Нечеткая логика треугольная функция для чайников. Нечеткая база знаний. Основные характеристики нечетких множеств

Основы теории нечетких множеств и нечеткой логики

Одним из методов изучения множеств без уточнения их границ является теория нечетких множеств, которая была предложена в 1965 г. профессором Калифорнийского университета Лотфи Заде. Первоначально она разрабатывалась как средство моделирования неопределенности естественного языка. Однако впоследствии круг задач, решаемых с использованием аппарата нечетких множеств, значительно расширился и сейчас включает в себя такие области, как анализ данных, распознавание, исследование операций, моделирование сложных систем, поддержка принятия решений и т. д. .

Нередко при определении и описании характеристик объектов оперируют не только количественными, но и качественными значениями. В частности, рост человека можно количественно измерить в сантиметрах, а можно описать, используя качественные значения: карликовый, низкий, средний, высокий или гигантский. Интерпретация качественных значений носит субъективный характер, т.е. они могут по-разному трактоваться разными людьми (субъектами). В силу нечеткости (размытости) качественных значений, при необходимости перехода от них к количественным величинам возникают определенные трудности.

В системах, построенных на базе нечетких множеств, используются правила вида «ЕСЛИ А ТО В» (А ® В), в которых как в А (условие, предпосылку), так и в В (результат, гипотезу) могут входить качественные значения. Например, «ЕСЛИ Рост = "высокий" ТО Вид_спорта = "баскетбол"».

Переменная, значение которой определяется набором качественных значений некоторого свойства, в теории нечетких множеств называются лингвистической . В приведенном примере правила используются две лингвистические переменные: Рост и Вид_спорта.

Каждое значение лингвистической переменной определяется через так называемое нечеткое множество. Нечеткое множество определяется через некоторую базовую шкалу X и функцию принадлежности (характеристическую функцию) m(х ), где х Î Х . При этом, если в классическом канторовском множестве элемент либо принадлежит множеству (m(х ) = 1), либо не принадлежит (m(х ) = 0), то в теории нечетких множеств m(х ) может принимать любое значение в интервале . Над нечеткими множествами можно выполнять стандартные операции: дополнение (отрицание), объединение, пересечение, разность и т. д. (рис. 33).

Для нечетких множеств существует также ряд специальных операций: сложение, умножение, концентрирование, расширение и т. д.

При задании лингвистической переменной ее значения, т. е. нечеткие множества, должны удовлетворять определенным требованиям (рис. 34).

1. Упорядоченность. Нечеткие множества должны быть упорядочены (располагаться по базовой шкале) в соответствии с порядком задания качественных значений для лингвистической переменной.

2. Ограниченность. Область определения лингвистической переменной должна быть четко обозначена (определены минимальные и максимальные значения лингвистической переменной на базовой шкале). На границах универсального множества, где определена лингвистическая переменная, значения функций принадлежности ее минимального и максимального нечеткого множества должны быть единичными. На рисунке Т 1 имеет неправильную функцию принадлежности, а Т 6 – правильную.

3. Согласованность. Должно соблюдаться естественное разграничение понятий (значений лингвистической переменной), когда одна и та же точка универсального множества не может одновременно принадлежать с m(х ) = 1 двум и более нечетким множествам (требование нарушается парой Т 2 – Т 3).

4. Полнота. Каждое значение из области определения лингвистической переменной должно описываться хотя бы одним нечетким множеством (требование нарушается между парой T 3 – Т 4).

5. Нормальность. Каждое понятие в лингвистической переменной должно иметь хотя бы один эталонный или типичный объект, т. е. в какой-либо точке функция принадлежности нечеткого множества должна быть единичной (требование нарушается T 5).

X

Нечеткое множество «низкий рост» m н (х )

0 20 40 60 80 100 110 120 140 160 X

Нечеткое множество «высокий рост» m в (х )

0 20 40 60 80 100 110 120 140 160 X

Д = Н: Дополнение нечеткого множества «низкий рост»

m д (х ) = 1 – m н (х )

0 20 40 60 80 100 110 120 140 160 X

Н È В: Объединение нечетких множеств «низкий рост» и «высокий рост»

m нв (х ) = mах (m н (х ), m в (х ))

0 20 40 60 80 100 110 120 140 160 X

Н Ç В: Пересечение нечетких множеств «низкий рост» и «высокий рост»

m нв (х ) = min (m н (х ), m в (х ))

Рис. 33. Операции над нечеткими множествами

m(х ) Т 1 Т 2 Т 3 Т 4 Т 5 Т 6

Рис. 34. Пример задания нечетких множеств для линг­вис­тической переменной с нарушением требований

Требования 2–4 можно заменить одним универсальным – сумма функций принадлежности m(х ) по всем нечетким множествам в каждой точке области определения переменной должна равняться 1.

При обработке правил с лингвистическими переменными (нечетких правил) для вычисления истинности гипотезы применяются правила нечеткой логики. Нечеткая логика – разновидность непрерывной логики, в которой предпосылки, гипотезы и сами логические формулы могут принимать истинностные значения с некоторой долей вероятности.

Основные положения нечеткой логики:

· истинность предпосылки, гипотезы или формулы лежит в интервале ;

· если две предпосылки (Е 1 и Е 2) соединены Ù (логическим И), то истинность гипотезы Н рассчитывается по формуле t(Н) = MIN(t(Е 1), t(Е 2));

· если две предпосылки (Е 1 и Е 2) соединены Ú (логическим ИЛИ), то истинность гипотезы Н рассчитывается по формуле t(Н) = MAX(t(Е 1), t(Е 2));

· если правило (П) имеет свою оценку истинности, тогда итоговая истинность гипотезы Н итог корректируется с учетом истинности правила t(Н итог) = MIN(t(Н), t(П)).

Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.
Все это грустно, потому что нечеткая логика - это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования - настолько же простой, но гораздо более мощный, чем система обычных логических операций.

Самым замечательным фактом о нечеткой логике является то, что это прежде всего логика . Из начал мат-логики известно, что любая логическая функция может быть представлена дизъюнктивной или конъюнктивной нормальной формой, из чего следует, что для реализации исчисления высказываний достаточно всего трех операций: конъюнкции (&&), дизъюнкции (||) и отрицания (!). В классической логике каждая из этих операций задана таблицей истинности:

A b || a b && a ! -------- -------- ---- 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности , принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Есть два способа реализации дизъюнкции и конъюнкции:

#Максиминный подход: a || b => max(a, b) a && b => min(a, b) #Колорометрический подход: a || b => a + b - a * b a && b => a * b
Отрицание задается единственным способом (не трудно догадаться):

A => 1 - a
Легко проверить, что для крайних случаев - когда значения переменных исключительно 1 или 0 - приведенные выше функции дают таблицы истинности операций классической логики. Готово! Теперь у нас есть расширенная логика, обладающая невероятной мощью, простотой и при этом полностью совместимая с классической логикой в предельных случаях. Значит везде, где мы [программисты] используем логические выражения, мы можем использовать выражения нечеткой логики? Не совсем.

Дело в том, что все операторы языков программирования требуют четких условий, поэтому в какой-то момент всегда приходится из нечеткой степени истинности получать четкий критерий срабатывания. Это похоже на то, что происходит в квантовом мире: до тех пор, пока система эволюционирует в соответствии с уравнением Шредингера, ее квантовое состояние изменяется детерминированно и непрерывно, но как только мы прикасаемся к системе, происходит квантовый скачок, и система сваливается в одно из дискретных состояний. В нечеткой логике это называется дефаззификацией. Природа просто превращает квантовое состояние в вероятность и бросает кости, но вообще говоря методы дефаззификации бывают разные. Я не буду углубляться в эту тему, потому что объем ее тянет на отдельную статью. Упомяну лишь только, что метод дефаззификации следует выбирать, учитывая семантику задачи.

Для примера представим себе систему управления ракетой, использующую нечеткую логику для обхода препятствий. Представим себе, что ракета летит точно в гору, и система управления вычисляет решение: лететь вправо - 0.5, лететь влево - 0.5. Если использовать дефаззификацию методом центра масс, то система управления даст команду - лететь прямо. Бум! Очевидно, что в этом случае правильное решение - бросить кости и получить команду «влево» или «вправо» с вероятностью 50%.

В простейшем случае, когда нужно принять решение на основании степени истинности, можно разбить множество на интервалы и использовать if-else-if.

Если нечеткая логика используется для поиска по нечеткому критерию, то дефаззификация вообще может быть не нужна. Производя сравнения, мы будем получать некоторое значение степени равенства для каждого элемента пространства поиска. Мы можем определить некоторую минимальную степень равенства, значения ниже которой нас не интересуют; для оставшихся элементов степень равенства будет релевантностью, по убыванию которой мы будем сортировать результаты, и пускай пользователь решит, какой результат правильный.

В качестве примера приведу использование нечеткой логики для решения задачи, которой я развлекался еще в институте - это задача поиска китайского иероглифа по изображению.

Я сразу отбросил идею распознавать любой каракуль, нарисованный пользователем на экране (тогда это был экран КПК). Вместо этого программа предлагала выбрать тип черты из порядка 23-х, определенных правилами японской каллиграфии. Выбрав тип черты, пользователь рисовал прямоугольник, в который вписывалась черта. Фактически, иероглиф - и введенный, и хранимый в словаре - представлялся в виде множества прямоугольников, для которых был определен тип.

Как определить равенство иероглифов в таком представлении? Для начала сформулируем критерий в четкой постановке:

Иероглифы A и B равны тогда и только тогда, когда для каждой черты в A существует равная ей черта в B и для каждой черты в B существует равная ей черта в A.

Неявно предполагается, что иероглифы не содержат черт-дубликатов, то есть, если некоторая черта совпала с чертой в другом иероглифе, то ни с одной другой чертой в том же иероглифе она совпасть не может.

Равенство черт можно определить следующим образом:

Черты равны тогда и только тогда, когда относятся к одному типу и их прямоугольники занимают одну и ту же площадь.

Эти два определения дают нам систему утверждений, которой достаточно для реализации алгоритма поиска.

Для начала построим матрицу E следующим образом:

For i in 1..n for j in 1..n E = A[i] == B[j] end end #A и B - это иероглифы; A[i] и B[j] - это их черты, и оператор "==" вычисляет их нечеткое равенство. #Предполагается, что оба иероглифа имеют одинаковое количество черт - n.
Затем сомкнем эту матрицу в вектор M[n]:

For i in 1..n M[i] = E.max_in_row(i) end #Метод max_in_row вычисляет максимальное значение в строке матрицы.
Я использую максиминный подход, потому что, на практике, колорометрический дает слишком маленькие значения для конъюнкций. Если вспомнить, что max - это дизъюнкция, то получается, что мы вычисляем утверждение, что i-я черта A равна первой черте B или второй или третьей и т.д. Таким образом M - это вектор совпадений черт A с чертами B.

#Просто нечеткой конъюнкцией. e = M.min #Либо так: e = M.sum / M.length #(отношение суммы элементов к длине вектора).
Оба способа работают, но по-разному, причем второй способ работает даже если сравнивать черты четко. Какой из них правильней - вопрос философский.

Еще пару слов стоит сказать о сравнении черт. В соответствии с определением, равенство черт - это конъюнкция двух условий: равенства типов и равенства прямоугольников. Черты некоторых типов очень похожи. Вводя, пользователь легко может их перепутать, поэтому стоит иметь таблицу похожести, значения которой будут отражать насколько черта i похожа на черту j (на главной диагонали, естественно, будут единицы). Как степень равенства прямоугольников можно брать отношение площади их пересечения к площади большего из прямоугольников.

Вобщем, область применения нечеткой логики весьма обширна. В любом алгоритме, в любой системе правил попробуйте заменить истину и ложь на степень истинности и, возможно, эта система правил или алгоритм станут более точно отражать реальность. В конце концов, мы живем в мире, который фундаментально нечеток.

Классическая логика по определению не может оперировать с нечетко очерченными понятиями, поскольку все высказывания в формальных логических системах могут иметь только два взаимоисключающих состояния: «истина» со значением истинности «1» и «ложь» со значением истинности «0». Одной из попыток уйти от двузначной бинарной логики для описания неопределенности было введение Лукашевичем трехзначной логики с третьим состоянием «возможно» со значением истинности «0,5». Введя в рассмотрение нечеткие множества, Заде предложил обобщить классическую бинарную логику на основе рассмотрения бесконечного множества значений истинности. В предложенном Заде варианте нечеткой логики множество значений истинности высказываний обобщается до интервала 0 ; 1 , т.е. включает как частные случаи классическую бинарную логику и трехзначную логику Лукашевича. Такой подход позволяет рассматривать высказывания с различными значениями истинности и выполнять рассуждения с неопределенностью.

Нечеткое высказывание – это законченная мысль, об истинности или ложности которой можно судить только с некоторой степенью уверенности 0 ; 1: «возможно истинно», «возможно ложно» и т.п. Чем выше уверенность в истинности высказывания, тем ближе значение степени истинности к 1 . В предельных случаях 0 , если мы абсолютно уверены в ложности высказывания, и 1 , если мы абсолютно уверены в истинности высказывания, что соответствует классической бинарной логике. В нечеткой логике нечеткие высказывания обозначаются так же, как и нечеткие множества: A , B , C … . Введем нечеткое отображение T: Ω → 0 ; 1 , которое действует на множестве нечетких высказываний Ω = A , B , C … . В этом случае значение истинности высказывания A ∈ Ω определяется как T A ∈ 0 ; 1 и является количественной оценкой нечеткости, неопределенности, содержащейся в высказывании A .

Логическое отрицание нечеткого высказывания A обозначается ¬ A – это унарная (т.е. производимая над одним аргументом) логическая операция, результат которой является нечетким высказыванием «не A », «неверно, что A », значение истинности которого:

T ¬ A = 1 − T A .

Помимо приведенного выше исторически принятого основного определения нечеткого логического отрицания (нечеткого «НЕ»), введенного Заде, могут использоваться следующие альтернативные формулы:

T ¬ A = 1 − T A 1 + λT A , λ > − 1, – нечеткое λ -дополнение по Сугено;

T ¬ A = 1 − T A p , p > 0, – нечеткое p -дополнение по Ягеру.

Логическая конъюнкция нечетких высказываний A и B обозначается A ∩ B – это бинарная (т.е. производимая над двумя аргументами) логическая операция, результат которой является нечетким высказыванием « A и B », значение истинности которого:

T A ∩ B = min T A ; T B .

Помимо приведенного выше исторически принятого основного определения логической конъюнкции (нечеткого «И»), введенного Заде, могут использоваться следующие альтернативные формулы:

T A ∩ B = T A T B – в базисе Бандлера-Кохоута;

T A ∩ B = max T A + T B − 1 ; 0 – в базисе Лукашевича-Гилеса;

T A ∩ B = T B , при T A = 1 ; T A , при T B = 1 ; 0, в остальных случаях; – в базисе Вебера.

Логическая дизъюнкция нечетких высказываний A и B обозначается A ∪ B – это бинарная логическая операция, результат которой является нечетким высказыванием « A или B », значение истинности которого:

T A ∪ B = max T A ; T B .

Помимо приведенного выше исторически принятого основного определения логической дизъюнкции (нечеткого «ИЛИ»), введенного Заде, могут использоваться следующие альтернативные формулы:

T A ∪ B = T A + T B − T A T B – в базисе Бандлера-Кохоута;

T A ∪ B = min T A + T B ; 1 – в базисе Лукашевича-Гилеса;

T A ∪ B = T B , при T A = 0 ; T A , при T B = 0 ; 1, в остальных случаях; – в базисе Вебера.

Нечеткая импликация нечетких высказываний A и B обозначается A ⊃ B – это бинарная логическая операция, результат которой является нечетким высказыванием «из A следует B », «если A , то B », значение истинности которого:

T A ⊃ B = max min T A ; T B ; 1 − T A .

Помимо приведенного выше исторически принятого основного определения нечеткой импликации, введенного Заде, могут использоваться следующие альтернативные определения нечеткой импликации, предложенные различными исследователями в области теории нечетких множеств:

T A ⊃ B = max 1 − T A ; T B – Гедель;

T A ⊃ B = min T A ; T B – Мамдани;

T A ⊃ B = min 1 ; 1 − T A + T B – Лукашевич;

T A ⊃ B = min 1 ; T B T A , T A > 0 – Гоген;

T A ⊃ B = min T A + T B ; 1 – Лукашевич-Гилес;

T A ⊃ B = T A T B – Бандлер-Кохоут;

T A ⊃ B = max T A T B ; 1 − T A – Вади;

T A ⊃ B = 1, T A ≤ T B ; T B , T A > T B ; – Бауэр.

Общее число введенных определений нечеткой импликации не ограничивается приведенными выше. Большое количество работ по изучению различных вариантов нечеткой импликации обусловлено тем, что понятие нечеткой импликации является ключевым при нечетких выводах и принятии решений в нечетких условиях. Наибольшее применение при решении прикладных задач нечеткого управления находит нечеткая импликация Заде.

Нечеткая эквивалентность нечетких высказываний A и B обозначается A ≡ B – это бинарная логическая операция, результат которой является нечетким высказыванием « A эквивалентно B », значение истинности которого:

T A ≡ B = min max T ¬ A ; T B ;max T A ; T ¬ B .

Так же, как в классической бинарной логике, в нечеткой логике с помощью рассмотренных выше логических связок можно формировать достаточно сложные логические высказывания.

Математическая теория нечетких множеств (fuzzy sets) инечеткая логика (fuzzy logic ) являются обобщениями классическойтеории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких иприближенных рассуждений при описании человеком процессов, систем, объектов.

Одной из основных характеристик нечеткой логики является лингвисти­ческая переменная, которая определяется набором вербальных (словесных) характеристик некоторого свойства. Рассмотрим лингвисти­ческую переменную «скорость», которую можно характеризовать через набор следующих по­нятий-значе­ний: «ма­лая», «средняя» и «большая», данные значения называются термами.

Следующей основополагающей характеристикой нечеткой логики является понятие функции принадлежности. Функция принадлежности определяет, насколько мы уверены в том, что данное значение лингвистической переменной (например, скорость) можно отнести к соответствующим ей категори­ям (в частности для лингвистической переменной скорость к категориям «малая», «средняя», «большая»).

На следующем рисунке (первая часть) отражено, как одни и те же значения лингвистической переменной могут соответствовать различным понятиям-значениям или термам. Тогда функции принадлежности, характеризующие нечеткие множества понятий скорости, можно выразить гра­фически, в более привычном математическом виде (рис. 35, вторая часть).

Из рисунка видно, что степень, с которой численное значение скорости, например v = 53, совместимо с понятием «большая», есть 0,7, в то время как совместимость значений скорости, рав­ных 48 и 45, с тем же понятием есть 0,5 и 0,1 соответственно.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Рисунок 1. Типовые кусочно-линейные функции принадлежности.

Функция принадлежности гауссова типа описывается формулой

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Рисунок 2. Гауссова функция принадлежности.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке приведен пример описанной лингвистической переменной "Цена акции".

Рис. Описание лингвистической переменной "Цена акции".

Количество термов в лингвистической переменной редко превышает 7.

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

    Существует хотя бы одно правило для каждого лингвистического терма выходной переменной .

    Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида: R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1 … R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i … R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m , где x k , k=1..n – входные переменные; y – выходная переменная; A ik – термы соответствующих переменных с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Рисунок 5. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

    Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.

    Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Под дефаззификацией понимается процедура преобразования нечетких величин, получаемых в результате нечеткого вывода, в четкие. Эта процедура является необходимой в тех случаях, где требуется интерпретация нечетких выводов конкретными четкими величинами, т.е. когда на основе функции принадлежности возникает потребность определить для каждой точки вZ числовые значения.

В настоящее время отсутствует систематическая процедура выбора стратегии дефаззификации. На практике часто используют два наиболее общих метода: метод центра тяжести (ЦТ - центроидный), метод максимума (ММ).

Для дискретных пространств в центроидном методе формула для вычисления четкого значения выходной переменной представляется в следующем виде:

Стратегия дефаззификации ММ предусматривает подсчет всех тех z , чьи функции принадлежности достигли максимального значения. В этом случае (для дискретного варианта) получим

где z - выходная переменная, для которой функция принадлежности достигла максимума;m - число таких величин.

Из этих двух наиболее часто используемых стратегий дефаззификации, стратегия ММ дает лучшие результаты для переходного режима, аЦТ - в установившемся режиме из-за меньшей среднеквадратической ошибки.

Пример нечеткого правила

Как работает.

По максимальному значению функций принадлежности (для скорости 60 км в час значение функции принадлежности «низкая» = 0, а для дорожных условий 75 % от нормы значение функции принадлежности «тяжелые» = около 0.7) по 0.7 проводится прямая которая рассекает геометрическую фигуру заключения (подача топлива) на две части, в результате берется фигура лежащая ниже прямой а верхняя часть отбрасывается. Это для одного правила, таких правил может быть 100 и более в реальных задачах.

Рассмотрим процесс получения нечеткого вывода по трем правилам одновременно с последующим получением чет­кого решения. Данная процедура включает в себя три этапа. На первом этапе получают нечеткие выводы по каждому из правил в отдельности по схеме, показанной на рис. 3.13. На втором эта­пе производится сложение результирующих функций, получен­ных на предыдущем этапе (применяется логическая операция ИЛИ, т.е. берется максимум). Третий этап - этап получения чет­кого решения (дефаззификация). Здесь применяется любой из известных классических методов: метод центра тяжести и т.д. Полученное в виде числового значения четкое решение служит задающей величиной системы управления. В нашем примере это будет величина, в соответствии с которой ИСУ должна бу­дет изменить подачу топлива. Процесс получения нечетких выводов по нескольким прави­лам с последующей дефаззификацией для рассматриваемого примера показан на рис. 3.14. При начальном значении скорости = 65 км в час, и дорожным условиям = 80 % от норматива получаем следующую схему решения об уровне подачи топлива.

Рис. 3.14. Процесс получения нечетких выводов по правилам и их преобразование в четкое решение.

Как видно из рис. 3.14, в результате дефаззификации получе­но четкое решение: при заданных значениях скорости и дорожных условий подача топлива должна составлять 63% от

максимального значения. Таким образом, несмотря на нечет­кость выводов, в итоге получено вполне четкое и определенное решение. Такое решение, вероятно, принял бы и водитель авто­мобиля в процессе движения. Данный пример демонстрирует великолепные возможности моделирования человеческих рас­суждений на основе методов теории нечетких множеств.

Нечеткая логика (fuzzy logic) - это надмножество классической булевой логики. Она расширяет возможности классической логики, позволяя применять концепцию неопределенности в логических выводах. Употребле­ние термина "нечеткий" применительно к математической теории может ввес­ти в заблуждение. Более точно ее суть характеризовало бы название "непре­рывная логика". Аппарат нечеткой логики столь же строг и точен, как и класси­ческий, но вместе со значениями "ложь" и "истина" он позволяет оперировать значениями в промежутке между ними. Говоря образно, нечеткая логика по­зволяет ощущать все оттенки окружающего мира, а не только чистые цвета.

Нечеткая логика как новая область математики была представлена в 60-х го­дах профессором калифорнийского университета Лотфи Заде (Lotfi Zadeh). Пер­воначально она разрабатывалась как средство моделирования неопределенности естественного языка, однако впоследствии круг задач, в которых нечеткая логи­ка нашла применение, значительно расширился. В настоящее время она исполь­зуется для управления линейными и нелинейными системами реального време­ни, при решении задач анализа данных, распознавания, исследования операций.

Часто для иллюстрации связи нечеткой логики с естественными представ­лениями человека об окружающем мире приводят пример о пустыне. Опреде­лим понятие "пустыня" как "бесплодная территория, покрытая песком". Те­перь рассмотрим простейшее высказывание: "Сахара - это пустыня". Нельзя не согласиться с ним, принимая во внимание данное выше определение. Пред­положим, что с поверхности Сахары удалена одна песчинка. Осталась ли Саха­ра пустыней? Скорее всего, да. Продолжая удалять песчинки одну за другой, всякий раз оцениваем справедливость приведенного ранее высказывания. По прошествии определенного промежутка времени песка в Сахаре не останется и высказывание станет ложным. Но после какой именно песчинки его истин­ность меняется? В реальной жизни с удалением одной песчинки пустыня не исчезает. Пример показывает, что традиционная логика не всегда согласуется с представлениями человека. Для оценки степени истинности высказываний ес­тественный язык имеет специальные средства (некоторые наречия и обороты, например: "в некоторой степени", "очень" и др.). С возникновением нечеткой логики они появились и в математике.

Одно из базовых понятий традиционной логики - понятие подмножества. Подобно этому в основе нечеткой логики лежит теория нечетких подмножеств (нечетких множеств). Эта теория занимается рассмотрением множеств, опре­деляемых небинарными отношениями вхождения. Это означает, что принима­ется во внимание не просто то, входит элемент во множество или не входит, но и степень его вхождения, которая может изменяться от 0 до 1.


Пусть S - множество с конечным числом элементов, S ={s 1 , s 2 ,..., s n }, где n - число элементов (мощность) множества S . В классичес­кой теории множеств подмножество U множества S может быть определено как отображение элементов S на множество В = {0, 1}:

U: S => В.

Это отображение может быть представлено множеством упорядоченных пар вида:

{s i ,m ui }, iÎ,

где s i - i-й элемент множества S ; n - мощность множества S ; m Ui - элемент множества В = {0, 1}. Если m Ui = 1, то s i является элементом подмножества U . Элемент "0" множества В используется для обозначения того, что s i не входит в подмножество U . Проверка истинности предиката "s k ÎU " осуществляется пу­тем нахождения пары, в которой s k - первый элемент. Если для этой пары m Uk =l, то значением предиката будет "истина", в противном случае - "ложь".

Если U - подмножество S , то U может быть представлено n-мерным векто­ром (m U 1 , m U 2 ,…, m Un), где i-й элемент вектора равен "1", если соответствую­щий элемент множества S входит и в U , и "0" в противном случае. Таким обра­зом, U может быть однозначно представлено точкой в n-мерном бинарном ги­перкубе В n , В = {0, 1} (рисунок 1).

Рисунок 1 - Графическое представление традиционного множества

Нечеткое подмножество F может быть представлено как отображение эле­ментов множества S на интервал I = . Это отображение определяется мно­жеством упорядоченных пар: {s i ,m F ,(s i)}, iÎ, где s i - i-й элемент множества S ; n - мощность множества S ; m F (s i) Î -степень вхождения элемента s i в множество F . Значение m F (s i), равное 1, озна­чает полное вхождение, m F (s i) = 0 указывает на то, что элемент s i не принадле­жит множеству F . Часто отображение задается функцией m F (x) принадлежнос­ти х нечеткому множеству F . В силу этого термины "нечеткое подмножество" и "функция принадлежности" употребляются как синонимы. Степень истиннос­ти предиката "s k ÎF " определяется путем нахождения парного элементу s k зна­чения m F (s k), определяющего степень вхождения s k в F .

Обобщая геометрическую интерпретацию традиционного подмножества на не­четкий случай, получаем представление F точкой в гиперкубе I n , I = . В отличие от традиционных подмножеств точки, изображающие нечеткие подмножества, мо­гут находиться не только на вершинах гиперкуба, но и внутри него (рисунок 2).

Рисунок 2 - Графическое представление нечеткого множества

Рассмотрим пример определения нечеткого подмножества. Имеется мно­жество всех людей S . Определим нечеткое подмножество Т всех высоких лю­дей этого множества. Введем для каждого человека степень его принадлежно­сти подмножеству Т . Для этого зададим функцию принадлежности m Т (h), оп­ределяющую, в какой степени можно считать высоким человека ростом h сан­тиметров.

(1)

где h - рост конкретного человека в сантиметрах.

График этой функции пред­ставлен на рисунке 3.

Рисунок 3 - График функции принадлежности rn T (h)

Пусть рост Михаила - 163 см, тогда истинность высказывания "Михаил высок" будет равна 0.21. Использованная в данном случае функция принад­лежности тривиальна. При решении большинства реальных задач подобные функции имеют более сложный вид, кроме того, число их аргументов может быть большим.

Методы построения функций принадлежности для нечетких подмножеств довольно разнообразны. В большинстве случаев они отражают субъективные представления экспертов о предметной области. Так, например, кому-то чело­век ростом 180 см может показаться высоким, а кому-то - нет. Однако часто такая субъективность помогает снизить степень неопределенности при реше­нии слабо формализованных задач. Как правило, для задания функций принад­лежности используются типовые зависимости, параметры которых определя­ются путем обработки мнений экспертов. Представление произвольных функ­ций при реализации автоматизированных систем часто затруднено, поэтому в реальных разработках такие зависимости аппроксимируются кусочно-линей­ными функциями.

Необходимо осознавать разницу между нечеткой логикой и теорией веро­ятностей. Заключается она в различии понятий вероятности и степени принад­лежности. Вероятность определяет, насколько возможен один из нескольких взаимоисключающих исходов или одно из множества значений. Например, может определяться вероятность того, что утверждение истинно. Утверждение может быть либо истинным, либо ложным. Степень принадлежности показы­вает, насколько то или иное значение принадлежит определенному классу (под­множеству). Например, при определении истинности утверждения ее возмож­ные значения не ограничены "ложью" и "истиной", а могут попадать и в проме­жуток между ними. Еще одно различие выражено в математических свойствах этих понятий. В отличие от вероятности для степени принадлежности не тре­буется выполнение аксиомы аддитивности.

Понравилась статья? Поделиться с друзьями: