пользователей, а ныне он способен конкурировать разве что с Pentium. Но, кстати способен, несмотря на то, что с момента его выпуска прошло уже три года:) И, очевидно, большого смысла менять его сегодня на один из современных двухъядерных процессоров нет никакого. Если уж так хочется увеличить производительность (т.е. ее реально не хватает) разумным будет не перестараться с экономией.

Тем более что при нынешних ценах, двухъядерные процессоры даже при покупке системы «с нуля» (т.е. когда компьютера вообще нет или есть, но слишком уж устаревший - например, на Pentium 4 или подобном процессоре) далеко не всегда будут оправданным выбором. Разумеется, очень часто «тянуться» за четырьмя ядрами не имеет смысла, но при примерно равной (или даже меньшей) цене это не самый худший вариант. По крайней мере, потом не будет «мучительно больно» при попытке запустить GTA IV или еще какой-нибудь новый продукт игроделов. Да, конечно, такие приложения обычно получаются совсем не потому, что программисты так уж хорошо используют многопоточность - зачастую являются они результатом плохой оптимизации, но, положа руку на сердце, какая разница? Как говорится, как бы ни болела - лишь бы померла. Вопрос «почему так медленно» интересен далеко не всем пользователям - большинство просто хочет решать свои задачи, не забивая голову поисками виноватых (тем более что, будучи найденными, последние все равно не вернут вам деньги за неудачную покупку:)).

Хотя все это верно, если говорить именно о покупке. С точки зрения сухой теории мы просто в очередной раз столкнулись с тем фактом, что оптимизация приложений под несколько вычислительных ядер до сих выполнена далеко не лучшим образом. Именно поэтому прирост производительности при увеличении количества ядер до трех-четырех далеко не всегда дает ощутимый эффект, а иногда и вовсе его не дает. Либо дает такой, какой может быть скомпенсирован простым увеличением тактовой частоты, что, очевидно, процессорам с меньшим количеством ядер дается легче. И с этой точки зрения процессоры линейки Core 2 Duo E8000 могли бы быть лучшим выбором для обычного домашнего компьютера. Могли бы… если бы совершенно объективно они не стоили слишком дорого:) 6М полноскоростной кэш-памяти это очень здорово с точки зрения производительности, но отвратительно с точки зрения себестоимости. Настолько, что два кристалла с 3М на каждом вполне могут оказаться дешевле. И, при меньшей тактовой частоте, все равно быстрее. Так что если раньше основная рекомендация по выбору звучала так: «Покупайте четырехъядерный процессор если знаете, зачем он вам нужен, покупайте двухъядерный во всех остальных случаях», то теперь в ней все поменялось местами:) «Покупайте двухъядерный процессор если точно уверены, что нужные вам программы обойдутся им, покупайте четырехъядерный во всех остальных случаях». Ну или можно ограничиться трехъядерным: как мы видим, Phenom II X3 720 в условиях ограничений сегодняшнего ПО выглядит очень неплохо - он не настолько урезан по тактовой частоте и емкости кэша, как Core 2 Quad Q8200, что позволяет ему временами даже в многопоточных приложениях обгонять последний.

Разумеется, все эти «муки выбора» верны лишь для одного (пусть и очень популярного) ценового сегмента: 130-200 долларов. Выше его все достаточно однозначно: вотчина средних и старших четырехъядерных процессоров. До последнего времени туда вторгались и Core 2 Duo E8500/E8600, однако очевидно, что рядом с Core i5 750, например, им там уже ловить абсолютно нечего. Так что, возможно, жить этому семейству осталось столь же недолго, как и базирующемуся на нем Core 2 Quad Q9x50. А ниже 130 долларов так и трехъядерных процессоров пока не наблюдается (если только что-нибудь из старых моделей, типа Phenom X3 на складе найдется) - весь бюджетный сектор безраздельно занят двухъядерными моделями с изредка встречающимися устаревшими одноядерными. Впрочем, там чаще всего и вопросы совсем другие решать приходится - не «Какой процессор будет быстрее?», а «Сколько еще можно попытаться безболезненно сэкономить?» Видно, что если это стремление ограничить хотя бы Pentium, результат получится весьма неплохим - сравнимым с тем, что получали пару-тройку лет назад покупатели процессоров среднего и даже верхнего (без фанатизма, типа экстремальных серий) ценового диапазона. А вот чего можно ожидать от обновленного Celeron мы проверим чуть позднее, благо пока в семействе процессоров под LGA775 осталось для нас и еще несколько «белых пятен».

ВведениеЕщё совсем недавно нам казалось, что в начале 2008 года основной "горячей" темой наших публикаций станет сравнение новых процессоров AMD Phenom с обновлёнными четырёхъядерными процессорами Intel Penryn, производимыми с использованием 45-нм технологического процесса. Однако этим ожиданиям оправдаться не суждено, причём вина в этом лежит и на AMD, и на Intel. Действительно, к настоящему времени компания AMD так и не смогла предложить серийные четырёхъядерные процессоры, работающие на достойных частотах. Предлагаемые же модели Phenom показывают провальные результаты даже в сравнении с четырёхъядерными CPU Intel предыдущего поколения, не говоря уже о более совершенных новых процессорах. Вполне логично, что в свете обнаружившегося отсутствия достойных конкурентов для вполне успешно продающихся процессоров Core 2 Quad на старых 65-нм ядрах, компания Intel утратила стимулы для скорейшего обновления своей линейки четырёхъядерных процессоров. Поэтому выход новых CPU в линейке Core 2 Quad, известных сегодня под кодовым именем Yorkfield, отложен на неопределённый срок: как минимум, до февраля или марта. И хотя Intel при этом прикрывается сообщением о найденной в перспективных процессорах проблеме, вызванной наводками в 1333-мегагерцовой фронтальной шине, возникающими при их использовании в гипотетических платах с четырёхслойным дизайном PCB, выглядит оно совершенно неубедительно. Мы же вынуждены констатировать печальный итог: сравнивать Phenom и Penryn стало совершенно бессмысленно, потому что первый – неконкурентоспособен, а второй – пока что иллюзорен и не намерен лишаться неопределённого статуса перспективного продукта.

Но, всё же, темы, достойные нашего внимания, можно найти и на сегодняшнем процессорном рынке. Несмотря на то, что компания Intel решила повременить с выпуском четырёхъядерных процессоров, основанных на 45-нм ядрах, линейка двухъядерных CPU Core2 Duo всё-таки будет обновлена. В ближайшие дни должны быть анонсированы три новых процессора, принадлежащие к этому модельному ряду и имеющие кодовое имя Wolfdale: Core 2 Duo E8500, E8400 и E8200. Эти процессоры базируются на переработанном ядре, производимом по 45-нм техпроцессу, и относятся к тому же семейству Penryn, к которому принадлежат и отложенные Yorkfield. Появление серийных Wolfdale обойти вниманием никак нельзя: эти процессоры обещают поднять производительность двухъядерных предложений Intel на новый уровень, ведь они имеют и более высокие таковые частоты, и больший кэш второго уровня, а также и прочие усовершенствования. При этом, что особенно приятно, их стоимость установлена на том же уровне, что и на старые Core 2 Duo.


Таким образом, на вторую половину января Intel запланировал массирование обновление собственных двухъядерных предложений в ценовом диапазоне от 160 до 260 долларов. Именно это событие и стало основной темой для нашей новой статьи, в которой мы познакомим вас с тем, чего же следует в реальности ожидать от столь многообещающих новинок, нацеленных на использование в настольных компьютерах среднего уровня.

Процессоры линейки Wolfdale: Core 2 Duo E8500, E8400 и E8200

Итак, Wolfdale – это кодовое имя двухъядерных процессоров в семействе Penryn. Как и отложенные четырёхъядерные Yorkfield, процессоры Wolfdale производятся по 45-нм технологическому процессу. Причём, в основе Yorkfield и Wolfdale используются совершенно одинаковые полупроводниковые кристаллы: Yorkfield, по сложившейся традиции, представляет собой склейку из двух двухъядерных кристаллов Wolfdale, выполненную в одном процессорном корпусе. Таким образом, Wolfdale можно рассматривать как базовый строительный материал для формирования всего семейства Penryn, чем он отдельно интересен.

Ядро процессоров Wolfdale имеет площадь 107 кв. мм и состоит из 410 миллионов транзисторов. Эти цифры недвусмысленно наводят на мысль о том, что в Wolfdale по сравнению с 65 нм предшественником Conroe, который содержал 291 миллион транзисторов, сделаны весьма существенные изменения. Собственно, видно это и по фотографии ядер Wolfdale и Conroe: компоновка функциональных блоков несколько изменилась.


Слева – Wolfdale, справа – Conroe (масштаб изображений не сохранён)


Таким образом, ядро Wolfdale – это не просто уменьшенное в связи с переходом на более совершенный техпроцесс ядро Conroe. В новых процессорах инженеры Intel сделали целый ряд усовершенствований (подробнее об особенностях процессоров семейства Penryn можно прочитать в нашем материале "").

Анонсируемая в эти дни линейка двухъядерных процессоров Wolfdale, базирующаяся на новых 45-нм ядрах, изначально будет включать три модели процессоров Core 2 Duo: E8500, E8400 и E8200 с тактовыми частотами 3,16, 3,0 и 2,66 ГГц соответственно. Кроме того, будет доступна и модель с номером E8190, аналогичная Core 2 Duo E8200, но при этом лишённая технологии виртуализации. Позднее к ним присоединится и ещё один, пятый, процессор Core 2 Duo E8300 с частотой 2,83 ГГц, но случится это не ранее второго квартала текущего года.

Полное представление о серийных Core 2 Duo с 45-нм ядрами можно получить из приведённой таблицы.


К указанной в таблице технической информации необходимо приобщить и не менее важную информацию об отпускных ценах производителя на новые CPU:

Core 2 Duo E8500 – 266 долл.
Core 2 Duo E8400 – 183 долл.
Core 2 Duo E8200 – 163 долл.
Core 2 Duo E8190 – 163 долл.

Приятно видеть, что Intel продолжает придерживаться одобряемой пользователями ценовой политики, когда новые процессоры продаются по той же самой стоимости, что и старые, эволюционно вытесняя их с рынка. На этот раз Core 2 Duo E8500 приходит на смену Core 2 Duo E6850, Core 2 Duo E8400 сменяет на своём посту Core 2 Duo E6770, а Core 2 Duo E6550 уступает место для Core 2 Duo E8200. Иными словами, начиная уже с ближайших дней, покупатели двухъядерных CPU получат возможность приобрести более совершенные и высокочастотные процессоры по старой цене.

Давайте взглянем на сами процессоры с кодовым именем Wolfdale.




Как видно по фотографии, новые процессоры с 45-нм ядрами имеют практически такой же внешний вид, что и их 65 нм предшественники.



Слева – Wolfdale, справа – Conroe


Тем не менее, расположение навесных элементов на брюшке двухъядерных CPU разных поколений отличается.

Диагностическая утилита CPU-Z уже хорошо знакома с новыми процессорами. Проблем с правильным определением Core 2 Duo E8500, E8400 и E8200 не возникает никаких.


Заметьте, наши тестовые образцы новых процессоров основываются на ядрах далеко не первой ревизии C0, и в серийные модели пойдёт именно она.

К имеющейся на скриншоте информации остаётся добавить лишь единственный комментарий. Процессоры Wolfdale получили поддержку дробных коэффициентов умножения, что даёт Intel возможность сделать сетку тактовых частот гуще. Именно это мы и видим на примере Core 2 Duo E8500 – данный процессор имеет множитель 9,5. Следует заметить, что для нормального функционирования такого CPU требуется поддержка дробных множителей со стороны BIOS материнской платы. Впрочем, в ближайшее время соответствующие обновления должны выпустить все ведущие производители материнских плат.

Как мы тестировали

Для изучения производительности новых процессоров Core 2 Duo E8500, E8400 и E8200 и их сравнения с предшествующими и конкурирующими моделями нами было собрано несколько систем, включающих следующий набор оборудования.

Платформа AMD:

Процессор: AMD Athlon 64 X2 6400+ (Socket AM2, 3,0 ГГц, 2x1024 кбайт L2, ядро Windsor).
Материнская плата: ASUS M2R32-MVP (Socket AM2, чипсет AMD 580X).
Память: ).
Графическая карта:
Дисковая подсистема:
Операционная система:

Платформа Intel:

Процессоры:

Intel Core 2 Duo E8500 (LGA775, 3,16 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E8400 (LGA775, 3,0 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E8200 (LGA775, 2,66 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E6850 (LGA775, 3,0 ГГц, 1333 МГц FSB, 4 Мбайта L2, ядро Conroe);
Intel Core 2 Duo E6750 (LGA775, 2,66 ГГц, 1333 МГц FSB, 4 Мбайта L2, ядро Conroe).


Материнская плата: ASUS P5E (LGA775, Intel X38, DDR2 SDRAM).
Память: 2 Гбайта DDR2-800 с таймингами 4-4-4-12-1T (Corsair Dominator TWIN2X2048-10000C5DF ).
Графическая карта: OCZ GeForce 8800GTX (PCI-E x16).
Дисковая подсистема: Western Digital WD1500AHFD (SATA150).
Операционная система: Microsoft Windows Vista x86.

Особо отметим, что использовавшаяся нами для тестирования процессоров Wolfdale материнская плата ASUS P5E c BIOS версии 0502 поддерживает их в полной мере, позволяя изменять множитель этих CPU с шагом 0,5.

Производительность

Общее быстродействие

Выбранный нами тест SYSmark 2007 использует для определения производительности типичные сценарии работы в наиболее распространённых реальных приложениях.















SYSMark 2007 в среднем выявляет примерно 4-процентное преимущество процессоров Wolfdale над Conroe, работающими на аналогичных тактовых частотах. Однако за счёт того, что Intel в обновлённой линейке CPU увеличил частоту своих процессоров, старшая модель Wolfdale опережает старшую модель Conroe на 7 %. Стоимость же этих процессоров разных поколений по официальному прайс-листу Intel одинакова.

Анализ промежуточных результатов SYSMark 2007 показывает, что наибольший прирост быстродействия новые процессоры обеспечивают в сценарии, в котором моделируется подготовка обучающего веб-сайта, содержащего разнообразный медиа-контент. Этот сценарий задействует следующие приложения: Adobe Illustrator CS2, Adobe Photoshop CS2, Macromedia Flash 8 и Microsoft PowerPoint 2003. Наименьшая разница в производительности между Core 2 Duo на 45-нм и 65-нм ядрах наблюдается при изготовлении и обработке видеороликов, в процессе чего задействуются Adobe After Effects 7, Adobe Illustrator CS2, Adobe Photoshop CS2, Microsoft Windows Media Encoder 9 и Sony Vegas 7.

3D игры





















Игроки должны воспринять появление новых процессоров серии Core 2 Duo E8000 с большим воодушевлением. Как известно, скорость работы игровых приложений хорошо реагирует на изменение размера кэш-памяти, что и отмечается в данном случае. В некоторых играх младшему из Wolfdale, Core 2 Duo E8200, удаётся даже опередить по скорости бывшую топовую двухъядерную модель E6850 на 65-нм ядре. Старший же двухъядерный процессор AMD, Athlon 64 X2 6400+, который и раньше-то смотрелся в играх не лучшим образом, теперь вообще оказывается в глубоком нокауте. Он значительно проигрывает по быстродействию даже младшему представителю линейки Wolfdale.

Кодирование медиаконтента












Положение дел вполне ожидаемо: превосходство семейства Core 2 Duo E8000 над предшественниками в лице Core 2 Duo E6000 находится примерно на том же уровне, что и в других тестах. Хотя в скором времени эта картина может измениться в корне: кодеки относятся к числу приложений, которые должны получить значительный выигрыш от оптимизации под набор инструкций SSE4, появившийся в линейке процессоров E8000. Так что пока какие-то окончательные выводы о работе Wolfdale в этой группе задач делать преждевременно.

Финальный рендеринг






В целом, наблюдаемая картина смотрится вполне "в духе" предыдущих результатов. Хорошо распараллеливаемые алгоритмы рендеринга выигрывают от перехода на новое ядро. Здесь же хочется обратить внимание на один любопытный факт, не нашедший отражения на графиках. Дело в том, что хотя это и кажется несколько фантастичным, производительность двухъядерного процессора Core 2 Duo E8500 при финальном рендеринге почти доросла до уровня быстродействия младшего из четырёхъядерных процессоров AMD, Phenom 9500. По данным наших тестов этот процессор AMD в 3ds max 9 набирает 5,61 балла, а в Cinebench R10 – 7114 очков.

Другие приложения












Для этого раздела мы выбрали ещё четыре интересных распространённых задачи, которые тематически не подходят ни к одной из предыдущих частей изложения. Впрочем, и здесь ничего принципиально нового на диаграммах нет: Core 2 Duo E8500, E8400 и E8200 однозначно превосходят модели с 65-нм ядрами с равной частотой, и уж тем более, с равной стоимостью.

Энергопотребление и тепловыделение

Поскольку новый 45-нм технологический процесс должен найти отражение в электрических и тепловых характеристиках новых CPU, мы решили уделить внимание практическим тестам и этих показателей.

В первую очередь мы прибегли к измерению рабочей температуры процессоров при простое и под нагрузкой. Во время тестирования процессоры охлаждались одним и тем же кулером Zalman CNPS9700 LED . Энергосберегающие технологии Enhanced Intel SpeedStep и Cool"n"Quiet 2.0 были включены. Кстати, процессоры Wolfdale, точно также как и их предшественники, в состояниях с низкой загрузкой сбрасывают свой коэффициент умножения до 6x.

Загрузка процессоров выполнялась при помощи утилиты Prime95 25.5, температурные показатели снимались утилитой CoreTemp 0.96. Полученные результаты приведены в таблице.


Как того и следовало ожидать, в целом процессоры с 45-нм ядром оказываются холоднее своих предшественников с микроархитектурой Core, но разница в температуре при полной загрузке составляет лишь 4-5 градусов. Дело в том, что ядро процессоров Wolfdale имеет меньшую площадь и, соответственно, гораздо более высокую плотность расположения транзисторов на полупроводниковом кристалле, что несколько затрудняет отвод от него теплового потока. Именно поэтому в состоянии покоя Wolfdale и Conroe показывают примерно одинаковые температуры. Что же касается относительно низкой температуры процессора Athlon 64 X2 6000+, TDP которого, к слову, в два раза выше, чем у Core 2 Duo, то обусловлена она не совсем удачным расположением термодатчика на ядре, который находится вдалеке от наиболее горячих участков полупроводникового кристалла этого CPU.

Из сказанного вполне ясно, что измерение температуры процессоров даёт уж слишком субъективную информацию. Поэтому мы уделили внимание и тестам энергопотребления, которые должны показать преимущества нового 45-нм ядра в полной мере. В проведённых опытах нами измерялся ток, проходящий через схему питания процессора, что позволяет оценить энергопотребление самих CPU (без учёта потерь в конвертере питания процессора).


Результаты, показанные новыми процессорами, выпущенными по 45-нм техпроцессу, более чем впечатляющие. Впрочем, иного и не ожидалось, ведь новый технологический процесс позволил не только уменьшить размеры элементов, но и значительно снизить токи утечки – ради этого Intel перешёл на использование в нём транзисторов с металлическим затвором и high-k диэлектриком. В итоге, потребляемая под нагрузкой процессорами Wolfdale мощность сравнима с энергопотреблением CPU двух-трёхлетней давности в состоянии покоя. Собственно, именно этот разительный контраст между поколениями процессоров подчёркивают результаты Athlon 64 X2, процессора, микроархитектура которого под высокие показатели "производительности на Ватт" ещё не оптимизировалась.

Выводы

Собственно, всё ясно и так. Обобщая вышесказанное, можно говорить о том, что новые двухъядерные процессоры Core 2 Duo E8500, E8400 и E8200, основанные на 45-нм ядрах, хороши во всём. Они не только быстрее предшественников при одинаковых тактовых частотах – максимальные достигнутые ими частоты ещё и выше, чем у предыдущих процессоров Intel. Если к этому добавить тот факт, что Intel собирается продавать новинки по тем же ценам, что и Core 2 Duo E6850, E6750 и E6550, то можно говорить о "бесплатном" увеличении быстродействия двухъядерных процессоров Intel на 10...15 %.


Кроме того, перевод процессоров Core 2 Duo на производство по новому технологическому процессу даёт пользователям и дополнительные бонусы. Во-первых, к ним может быть отнесена поддержка перспективного набора инструкций SSE4.1, которая ещё проявит себя в будущем, по мере оптимизации программного обеспечения. Во-вторых, процессоры Wolfdale крайне экономичны. В-третьих, новые процессоры обещают прекрасные возможности разгона, за что они наверняка найдут признание среди оверклокеров.

Иными словами, вторая версия двухъядерных процессоров, основанных на микроархитектуре Core, крайне удачна. Расстраивает лишь то, что появление этих CPU на прилавках магазинов в очередной раз ударит по позициям компании AMD, которая на данный момент не может предложить аналогичные по производительности варианты. Все двухъядерные процессоры этого производителя работают однозначно медленнее новых Core 2 Duo серии E8000, что автоматически "вытесняет" их из ценового диапазона "дороже 150 долларов", где отныне двухъядерные предложения Intel будут господствовать на безальтернативной основе.

Уточнить наличие и стоимость процессоров Intel Core 2 Duo E8000

Другие материалы по данной теме


Phenom: подарок на Новый год от AMD
Вторая итерация микроархитектуры Core: обзор Core 2 Extreme QX9650
Микроархитектура AMD K10

Приветствую всех! Сегодня мы с вами попытаемся ответить на вопрос: можно ли купить на али процессор, сколько это стоит и стоит ли оно того? Всех заинтересовавшихся прошу под кат:)

Я являюсь обладателем достаточно пожилого компьютера (Intel Core 2 Duo E6320 LGA775 (1.86GHz,1066FSB,L2:4MB), 3Гб оперативной памяти, видеокарта GeForce 8800 GTS 640Mb). В этом году ему стукнет 7 лет и он пойдёт в школу и по современным меркам он является практически калькулятором:)
Не так давно у меня промелькнула мысль: а нельзя ли обогатить внутренний мир моей ЭВМ, не тратя больших денег? Искать ответ на этот вопрос я пошел на алиэкспресс. После продолжительного поиска и сравнения мой выбор пал на Intel Core 2 Duo Е8400 (3.00GHz,1333FSB,L2:6MB,65W), который и стал героем сегодняшнего обзора. Продавец честно указал в описании лота, что процессор б/у, но меня это не смутило. Думаю стоит заметить, что E8400 тоже не молод - его начали выпускать 6 лет назад. В моем городе б/у Е8400 стоят от 1500р и выше, на али он обошелся в 1000р. На разницу в стоимости решил побаловать себя и процессор хорошей термопастой Arctic Cooling MX-4:) В синтетических тестах производительность данного процессора должна быть примерно в 2 раза выше моего нынешнего(E6320). Что же мы получим на практике? Давайте это выясним.

Немного об упаковке: процессор пришел в картонной коробочке, внутри бутерброд из газеты - процессора, закутанного в несколько слоев пупырки - и снова газеты. Добрался он за 12 дней.





Сам герой:



Меняем процессор:
Для начала я обновил биос, т.к. поддержка данного процессора появилась только в последних его версиях. Ну а затем приступил к замене процессора. Тут ничего сложного, главное все обесточить и не совершать резких движений:)
Устанавливаем новый процессор:


Ставим кулер обратно. НЕ забываем перед этим нанести на процессор тонкий слой термопасты. Я оставил старый боксовый кулер от E6230, т.к. он вполне не плохо выполняет свои обязанности. Плюс этот кулер справляется с тепловыделением E8400 разогнанным до 3.6ГГц (если верить овелклокерс.ру, а причины им не верить я не вижу)

Приступим к тестам!
Вот что поведал CPU-Z о старом и новом процессоре:




Замеры проводились в PassMark PerformanceTest:
E6320


E8400


Из последнего скриншота видно, что мой E8400 отстает от его «эталонной» версии на 4.3%. Видимо они растерялись за время его работы в другом компьютере(мы ведь помним, что процессор б/у) да и перелет из Китая не прошел бесследно - рассыпал со страху еще пару процентов:)
Прирост по сравнению с E6320 составил около 80%, что вполне не плохо.

Выводы:
Что мы имеем в итоге: заметно возросшая производительность в повседневных задачах. Цена вопроса - 1000р. Получилось дешево и сердито. Я доволен:) Осталось только найти видеокарту уровня GeForce GTX 560 Ti или выше по схожей цене(если кто-нибудь знает где такую достать не дорого, расскажите в комментариях).

С удовольствием отвечу на вопросы и приму критику:)

P.S.
В процессе поиска E8400 наткнулся на интересную вещь: переходник с LGA771 на LGA775.

Понравилась статья? Поделиться с друзьями: