Искусственный интеллект для программистов. Как создать искусственный интеллект? (Почти) исчерпывающее руководство

Области применения искусственного интеллекта

Искусственный интеллект - это область компьютерной науки ориентированой на компьютерное моделирование и понимание человеческого интеллекта.

Применение методов искусственного интеллекта:

Теория распознавания образов

Компания Simmakers предлагает следующие услуги по распознаванию образов:

  • Оптическое распознавание символов
  • Распознавание рукописного ввода
  • Распознавание лиц и автоматическое определение лица в кадре
  • Детектирование и распознавание движения

Обработка изображений

Наши услуги:

  • Поиск изображений
  • Распознавание объектов
  • Измерение параметров объекта
  • Повышение контурной резкости изображений

Интеллектуальный анализ данных (Data mining)

На сегодняшний день интеллектуальный анализ данных в основном широко используется финансовыми компаниями, а также организациями розничной торговли и маркетинга. Мы предоставляем услуги в области интеллектуального анализа данных, которые позволяют этим организациям определить взаимоотношения среди «внутренних» факторов, таких как цена, уровень квалификации персонала или позиционирование продукта, а также «внешние» факторы, такие как экономические показатели, конкуренция, и демография клиентов. Наши технологии позволяют компаниям оценить влияние на удовлетворение запросов потребителей, продажи и прибыль.

Мы предлагаем услуги по интеллектуальному анализу данных в следующих отраслях:

  • Разработка и создание хранилища данных используя преимущества интеллектуального анализа в финансовой сфере
  • Развитие торговой стратегии и исследование правил торговли с помощью генетических алгоритмов
  • Расчет рыночных и кредитных рисков
  • Средства визуализации для анализа финансовых данных

Телекоммуникационная индустрия

  • Разработка и создание хранилища данных используя преимущества интеллектуального анализа в сфере телекоммуникаций
  • Многомерный анализ телекоммуникационных данных
  • Обработка телекоммуникационных данных в маркетинговых целях
  • Обнаружение телекоммуникационного мошенничества
  • Локализация ошибок и прогнозирование неисправностей в коммуникационной сети
  • Средства визуализации для анализа телекоммуникационных данных

Сфера розничной торговли

  • Разработка и создание хранилища данных используя преимущества интеллектуального анализа в сфере розничной торговли
  • Анализ эффективности кампаний по организации и стимулированию сбыта
  • Многофакторный анализ клиентов, продуктов, продаж, региона, времени и т.д.
  • Товарные рекомендации и перекрестные ссылки на продукты
  • Средства визуализации для анализа данных в сфере розничной торговли

Почему клиенты выбирают Simmakers

Обратившись в компанию Simmakers, вы получите компетентное решение, разработанное специалистами с высокой квалификацией в области разработки систем искусственного интеллекта, интеллектуального анализа данных, программной инженерии и прикладной математики.

Задачи, выполненные ранее специалистами Simmakers:

Мы обладаем рядом преимуществ, которые позволяют нам успешно решать поставленные задачи:

  • Партнерство с NVIDIA. Являясь , мирового лидера в производстве видеокарт и графических процессоров, мы применяем последние достижения корпорации при разработке ИТ-решений в области компьютерной графики, визуализации данных и параллелизации вычислений.
  • Обширный опыт. Работая более 10 лет, специалисты нашей компании выполнили свыше 30 сложных проектов по визуализации данных и компьютерному моделированию физических и технологических процессов для различных отраслей, включая строительный инжиниринг, добычу нефти и газа, металлургию, киноиндустрию, медицину, искусство и др.
  • Экспертиза международного уровня. Сотрудники компании Simmakers – это профессионалы в области прикладной математики, информационных технологий и разработки программного обеспечения, многие из которых обладают высокими достижениями и международными наградами в предметных областях. Мы активно сотрудничаем с ведущими мировыми исследовательскими центрами, Массачусетский технологический университет , Калифорнийский университет в Лос-Анджелесе и Сколковский институт науки и технологий.
  • Индивидуальный подход. При разработке ИТ-решений мы максимально учитываем потребности и пожелания каждого заказчика. Такой подход позволяет нам наладить доверительные и взаимовыгодные отношения с клиентами, что в итоге благотворно сказывается на эффективности выполнения проектов.
    • Всё ещё остались вопросы?

Технологии

Мы применяем различные методы:

  • Перцептроны
  • Многослойные перцептроны
  • Радиально-базисные сети
  • Когнитрон, неокогнитрон
  • Нейронная сеть Хопфилда
  • Алгоритм обратного распространения ошибки
  • Алгоритм Левенберга - Марквардта
  • Алгоритм упругого распространения
  • Метод Бройдена-Флетчера-Гольдфарба-Шанно
  • Метод сопряженного градиента (CG)
  • Генетические алгоритмы
  • Эволюционное программирование
  • Эволюционная стратегия
  • Пропозициональная
  • Предикатная
  • Высшего порядка

Экспертные системы, гибридные интеллектуальные системы

  • Алгоритмы гибридизации
  • Гибридные экспертные системы
  • Гибридные нейроны и нейронные сети
  • Гибридные обучающие алгоритмы ANN

Часто задаваемые вопросы

Q: Что подразумевает под собой термин «искусственный интеллект»?

A: Искусственный интеллект (ИИ) это наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ а также научное направление, разрабатывающее методы, позволяющие электронно-вычислительной машине решать интеллектуальные задачи, если они решаются человеком. Этим понятием обозначают функциональные возможности машины решать человеческие задачи.

Q: Какие основные подходы и направления к построению систем ИИ?

A: Существуют различные подходы к построению систем ИИ.

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Анализируя историю ИИ, можно сделать вывод, что за последние пять десятилетий исследования в области ИИ в основном сосредоточены на решении конкретных проблем. Поэтому, несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, на сегодняшний день можно выделить два основных подхода к разработке ИИ: 1) нисходящий (англ. Top-Down AI), семиотический - создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.; 2) восходящий (англ. Bottom-Up AI), биологический - изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер.

Q: Какие области применения искусственного интеллекта существуют на сегодняшний день?

A: В настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые примеры.

Экспертные системы

Компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Такие системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний - как совокупность фактов и правил логического вывода в выбранной предметной области деятельности. MYCIN стала ранней экспертной системой, разработанной как докторская диссертация в 1974 году, для диагностирования бактерий, вызывающих тяжелые инфекции, такие как бактериемия и менингит, а также для рекомендации необходимого количества антибиотиков в зависимости от массы тела пациента. Она была автономной системой, требующей от пользователя набора всей необходимой информации. Фактически, MYCIN никогда не использовалась на практике. Главной трудностью, с которой столкнулись во время разработки MYCIN и последующих экспертных систем, было «извлечение» знаний из опыта людей-экспертов для формирования базы правил.

Эвристическая классификация

Этим термином принято характеризовать поведение множества экспертных систем, ориентированных на выполнение таких задач, как диагноз и интерпретация данных. Хороших примером послужит консультация по принятию оплаты предлагаемой кредитной картой. В данном случае сразу станет доступна информация о владельце кредитной карты, его платежные сведения, информация о текущей покупке, а также о учреждении где она совершается (например, были ли зафиксированы случаи мошенничества с использованием банковских карточек в данном заведении).

Распознавание речи

Коммерческие программы по распознаванию речи появились в начале девяностых годов, и с того времени все большую популярность применение распознавания речи находит в различных сферах бизнеса, например, врач в поликлинике может проговаривать диагнозы, которые тут же будут внесены в электронную карточку. Наверняка каждый хоть раз в жизни мечтал с помощью голоса выключить свет или открыть окно. В последнее время в телефонных интерактивных приложениях все чаще стали использоваться системы автоматического распознавания и синтеза речи. В этом случае общение с голосовым порталом становится более естественным, так как выбор в нём может быть осуществлен не только с помощью тонового набора, но и с помощью голосовых команд. При этом системы распознавания являются независимыми от дикторов, то есть распознают голос любого человека.

Обработка естественного языка

Понимание естественного языка иногда считают AI-полной задачей, потому как распознавание живого языка требует огромных знаний системы об окружающем мире и возможности с ним взаимодействовать. Сейчас не достаточно получить лишь последовательность слов или череду предложений. Мы должны научить компьютер «понимать», а это одна из главных задач искусственного интеллекта. Качество понимания зависит от множества факторов.

Компьютерное зрение

Мир состоит из трехмерных объектов, а тот момент когда входные данные для человеческого глаза и телекамер являются двумерными. Компьютерное зрение сосредотачивается на обработке трехмерных сцен, спроектированных на одно или несколько изображений. Например, восстановлением структуры или другой информации о трехмерной сцене по одному или нескольким изображениям.

Игровой искусственный интеллект

Сегодня можно легко приобрести дорогостоящие шахматные машины или скачать программы которые могут победить многих профессиональных шахматистов. А лучшие коммерческие программы, благодаря реализации в них технологии искусственного интеллекта, уже превысили уровень людей-чемпионов. Для этого программе нужно вычислять 200 миллионов позиций каждую секунду.

Процесс создания искусственного интеллекта , с первого взгляда кажется довольно таки сложным занятием. Наблюдая за этими красивыми примерами ИИ , можно понять, что создавать интересные программы с ИИ можно. В зависимости от цели, нужны разные уровни знаний. Некоторые проекты требуют глубоких знаний ИИ, другие проекты требуют лишь знания языка программирования, но главный вопрос, которые стоит перед программистом. Какой язык выбрать для программирования искусственного интеллекта? Вот список языков для ИИ, которые могут быть полезными.

LISP


Первый компьютерный язык, применяемый для создания искусственного интеллекта - ЛИСП. Этот язык является довольно таки гибким и расширяемым. Такие особенности, как быстрое прототипирование и макросы очень полезны в создании ИИ. LISP - это язык, который превращает сложные задачи в простые. Мощная система объектно-ориентированности делает LISP одним из самых популярных языков программирования для искусственного интеллекта.

Java

Основные преимущества этого многофункционального языка являются: прозрачность, переносимость и удобство сопровождения. Еще одним преимуществом языка Java является универсальность. Если вы новичок, то вас обрадует тот факт, что существуют сотни видеоуроков в Интернете, что сделает ваше обучение легче и эффективнее.

Основными особенностями java являются: легкая отладка, хорошее взаимодействие с пользователем, простота работы с большими проектами. Проекты, созданные с помощью языка Java имеют привлекательный и простой интерфейс.

Prolog

Это интерактивный символический язык программирования популярен для проектов, которые требуют логики. Имея мощную и гибкую основу, она широко применяется для non-численного программирования, доказательства теорем, обработки естественного языка, создания экспертных систем и искусственного интеллекта в целом.

Пролог - это декларативный язык с формальной логикой. Разработчики искусственного интеллекта ценят его за высокий уровень абстракции, встроенный механизм поиска, недетерминизм и т.д.

Python

Python - широко используется программистами из-за его чистой грамматики и синтаксиса, приятного дизайна. Различные структуры данных, куча Фреймворков тестирования, соотношение высокого уровня и низкого уровня программирования, которые делают Питон одним из самых популярных языков программирования для искусственного интеллекта.

История развития ИИ

Для того, чтобы увидеть связь между ИИ и языком программирования, давайте рассмотрим наиболее важные события в истории ИИ. Все началось в 1939 году, когда робот Электро был представлен на Всемирной выставки. Следующий робот был построен в 1951 году, Эдмундом Беркли.

Робот Робби был построен в 1956 году. К сожалению, нет информации о том, как он был разработан. В 1958 году, был изобретен язык программирования ЛИСП. Хотя этот язык был разработан 60 лет назад, он до сих пор остается основным языком для многих программ искусственного интеллекта.

В 1961 году, был построен UNIMATE. Это первый промышленный робот, который выпускается серийно. Этот робот был использован в «Дженерал Моторс» для работы на производственной линии. Для изготовления UNIMATE ученые использовали Валь, переменная ассемблера. Этот язык состоит из простых фраз, команд монитора, и инструкций, которые не требуют пояснений.

Система искусственного интеллекта Dendral, была построена в 1965 году. Она помогала легко определять молекулярную структуру органических соединений. Эта система была написана на Лиспе.

В 1966 году, Weizenbaum создал Элизу, первого виртуального собеседника. Одна из самых знаменитых моделей назывался Доктор, он отвечал на вопросы в стиле психотерапевта. Этот бот был реализован при сопоставлении образцов техники. Первая версия Элизы была написана на SLIP, список обработки языка был разработан Weizenbaum. Позже одна из его версий была переписана на Лиспе.

Первый мобильный робот, запрограммированный на Лиспе был Шеки. С помощью решения задач программы прокладок и датчиков, шейки двигался, включал и выключал свет, поднимался вверх и вниз, открывал двери, закрывал двери, толкал предметы, и двигал вещи. Перемещался Шеки со скоростью 5 км в час.

В ближайшие 15 лет мир увидел множество удивительных изобретений: Сторожевого робота Деннинг, ЛМИ Лямбда, Omnibot 2000, MQ-1 Predator беспилотный, Ферби, АЙБО робот собака, и Хонда АСИМО.

В 2003 году iRobot изобрел робот-пылесос Roomba. Разработанный на Лиспе, это автономный пылесос моет полы, используя определенные алгоритмы. Он обнаруживает препятствия и обходит их.


А какой язык программирования используете вы, для разработки программ с ИИ? Напишите о ваших работах в комментариях или в нашей группе вконтакте.

Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

Железные люди Анри Дро

Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

У истоков программирования

Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

  • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
  • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
  • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

Поколение за поколением

Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

И наконец, третье поколение - интеллектуальные роботы, которые способны:

  • Обобщать и анализировать информацию,
  • Совершенствоваться и самообучаться, накапливать навыки и знания,
  • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

Общая классификация

На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

  • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
  • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
  • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
  • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

Языковые нюансы

В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

Обучение роботов

Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

Робототехника и искусственный интеллект

Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

Основные тенденции робототехники

В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

  • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
  • Проведение медицинских исследований и хирургических операций,
  • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.

«Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»

Мы обратились за разъяснением к нашим экспертам, а полученные ответы представляем вашему вниманию.

Это зависит от Вашей базовой подготовки. Прежде всего, необходима математическая культура (знание статистики, теории вероятностей, дискретной математики, линейной алгебры, анализа и др.) и готовность многому быстро учиться. При реализации методов ИИ потребуется программирование (алгоритмы, структуры данных, ООП и др.).

Разные проекты требуют владения разными языками программирования. Я бы рекомендовал знать как минимум Python, Java и любой функциональный язык. Нелишним будет опыт работы с различными базами данных и распределёнными системами. Чтобы быстро изучать лучшие подходы, применяемые в индустрии, требуется знание английского языка.

Учиться рекомендую в хороших российских вузах! Например, в МФТИ, МГУ, ВШЭ есть соответствующие кафедры. Большое разнообразие тематических курсов доступно на Coursera, edX, Udacity, Udemy и других MOOC площадках. Некоторые ведущие организации имеют собственные программы подготовки в области ИИ (например, Школа анализа данных у Яндекса).

Прикладные задачи, решаемые методами ИИ, можно найти в самых разнообразных местах. Банки, финансовый сектор, консалтинг, ритейл, e-commerce, поисковые системы, почтовые сервисы, игровая индустрия, индустрия систем безопасности и, конечно, Avito — все нуждаются в специалистах различной квалификации.

Повысить Понизить

У нас есть проект по финтеху, связанный с машинным обучением и компьютерным зрением, в котором первый его разработчик писал все на C++, далее пришел разработчик, который все переписал на Python. Так что язык тут не самое главное, так как язык - это прежде всего инструмент, и от вас зависит, как его использовать. Просто на каких-то языках задачи решать быстрее, а на других более медленно.

Где учиться, сказать сложно — все наши ребята учились сами, благо есть интернет и Google.

Повысить Понизить

Могу посоветовать с самого начала готовить себя к тому, что учиться придётся много. Вне зависимости от того, что подразумевается под «заниматься ИИ» — работа с большими данными либо нейросети; развитие технологии или поддержка и обучение некой определённой уже разработанной системы.

Давайте ради конкретики возьмём трендовую профессию Data Scientist. Что делает этот человек? В общем и целом — собирает, анализирует и готовит к употреблению большие данные. Именно те, на которых растёт и тренируется ИИ. А что должен знать и уметь Data Scientist? Статический анализ и математическое моделирование – по умолчанию, причём на уровне свободного владения. Языки – скажем, R, SAS, Python. Также хорошо бы иметь какой-никакой опыт разработки. Ну и, вообще говоря, хороший дата-сайнтист должен уверенно себя чувствовать в БД, алгоритмике, визуализации данных.

Не сказать, чтобы такой набор знаний можно было получить в каждом втором техническом вузе страны. Крупные компании, у которых в приоритете разработка ИИ, это понимают и разрабатывают под себя соответствующие учебные программы — существует, например, Школа анализа данных от Яндекса. Но вы должны отдавать себе отчёт, что это не тот масштаб, где ты приходишь на курсы «с улицы», а выходишь с них готовым джуниором. Пласт большой, и идти учиться по дисциплине имеет смысл тогда, когда уже охвачена база (математика, статистика) хотя бы в рамках вузовской программы.

Да, времени уйдёт порядочно. Но игра стоит свеч, потому что хороший Data Scientist – это очень перспективно. И очень дорого. Есть ещё и другой момент. Искусственный интеллект – это, с одной стороны, уже не просто объект ажиотажа, а вполне себе вышедшая на виток продуктивности технология. С другой стороны, ИИ всё ещё только развивается. Для этого развития требуется много ресурсов, много навыков и много денег. Пока это уровень высшей лиги. Я сейчас скажу очевидную вещь, но, если вы хотите оказаться на острие атаки и своими руками двигать прогресс, цельтесь в компании уровня Facebook или Amazon.

В то же время в ряде областей технологию уже применяют: в банковской сфере, в телекоме, на промышленных предприятиях-гигантах, в ритейле. И там уже нужны люди, способные её поддерживать. Gartner прогнозирует, что к 2020 году 20% всех предприятий в развитых странах будут нанимать специальных сотрудников для тренировки нейронных сетей, используемых в этих компаниях. Так что пока ещё есть немного времени, чтобы подучиться самому.

Повысить Понизить

ИИ сейчас активно развивается, и предсказывать на десять лет вперед сложно. На ближайшие два-три года будут доминировать подходы на базе нейросетей и вычислений на основе GPU. Лидером в этой области является Python с интерактивной средой Jupyter и библиотеками numpy, scipy, tensorflow.

Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).

Повысить Понизить

Повысить Понизить

На сегодняшний день самая быстро прогрессирующая часть искусственного интеллекта - это, пожалуй, нейронные сети.
Изучение нейросетей и ИИ стоит начать с освоения двух разделов математики - линейной алгебры и теории вероятности. Это обязательный минимум, незыблемые столпы искусственного интеллекта. Абитуриентам, желающим постичь основы ИИ, при выборе вуза, на мой взгляд, стоит обратить внимание на факультеты с сильной математической школой.

Следующий шаг - изучение проблематики вопроса. Существует огромное количество литературы, как учебной, так и специальной. Большинство публикаций по теме искусственного интеллекта и нейросетей написаны на английском языке, однако русскоязычные материалы тоже публикуются. Полезную литературу можно найти, например, в общедоступной цифровой библиотеке arxiv.org .

Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность - «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.

Повысить Понизить

Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.

Основная масса пишется на Python, потом идут R, Lua.

Если говорить об учебных заведениях, лучше поступить на курсы при кафедрах прикладной математики и информатики, подходящие образовательные программы есть. Для проверки своих способностей можно принять участие в соревнованиях Kaggle, где предлагают свои кейсы крупные мировые бренды.

Повысить Понизить

В любом деле, прежде чем приступать к проектам, хорошо бы получить теоретический базис. Есть много мест, где можно получить формальную степень магистра по этому направлению, либо повысить свою квалификацию. Так, например, Сколтех предлагает магистерские программы по направлениям «Computational Science and Engineering» и «Data Science», куда входит курсы «Machine Learning» и «Natural Language Processing». Можно также упомянуть Институт Интеллектуальных Кибернетических систем НИЯУ МИФИ, Факультет вычислительной математики и кибернетики МГУ и Кафедру «Интеллектуальные системы» МФТИ.

Если же формальное образование уже имеется, есть ряд курсов на различных платформах MOOC. Так, например, EDx.org предлагает курсы по искусственному интеллекту от Microsoft и Колумбийского университета, последний из которых предлагает микро-магистерскую программу за умеренные деньги. Хотелось бы особо отметить, что обычно сами знания вы можете получить и бесплатно, оплата идет только за сертификат, если он нужен для вашего резюме.

Если же вы хотите «глубоко погрузиться» в тему, ряд компаний в Москве предлагает недельные интенсивы с практическими занятиями, и даже предлагают оборудование для экспериментов (например, newprolab.com), правда, цена таких курсов от нескольких десятков тысяч рублей.

Из компаний, которые занимаются разработкой Искусственного Интеллекта, вы наверняка знаете Яндекс и Сбербанк, но есть и многие другие разных размеров. Например, на этой неделе Минобороны открыло в Анапе Военный инновационный технополис ЭРА, одной из тем которого является разработка ИИ для военных нужд.

Повысить Понизить

Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.
Красная таблетка - стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.

Только после того, как база освоена, стоит проштудировать более специальные методы: деревья принятия решений и ансамбли из них. На этом этапе нужно глубоко погрузиться в основные способы построения и обучения моделей - они скрываются за едва приличными словами беггинг, бустинг, стекинг или блендинг.

Тут же стоит познать методы контроля переобучения моделей (еще один «инг» - overfitting).

И, наконец, совсем уж джедайский уровень - получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

Две последние упомянутые структуры - кирпичики популярных сегодня архитектур: состязательных сетей (GAN), реляционных сетей, комбинированных сетей. Поэтому изучить их будет нелишним, даже если вы не планируете учить компьютер видеть или слышать.

Совсем другой подход к изучению ИИ - он же «синяя таблетка» - начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

Так что при «менеджерском» подходе сначала стоит оценить свои способности и бэкграунд, а уже потом выбирать, где и чему учиться. Например, даже без математического склада ума можно заниматься дизайном ИИ-интерфейсов и визуализациями для умных алгоритмов. Но приготовьтесь: уже через 5 лет искусственный интеллект начнет вас троллить и называть «гуманитарием».

Основные методы ML реализованы в виде готовых библиотек, доступных к подключению на разных языках. Наиболее популярными языками в ML сегодня являются: C++, Python и R.

Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».

И когда все описанные знания будут усвоены, мы с нетерпением ждем юных падаванов к нам в команду Navicon, где поможем и научим, как подружиться с «искусственными интеллектуалами» в реальной жизни.

Повысить Понизить

Тема ИИ и машинного обучения стала значительно более демократичной, чем несколько лет назад.
В интернете можно найти платные и бесплатные курсы на эту тему, инструменты становятся более простыми и менее требовательными как к знаниям, так и к аппаратному обеспечению.

Как опытным, так и начинающим программистам рекомендую начать с онлайн-курсов на MOOC-площадках. Например, на Coursera есть отличная специализация «Машинное обучение и анализ данных» от Яндекса и Высшей школы экономики. Если нет проблем с пониманием лекций на английском языке, там же можно пройти курс Эндрю Ына «Machine Learning».

Основные языки программирования для работы в области ИИ и машинного обучения - R и Python. Долгое время эти языки использовались в академических кругах и для них было создано большое количество библиотек. Сейчас развиваются инструменты, позволяющие быстро стартовать свой проект: Keras, TensorFlow, Theano, Caffe, scikit-learn. Последнее время Microsoft начал активно развивать свои инструменты: CNTK, ML.NET. Они позволяют создавать интеллектуальные решения на языке C#.

Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.

Повысить Понизить

Экспертам, а мы соберём на него ответы, если он окажется интересным. Вопросы, которые уже задавались, можно найти в списке выпусков . Если вы хотите присоединиться к числу экспертов и прислать ответ от вашей компании или лично от вас, то пишите на , мы расскажем как это сделать.

Как случилось, что искусственный интеллект успешно развивается, а «правильного» определения для него до сих пор нет? Почему не оправдались надежды, возлагавшиеся на нейрокомпьютеры, и в чем заключаются три главные задачи, стоящие перед создателем искусственного интеллекта?

На эти и другие вопросы вы найдете ответ в статье под катом, написанной на основе выступления Константина Анисимовича, директора департамента разработки технологий ABBYY, одного из ведущих экспертов страны в сфере искусственного интеллекта.
При его личном участии были созданы технологии распознавания документов, которые применяются в продуктах ABBYY FineReader и ABBYY FormReader. Константин рассказал об истории и основах разработки AI на одном из мастер-классов для студентов Технопарка Mail.Ru. Материал мастер-класса и стал базой для цикла статей.

Всего в цикле будет три поста:

Применение знаний: алгоритмы поиска пространственных состояний
Получение знаний: проектирование интеллектуальных систем и машинное обучение

Взлеты и падения подходов в AI

Еще с 1950-х годов в сфере создания искусственного интеллекта выделилось два подхода - символьные вычисления и коннекционизм. Символьные вычисления – это направление, основанное на моделировании мышления человека, а коннекционизм - на моделировании устройства мозга .

Первыми достижениями в области символьных вычислений были созданный в 50-е годы язык Lisp и работа Дж. Робинсона в области логического вывода. В коннекционизме таковым стало создание персептрона – самообучающегося линейного классификатора, моделирующего работу нейрона. Дальнейшие яркие достижения находились в основном в русле символьной парадигмы. В частности, это работы Сеймура Пайперта и Роберта Антона Уинсона в области психологии восприятия и, конечно, фреймы Марвина Минского.

В 70-е годы появились первые прикладные системы, использующие элементы искусственного интеллекта – экспертные системы. Дальше произошел некий ренессанс коннекционизма с появлением многослойных нейронных сетей и алгоритма их обучения методом обратного распространения. В 80-е годы увлечение нейронными сетями было просто повальным. Сторонники этого подхода обещали создать нейрокомпьютеры, которые будут работать практически как человеческий мозг .


Но ничего особенного из этого не вышло, потому что настоящие нейроны устроены намного сложнее, чем формальные, на которых основаны многослойные нейросети. И количество нейронов в человеческом мозге тоже намного больше, чем можно было позволить себе в нейросети. Основное, для чего оказались пригодны многослойные нейросети – это решение задачи классификации.

Следующей популярной парадигмой в области искусственного интеллекта стало машинное обучение. Подход начал бурно развиваться с конца 80-х годов и не теряет популярности и поныне. Значительный толчок развитию машинного обучения дало появление интернета и большого количества разнообразных легкодоступных данных, которые можно использовать для обучения алгоритмов.

Главные задачи при проектировании искусственного интеллекта

Можно проанализировать, что роднит те задачи, которые относятся к искусственному интеллекту. Несложно заметить, что общее в них - отсутствие известной, четко определенной процедуры решения. Этим, собственно, задачи, относящиеся к AI, отличаются от задач теории компиляции или вычислительной математики. Интеллектуальные системы ищут субоптимальные решения задачи. Нельзя ни доказать, ни гаратировать, что найденное искусственным интеллектом решение будет строго оптимальным. Тем не менее, в большинстве практических задач субоптимальные решения всех устраивают. Более того, нужно помнить, что и человек практически никогда не решает задачу оптимально. Скорее, наоборот.

Возникает очень важный вопрос: как может AI решить задачу, для которой нет алгоритма решения? Суть в том, чтобы делать это так же, как и человек - выдвигать и проверять правдоподобные гипотезы. Естественно, что для выдвижения и проверки гипотез нужны знания.

Знания - это описание предметной области, в которой работает интеллектуальная система. Если перед нами система распознавания символов естественного языка, то знания включают в себя описания устройства символов, структуру текста и тех или иных свойств языка. Если это система оценки кредитоспособности клиента, у нее должны быть знания о типах клиентов и знания о том, как профиль клиента связан с его потенциальной некредитоспособностью. Знания бывают двух типов – о предметной области и о поиске путей решения (метазнания).

Основные задачи проектирования интеллектуальной системы сводятся к выбору способов представления знаний, способов получения знаний и способов применения знаний.

Представление знаний

Существуют два основных способа представления знаний - декларативные и процедурные. Декларативные знания могут быть представлены в структурированном или в неструктурированном виде. Структурированные представления – это та или иная разновидность фреймового подхода. А именно, фреймы или формальные грамматики, которые тоже можно считать разновидностями фреймов. Знания в этих формализмах представлены в виде множества объектов и отношений между ними.



Неструктурированные представления используются обычно в тех сферах, которые связаны с решением задач классификации. Это обычно векторы оценок весовых коэффициентов, вероятностей и тому подобное.

Практически все способы структурированного представления знания базируются на формализме фреймов, которые в 1970-е ввел Марвин Минский из MIT, чтобы обозначить структуру знаний для восприятия пространственных сцен. Как выяснилось, подобный подход годится практически для любой задачи.

Фрейм состоит из имени и отдельных единиц, называемых слотами. Значением слота может быть, в свою очередь, ссылка на другой фрейм… Фрейм может быть потомком другого фрейма, наследуя у него значения слотов. При этом потомок может переопределять значения слотов предка и добавлять новые. Наследование используется для того, чтобы сделать описание более компактным и избежать дублирования.

Несложно заметить, что существует сходство между фреймами и объектно-ориентированным программированием, где фрейму соответствует объект, а слоту - поле. Сходство это неслучайное, потому что фреймы были одним из источников возникновения ООП. В частности, один из первых объектно-ориентированных языков Small Talk практически в точности реализовывал фреймовые представления объектов и классов.

Для процедурного представления знаний используются продукции или продукционные правила. Продукционная модель - это модель, основанная на правилах, позволяющих представить знание в виде предложений «условие - действие». Такой подход раньше был популярен в различных системах диагностики. Достаточно естественно в виде условия описывать симптомы, проблемы или неисправности, а в виде действия - возможную неисправность, которая приводит к наличию этих симптомов.

В следующей статье мы поговорим о способах применения знаний.

Список литературы.

  1. John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Communications of the ACM, 5:23-41, 1965.
  2. Seymour Papert, Marvin Minsky. Perceptrons. MIT Press, 1969
  3. Russell, Norvig. Artificial Intelligence: A Modern Approach.
  4. Simon Haykin. Neural networks: a comprehensive foundation.
  5. Nils J. Nilsson. Artificial Intelligence: A New Synthesis.
Понравилась статья? Поделиться с друзьями: