Сложение двоичных чисел. Функции в программе Microsoft Excel

— это довольно популярная программа, которая входит в пакет Microsoft Office. Больше всего она нужна экономистам и бухгалтерам, поскольку в ней можно проводить расчеты, составлять таблицы, диаграммы и т.д. В общем, Excel — это «умный» калькулятор со множеством встроенных функций. Функция — это некое готовое решение, с помощью которого можно выполнить определенную операцию. К примеру, если пользователь знает, как в Excel посчитать сумму с помощью функции «Автосумма», то это поможет ему сэкономить время. Конечно, найти сумму нескольких строк можно с помощью калькулятора или даже сложить все цифры в уме, но что делать, если таблица состоит из сотен или из тысячи строк? Вот для этого как раз и нужна функция «Автосумма». Хотя это не единственный способ, с помощью которого можно получить нужный результат.

Видео урок по подсчету суммы в Excel строке или столбце

Что такое Excel?

Математические операторы, к которым относится и рассчет суммы — наиболее часто используемые операторы Excel

Если запустить Microsoft Excel, то перед пользователем откроется очень большая таблица, в которую можно вносить
различные данные, т.е. печатать цифры или слова. Кроме того, можно еще использовать встроенные функции и выполнять различные манипуляции с цифрами ( , делить, суммировать и т.д.).

Некоторые пользователи ошибочно полагают, что Эксель — это программа, в которой можно работать только с таблицами. Да, Excel выглядит как таблица, но, в первую очередь, эта программа служит для вычислений. Поэтому если пользователю нужно не только создать таблицу со словами и цифрами, но еще и выполнить определенные действия с этими данными (проанализировать их, создать диаграмму или график), то Эксель подойдет для этого лучше всего.

Как считать в Excel?

Перед тем как начать работать с Excel, нужно сначала пояснить некоторые моменты. Итак, первое, что нужно знать: все
вычисления в Экселе , и все они начинаются со знака «=» (равно). К примеру, нужно сложить числа 3 и 4. Если выбрать любую ячейку, написать туда «3+4» и нажать Enter, то Эксель ничего не посчитает — там просто будет написано «3+4». А если написать «=3+4» (без кавычек), то Эксель выдаст результат — 7.

Знаки, с помощью которых можно проводить расчеты в программе, называются арифметическими операторами. Среди них:

  1. Сложение.
  2. Вычитание.
  3. Умножение.
  4. Деление.
  5. . К примеру, 5^2 читается как пять в квадрате.
  6. . Если поставить этот знак после любого числа, то оно будет делиться на 100. К примеру, если написать 7%, то результат будет 0,07.

Как посчитать сумму?

Итак, сначала необходимо щелкнуть левой кнопкой мыши по любой ячейке и написать в ней следующее: «=500+700» (без кавычек). После нажатия кнопки «Enter» будет получен результат — 1200. Вот таким простым способом можно сложить 2 числа. С помощью такой же функции можно выполнять и другие операции — умножение, деление и пр. В этом случае формула будет выглядеть так: «цифра, знак, цифра, Enter». Это был очень простой пример сложения 2 чисел, но, как правило, на практике он используется довольно редко.

  • наименование;
  • количество;
  • цена;
  • сумма.

Всего в таблице имеется 5 наименований и 4 столбца (все заполненные, кроме суммы). Поставленная задача — найти сумму по каждому товару.

Например, первое наименование — ручка: количество — 100 штук, цена — 20 рублей. Чтобы найти сумму, можно воспользоваться той простой формулой, которая уже была рассмотрена выше, т.е. написать так: «=100*20». Такой вариант использовать, конечно, можно, но это будет не совсем практично. Допустим, цена на ручку поменялась, и теперь она стоит 25 рублей. И что делать тогда — переписывать формулу? А если в таблице наименований товаров не 5, а 100 или даже 1000? В таких ситуациях Эксель может получать сумму чисел и другими способами, в т.ч. пересчитывая формулу, если одна из ячеек изменяется.

Чтобы посчитать сумму практичным способом, понадобится другая формула. Итак, сначала нужно в соответствующей ячейке столбца «Сумма» поставить знак «равно». Далее, необходимо щелкнуть левой кнопкой мыши на количество ручек (в данном случае это будет число «100»), поставить знак умножения, а затем еще раз щелкнуть левой кнопкой мыши на цену ручки — 20 рублей. После этого можно нажать «Enter». Вроде бы ничего не изменилось, поскольку результат остался прежним — 2000 рублей.

Но тут есть два нюанса. Первый — это сама формула. Если нажать на ячейку, то можно увидеть, что там написаны не числа, а что-то вроде «=B2*C2». Программа написала в формулу не числа, а название ячеек, в которых находятся эти числа. А второй нюанс заключается в том, что теперь при изменении любого числа в этих ячейках («Количество» или «Цена») формула будет автоматически пересчитываться. Если попробовать изменить цену ручки на 25 рублей, то в соответствующей ячейке «Сумма» сразу же будет отображен другой результат — 2500 рублей. То есть при использовании такой функции не нужно будет самостоятельно пересчитывать каждое число, если изменилась некоторая информация. Достаточно лишь изменить исходные данные (если нужно), а Excel автоматически все пересчитает.

После этого пользователь должен будет посчитать сумму и оставшихся 4 наименований. Скорее всего, расчет будет производиться знакомым ему образом: знак равно, щелчок на ячейке «Количество», знак умножения, еще один щелчок на ячейке «Цена» и «Enter». Но в программе Microsoft Excel для этого есть одна очень интересная функция, которая позволяет сэкономить время, просто скопировав формулу в другие поля.

Итак, сначала необходимо выделить ту ячейку, в которой уже была посчитана общая сумма ручек. Выбранная ячейка будет выделена жирными линиями, а в правом нижнем углу будет находиться маленький черный квадратик. Если правильно навести мышкой на этот квадратик, то внешний вид курсора будет изменен: вместо белого «плюсика» станет черный «плюсик». В том момент, когда курсор будет выглядеть как черный плюсик, необходимо нажать левой кнопкой мыши на этот правый нижний квадрат и потянуть вниз до нужного момента (в данном случае — на 4 строки вниз).

Данная манипуляция позволяет «потянуть» формулу вниз и скопировать ее еще в 4 ячейки. Эксель моментально выдаст все результаты. Если щелкнуть на любую из этих ячеек, то можно увидеть, что программа самостоятельно прописала нужные формулы для каждой ячейки и сделала это абсолютно правильно. Такая манипуляция будет полезной, если в таблице находится очень много наименований. Но тут есть некоторые ограничения. Во-первых, формулу можно «потянуть» только вниз/вверх или в сторону (т.е. по вертикали или по горизонтали). Во-вторых, формула должна быть одна и та же. Поэтому, если в одной ячейке рассчитывается сумма, а следующей (под ней) — числа умножаются, то такая манипуляция не поможет, в данном случае она скопирует только сложение чисел (если копировалась первая ячейка).

Как посчитать сумму с помощью функции «Автосумма»?

Для сложения значения ячеек в Excel при помощи формул можно использовать функцию «Автосумма»

Еще один способ, как посчитать сумму чисел — это с помощью функции «Автосумма». Эта функция обычно находится в панели инструментов (чуть ниже панели меню). Выглядит «Автосумма» как греческая буква «Е». Итак, например, есть столбец цифр, и нужно найти их сумму. Для этого нужно выделить ячейку под этим столбцом и нажать значок «Автосуммы». Эксель автоматически выделит все ячейки по вертикали и напишет формулу, а пользователю лишь останется нажать «Enter» для получения результата.

Вопрос ученому: — Я слышал, что сумма всех натуральных чисел равна −1/12. Это какой-то фокус, или это правда?

Ответ пресс-службы МФТИ — Да, такой результат можно получить при помощи приема, называемого разложением функции в ряд.

Вопрос, заданный читателем, достаточно сложный, и потому мы отвечаем на него не обычным для рубрики «Вопрос ученому» текстом на несколько абзацев, а некоторым сильно упрощенным подобием математической статьи.

В научных статьях по математике, где требуется доказать некоторую сложную теорему, рассказ разбивается на несколько частей, и в них могут поочередно доказываться разные вспомогательные утверждения. Мы предполагаем, что читатели знакомы с курсом математики в пределах девяти классов, поэтому заранее просим прощения у тех, кому рассказ покажется слишком простым — выпускники могут сразу обратиться к http://en.wikipedia.org/wiki/Ramanujan_summation .

Сумма всего

Начнем с разговора о том, как можно сложить все натуральные числа. Натуральные числа —это числа, которые используются для счета цельных предметов — они все целые и неотрицательные. Именно натуральные числа учат дети в первую очередь: 1, 2, 3 и так далее. Сумма всех натуральных чисел будет выражением вида 1+2+3+... = и так до бесконечности.

Ряд натуральных чисел бесконечен, это легко доказать: ведь к сколь угодно большому числу всегда можно прибавить единицу. Или даже умножить это число само на себя, а то и вычислить его факториал — понятно, что получится еще большая величина, которая тоже будет натуральным числом.

Детально все операции с бесконечно большими величинами разбираются в курсе математического анализа, но сейчас для того, чтобы нас поняли еще не сдавшие данный курс, мы несколько упростим суть. Скажем, что бесконечность, к которой прибавили единицу, бесконечность, которую возвели в квадрат или факториал от бесконечности — это все тоже бесконечность. Можно считать, что бесконечность — это такой особый математический объект.

И по всем правилам математического анализа в рамках первого семестра сумма 1+2+3+...+бесконечность — тоже бесконечна. Это легко понять из предыдущего абзаца: если к бесконечности что-то прибавить, она все равно будет бесконечностью.

Однако в 1913 году блестящий индийский математик-самоучка Сриниваса Рамануджан Айенгор придумал способ сложить натуральные числа несколько иным образом. Несмотря на то, что Рамануджан не получал специального образования, его знания не были ограничены сегодняшним школьным курсом — математик знал про существование формулы Эйлера-Маклорена. Так как она играет важную роль в дальнейшем повествовании, о ней придется тоже рассказать подробнее.

Формула Эйлера-Маклорена

Для начала запишем эту формулу:

Как можно видеть, она достаточно сложна. Часть читателей может пропустить этот раздел целиком, часть может прочитать соответствующие учебники или хотя бы статью в Википедии, а для оставшихся мы дадим краткий комментарий. Ключевую роль в формуле играет произвольная функция f(x), которая может быть почти чем угодно, лишь бы у нее нашлось достаточное число производных. Для тех, кто не знаком с этим математическим понятием (и все же решился прочитать написанное тут!), скажем еще проще — график функции не должен быть линией, которая резко ломается в какой-либо точке.

Производная функции, если предельно упростить ее смысл, является величиной, которая показывает то, насколько быстро растет или убывает функция. С геометрической точки зрения производная есть тангенс угла наклона касательной к графику.

Слева в формуле стоит сумма вида «значение f(x) в точке m + значение f(x) в точке m+1 + значение f(x) в точке m+2 и так до точки m+n». При этом числа m и n — натуральные, это надо подчеркнуть особо.

Справа же мы видим несколько слагаемых, и они кажутся весьма громоздкими. Первое (заканчивается на dx) — это интеграл функции от точки m до точки n. Рискуя навлечь на себя гнев всей

Третье слагаемое — сумма от чисел Бернулли (B 2k), поделенных на факториал удвоенного значения числа k и умноженных на разность производных функции f(x) в точках n и m. Причем, что еще сильнее усложняет дело, тут не просто производная, а производная 2k-1 порядка. То есть все третье слагаемое выглядит так:

Число Бернулли B 2 («2» так как в формуле стоит 2k, и мы начинаем складывать с k=1) делим на факториал 2 (это пока просто двойка) и умножаем на разность производных первого порядка (2k-1 при k=1) функции f(x) в точках n и m

Число Бернулли B 4 («4» так как в формуле стоит 2k, а k теперь равно 2) делим на факториал 4 (1×2х3×4=24) и умножаем на разность производных третьего порядка (2k-1 при k=2) функции f(x) в точках n и m

Число Бернулли B 6 (см.выше) делим на факториал 6 (1×2х3×4х5×6=720) и умножаем на разность производных пятого порядка (2k-1 при k=3) функции f(x) в точках n и m

Суммирование продолжается вплоть до k=p. Числа k и p получаются некоторыми произвольными величинами, которые мы можем выбирать по-разному, вместе с m и n — натуральными числами, которыми ограничен рассматриваемый нами участок с функцией f(x). То есть в формуле целых четыре параметра, и это вкупе с произвольностью функции f(x) открывает большой простор для исследований.

Оставшееся скромное R, увы, тут не константа, а тоже довольно громоздкая конструкция, выражаемая через уже упомянутые выше числа Бернулли. Теперь самое время пояснить, что это такое, откуда взялось и почему вообще математики стали рассматривать столь сложные выражения.

Числа Бернулли и разложения в ряд

В математическом анализе есть такое ключевое понятие как разложение в ряд. Это значит, что можно взять какую-то функцию и написать ее не напрямую (например y = sin(x^2) + 1/ln(x) + 3x), а в виде бесконечной суммы множества однотипных слагаемых. Например, многие функции можно представить как сумму степенных функций, умноженных на некоторые коэффициенты — то есть сложной формы график сведется к комбинации линейной, квадратичной, кубической... и так далее — кривых.

В теории обработки электрических сигналов огромную роль играет так называемый ряд Фурье — любую кривую можно разложить в ряд из синусов и косинусов разного периода; такое разложение необходимо для преобразования сигнала с микрофона в последовательность нулей и единиц внутри, скажем, электронной схемы мобильного телефона. Разложения в ряд также позволяют рассматривать неэлементарные функции, а ряд важнейших физических уравнений при решении дает именно выражения в виде ряда, а не в виде какой-то конечной комбинации функций.

В XVII столетии математики стали вплотную заниматься теорией рядов. Несколько позже это позволило физикам эффективно рассчитывать процессы нагрева различных объектов и решать еще множество иных задач, которые мы здесь рассматривать не будем. Заметим лишь то, что в программе МФТИ, как и в математических курсах всех ведущих физических вузов, уравнениям с решениями в виде того или иного ряда посвящен как минимум один семестр.

Якоб Бернулли исследовал проблему суммирования натуральных чисел в одной и той же степени (1^6 + 2^6 + 3^6 + ... например) и получил числа, при помощи которых можно разложить в упомянутый выше степенной ряд другие функции — например, tg(x). Хотя, казалось бы, тангенс не очень-то похож хоть на параболу, хоть на какую угодно степенную функцию!

Полиномы Бернулли позже нашли свое применение не только в уравнениях матфизики, но и в теории вероятностей. Это, в общем-то, предсказуемо (ведь ряд физических процессов — вроде броуновского движения или распада ядер — как раз и обусловлен разного рода случайностями), но все равно заслуживает отдельного упоминания.

Громоздкая формула Эйлера-Маклорена использовалась математиками для разных целей. Так как в ней, с одной стороны, стоит сумма значений функций в определенных точках, а с другой — есть и интегралы, и разложения в ряд, при помощи этой формулы можно (в зависимости от того, что нам известно) как взять сложный интеграл, так и определить сумму ряда.

Сриниваса Рамануджан придумал этой формуле иное применение. Он ее немного модифицировал и получил такое выражение:

В качестве функции f(x) он рассмотрел просто x — пусть f(x) = x, это вполне правомерное допущение. Но для этой функции первая производная равна просто единице, а вторая и все последующие — нулю: если все аккуратно подставить в указанное выше выражение и определить соответствующие числа Бернулли, то как раз и получится −1/12.

Это, разумеется, было воспринято самим индийским математиком как нечто из ряда вон выходящее. Поскольку он был не просто самоучкой, а талантливым самоучкой, он не стал всем рассказывать про поправшее основы математики открытие, а вместо этого написал письмо Годфри Харди, признанному эксперту в области как теории чисел, так и математического анализа. Письмо, кстати, содержало приписку, что Харди, вероятно, захочет указать автору на ближайшую психиатрическую лечебницу: однако итогом, конечно, стала не лечебница, а совместная работа.

Парадокс

Суммируя все сказанное выше, получим следующее: сумма всех натуральных чисел получается равной −1/12 при использовании специальной формулы, которая позволяет разложить произвольную функцию в некоторый ряд с коэффициентами, называемыми числами Бернулли. Однако это не значит, что 1+2+3+4 оказывается больше, чем 1+2+3+... и так до бесконечности. В данном случае мы имеем дело с парадоксом, который обусловлен тем, что разложение в ряд — это своего рода приближение и упрощение.

Можно привести пример намного более простого и наглядного математического парадокса, связанного с выражением чего-то одного через что-то другое. Возьмем лист бумаги в клеточку и нарисуем ступенчатую линию с шириной и высотой ступеньки в одну клетку. Длина такой линии, очевидно, равна удвоенному числу клеток — а вот длина спрямляющей «лесенку» диагонали равна числу клеток, умноженному на корень из двух. Если сделать лесенку очень мелкой, она все равно будет той же длины и практически не отличимая от диагонали ломаная линия окажется в корень из двух раз больше той самой диагонали! Как видите, для парадоксальных примеров писать длинные сложные формулы вовсе не обязательно.

Формула Эйлера-Маклорена, если не вдаваться в дебри математического анализа, является таким же приближением, как и ломаная линия вместо прямой. Используя это приближение можно получить те самые −1/12, однако это далеко не всегда бывает уместно и оправдано. В ряде задач теоретической физики подобные выкладки применяются для расчетов, но это тот самый передний край исследований, где еще рано говорить о корректном отображении реальности математическими абстракциями, а расхождения разных вычислений друг с другом — вполне обычное дело.

Так, оценки плотности энергии вакуума на основе квантовой теории поля и на основе астрофизических наблюдений различаются более чем на 120 порядков. То есть в 10^120 степени раз. Это одна из нерешенных задач современной физики; тут явно просвечивает пробел в наших знаниях о Вселенной. Или же проблема — в отсутствии подходящих математических методов для описания окружающего мира. Физики-теоретики совместно с математиками пытаются найти такие способы описать физические процессы, при которых не будет возникать расходящихся (уходящих в бесконечность) рядов, но это далеко не самая простая задача.

Был ленив. Чтобы чем-то занять детей на долгое время, а самому вздремнуть, он попросил их сложить числа от 1 до 100.

Гаусс быстро дал ответ: 5050. Так быстро? Учитель не поверил, но юный гений оказался прав. Складывать все числа от 1 до 100 - это для слабаков! Гаусс нашёл формулу:

$$\sum_{1}^{n}=\frac{n(n+1)}{2}$$

$$\sum_{1}^{100}=\frac{100(100+1)}{2}=50\cdot 101=5050$$

Как это у него получилось? Давайте попробуем разобраться на примере суммы от 1 до 10.

Первый способ: разбить числа на пары

Запишем числа от 1 до 10 в виде матрицы c двумя строками и пятью столбцами:

$$\left(\begin{array}{c}1&2&3&4&5\\ 10&9&8&7&6 \end{array}\right)$$

Интересно, сумма каждого столбца равна 11 или $n+1$. И всего таких пар чисел 5 или $\frac{n}{2}$. Получаем нашу формулу:

$$Число\ столбцов\cdotСумма\ чисел\ в\ стобцах=\frac{n}{2}\cdot(n+1)$$

Если нечетное число слагаемых?

Что, если сложить числа от 1 до 9? У нас не хватает одного числа для составления пяти пар, но мы можем взять ноль:

$$\left(\begin{array}{c}0&1&2&3&4\\ 9&8&7&6&5 \end{array}\right)$$

Сумма столбцов теперь равна 9 или ровно $n$. А количество столбцов? По-прежнему пять столбцов (спасибо нулю!), но теперь количество столбцов определяется как $\frac{n+1}{2}$ (y нас $n+1$ чисел в 2 столбцах).

$$Число\ столбцов\cdotСумма\ чисел\ в\ стобцах=\frac{n+1}{2}\cdot n$$

Второй способ: увеличить вдвое и записать в две строки

Мы немного по-разному считаем сумму чисел в этих двух случаях.
Может быть, есть способ одинаково посчитать сумму для четного и нечетного количества слагаемых?

Вместо того, чтобы делать из чисел своеобразную «петлю», давайте запишем их в две строки, при этом количество чисел умножим на два:

$$\left(\begin{array}{c}1&2&3&4&5&6&7&8&9&10\\10&9&8&7&6&5&4&3&2&1 \end{array}\right)$$

Для нечетного случая:

$$\left(\begin{array}{c}1&2&3&4&5&6&7&8&9\\9&8&7&6&5&4&3&2&1\end{array}\right)$$

Видно, что в обоих случаях сумма столбцов равна $n+1$, а количество столбцов $n$.

$$Число\ столбцов\cdotСумма\ чисел\ в\ стобцах=n\cdot(n+1)$$

Но нам нужна сумма только одной строки, поэтому:

$$\frac{n\cdot(n+1)}{2}$$

Третий способ: сделать прямоугольник

Есть еще одно объяснение, давайте попробуем сложить крестики, допутим у нас есть крестики:

Похоже просто на другое представление второго способа - каждая последующая строка пирамидки имеет больше крестиков и меньше ноликов. Количество всех крестиков и ноликов - площадь прямоугольника.

$$Площадь=Высота\cdotШирина=n\cdot(n+1)$$

Но нам нужна сумма крестиков, поэтому:

$$\frac{n\cdot(n+1)}{2}$$

Четветрый способ: среднее арифметическое

Известно: $Среднее\ арифметическое=\frac{Сумма}{Количество\ членов}$
Тогда: $Сумма = среднее\ арифметическое\cdotКоличество\ членов$

Количество членов нам известно - $n$. А как выразить Cреднее арифметическое?

Заметьте, числа распределены равномерно. На каждое большое число приходится маленькое, расположенное на другом конце.

1 2 3, среднее 2

1 2 3 4, среднее 2.5

В этом случае среднее арифметическое - это среднее арфиметическое чисел 1 и $n$, тоесть $Среднее\ арифметическое=\frac{n+1}{2}$

$$Сумма = \frac{n+1}{2}\cdot n$$

Пятый способ: интеграл

Все мы знаем, что определенный интеграл вычисляет сумму. Посчитаем сумму от 1 до 100 интегралом? Да, но для начала давайте хотя бы найдем сумму от 1 до 3. Пусть наши числа будут функцией y(x). Нарисуем картинку:

Высоты трех прямоугольников - как раз числа от 1 до 3. Проведем прямую через середины «шапок»:


Неплохо было бы найти уравнение этой прямой. Она проходит через точки (1.5;1) и (2.5;2). $y=k\cdot x+b$.

$$\begin{cases}2.5k + b = 2\\1.5k + b = 1\end{cases}\Rightarrow k=1; b=-0.5$$

Таким образом, уравнение прямой, которой мы можем аппроксимировать наши прямоугольники $y=x-0.5$


Она отсекает от прямоугольников желтые треугольники, но «добавляет» к ним сверху голубые. Желтые равны голубым. Сначала убедимся, что использование интеграла ведёт к формуле Гаусса:

$$\int_{1}^{n+1} (x-\frac{1}{2}) \, dx = (\frac{x^{2}}{2}-\frac{x}{2}){|}^{n+1}_{1}=\frac{(n+1)^{2}}{2}-\frac{n+1}{2}=\frac{n^{2}+2n+1-n-1}{2}=\frac{n^{2}+n}{2}$$

Теперь посчитаем сумму от 1 до 3, по иксу берем от 1 до 4, чтобы все наши три прямоугольника попали в интеграл:

$$\int_{1}^{4} (x-\frac{1}{2}) \, dx = (\frac{x^{2}}{2}-\frac{x}{2}){|}^{4}_{1}=\frac{4^{2}}{2}-2-(0.5-0.5)=6$$

$$\int_{1}^{101} (x-\frac{1}{2}) \, dx = (\frac{x^{2}}{2}-\frac{x}{2}){|}^{101}_{1}=\frac{101^{2}}{2}-50.5-(0.5-0.5)=5100.5-50.5=5050$$

И зачем все это нужно?

$$\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}$$

В первый день на ваш сайт зашел один человек, на второй день двое… Каждый день количество посещений увеличивалось на 1. Сколько всего посещений наберет сайт к концу 1000-го дня?

$$\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}=\frac{1000^{2}}{2}+\frac{1000}{2} = 500000+500=500500$$

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.


Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
5 цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
. точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 - будет записано 0.5
+ знак плюс Сложение чисел (целые, десятичные дроби)
- знак минус Вычитание чисел (целые, десятичные дроби)
÷ знак деления Деление чисел (целые, десятичные дроби)
х знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку "корня" производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
x 2 возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку "возведение в квадрат" производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
1 / x дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
% процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка "%"
( открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
) закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
± плюс минус Меняет знак на противоположный
= равно Выводит результат решения. Также над калькулятором в поле "Решение" выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
С сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение "0"

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Вычитание целых натуральных чисел { 7 - 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 - (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 - 1,2 = 4,3 }

Умножение.

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Вычисление процентов от числа

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

Понравилась статья? Поделиться с друзьями: