Базовые понятия пpогpаммиpования. Действие, пpоцесс, алгоритм, программа. Программирование программа алгоритм

Алгоритм? набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Это связано с тем, что работа каких-то инструкций алгоритма может быть зависима от других инструкций или результатов их работы.

Таким образом, некоторые инструкции должны выполняться строго после завершения работы инструкций, от которых они зависят. Независимые инструкции или инструкции, ставшие независимыми из-за завершения работы инструкций, от которых они зависят, могут выполняться в произвольном порядке, параллельно или одновременно, если это позволяют используемые процессор и операционная система.

Алгоритм означает точное описание некоторого процесса, инструкцию по его выполнению. Разработка алгоритма является сложным и трудоемким процессом. Алгоритмизация? это техника разработки (составления) алгоритма для решения задач на ЭВМ. Блок-схема обобщенного алгоритма работы программы представлена на рисунке 3.9.

Рисунок 3.9 - Блок-схема алгоритма работы программы

Для записи алгоритма решения задачи применяются следующие изобразительные способы их представления:

· словесно-формульное описание;

· блок-схема (схема графических символов);

· алгоритмические языки;

· операторные схемы;

· псевдокод;

Разработка программного продукта

Со времени появления платформы.NET (примерно в 2001 г.) среди библиотек базовых классов появился API по имени Windows Forms, представленный в основном сборкой System.Windows.Forms.dll. Инструментальный набор Windows Forms предоставляет типы, необходимые для построения графических пользовательских интерфейсов для настольных компьютеров, создания специализированных элементов управления, управления ресурсами (например, строками и значками) и выполнения других задач, возникающих при программировании для пользовательских компьютеров. Имеется и дополнительный API по имени GDI+ (представленный сборкой System.Drawing.dll), который предоставляет дополнительные типы, позволяющие программисту генерировать двухмерную графику, взаимодействовать с сетевыми принтерами и обрабатывать графические данные .

Windows Forms (и GDI+) применяются в платформе.NET 4.0 и, видимо, будут существовать еще некоторое время (возможно, длительное) в составе библиотеки базовых классов. Правда, после выхода.NET 3.0 компания Microsoft выпустила совершенно новый инструментальный API под названием Windows Presentation Foundation (WPF) .

Несомненно, наиболее важным пространством имен Windows Forms является System.Windows.Forms. Типы из этого пространства имен можно разбить на следующие крупные категории :

· Базовая инфраструктура. Это типы, представляющие базовые операции программ, которые используют Windows Forms (Form и Application), и различные типы, предназначенные для взаимодействия с устаревшими элементами ActiveX, a также для взаимодействия с новыми специальными элементами управления WPF;

· Элементы управления. Эти типы применяются для создания графических пользовательских интерфейсов (наподобие Button, MenuStrip, ProgressBar и DataGridView), все они являются производными от базового класса Control. Элементы управления допускают настройку на этапе проектирования и видимы (по умолчанию) во время выполнения;

· Компоненты. Это типы, которые не порождены от базового класса Control, но все-таки могут предоставлять программам Windows Forms визуальные возможности (например, ToolTip и ErrorProvider). Многие компоненты (к примеру, Timer и System.ComponentModel.BackgroundWorker) не видимы во время выполнения, но все-таки допускают настройку на этапе проектирования;

· Окна стандартных диалогов. В Windows Forms имеется несколько заготовленных диалоговых окон для распространенных операций (например, OpenFileDialog, PrintDialog и ColorDialog).

В мире Windows Forms тип Form представляет любое окно в приложении, включая главное окно самого верхнего уровня, дочерние окна приложений с многодокументным интерфейсом (multiple document interface ? MDI), а также модальные и немодальные диалоговые окна. Тип Form содержит множество возможностей, унаследованных от классов-предков, а также из реализуемых им многочисленных интерфейсов.

Для полноценного порождения типа Form нужны и многие другие базовые классы и интерфейсы, но даже профессиональному разработчику Windows Forms совсем не обязательно знать роли всех членов всех классов или реализованных интерфейсов.

Для создания нового проекта в Visual Studio выберем «New»-«Project», в появившемся окне выберем «Windows Form Application» и заполним предложенные поля.

Для передачи запроса SQL серверу и возврату результата в виде набора строк (запросы на выборку) был реализован метод «GetSQLData», представленный ниже.

В качестве параметра метод принимает строку-запрос, в качестве возвращаемого значения имеет тип «DataTable» ? таблицу данных.

public static DataTable GetSQLData(string query)

DataSet ds = new DataSet();

myConnection.Open();

catch (Exception e1)

SqlDataAdapter dataAdapter = new SqlDataAdapter(comm);

ds = new DataSet();

dataAdapter.Fill(ds);

MessageBox.Show("Error");

myConnection.Close();

catch (Exception e3)

return ds.Tables;

Для передачи запроса SQL серверу без возврата результата (запросы на вставку, изменение и удаление) был реализован метод «SetSQLData», представленный ниже. В качестве параметра метод принимает строку-запрос и не имеет возвращаемого типа значения.

public static void SetSQLData(string query)

SqlConnection myConnection = new SqlConnection(Config.ConnectionString);

myConnection.Open();

catch (Exception e1)

MessageBox.Show(e1.ToString());

SqlCommand comm = new SqlCommand(query);

comm.CommandType = System.Data.CommandType.Text;

comm.Connection = myConnection;

comm.ExecuteNonQuery();

myConnection.Close();

catch (Exception e3)

MessageBox.Show(e3.ToString());

Для того, чтобы пользователю не приходилось вводить строку подключения к базе данных также необходимо создать класс и файл конфигурации, которые хранили бы и позволяли изменять настройки приложения. Для этих целей были созданы соответственно класс «Config» и файл конфигурации «App.config»

public static string ConnectionString = GetParam("ConnectionStringSql");

public string Connection

return ConnectionString;

ConnectionString = value;

public static string GetPathTo(string ParamName)

return Application.StartupPath +

ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None).AppSettings.Settings.Value;

Переменная «Connection» этого класса является строкой для соединения с сервером. При запуске она инициализируется из файла настроек при помощи метода «GetParam», представленного ниже.

public static string GetParam(string ParamName)

return ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None).AppSettings.Settings.Value;

«App.config» - XML-файл, содержаний переменные и их явно или неявно указываемые значения. Текст сформированного xml-документа пользовательских настроек приведен ниже.

connectionString="Valid Connection String;" />

Обработчики различных событий элемента создаются на вкладке «Events». К примеру, событие «OnClick» - «нажатие на кнопку». После двойного клика на необходимое событие откроется код формы с объявленным обработчиком, в который необходимо добавить код для обработки возникающего события.

Добавим в обработчик события «OnClick» следующий код для вызова другой формы приложения:

private void button1_Click(object sender, EventArgs e)

NewTest obj = new NewTest();

obj.ShowDialog();

Подобным образом мы будем вызывать все формы приложения. Для считывания выборки в таблицу нашей формы добавим в ее код метод «Load_Tables».

listView1.Items.Clear();

DateTime d = new DateTime();

for (int i = 1; i < dt.Columns.Count; i++)

listView1.Items.Add(item);

Строка «query» в данном методе это запрос на выборку к базе данных. Теперь можно приступать к проектированию и реализации других форм приложения.

Добавить форму в текущий проект можно из контекстного окна «Solution Explorer», или через меню «Project»-«Add Windows Form». В появившемся окне вводим имя создаваемой формы и жмем «Add».

Задачи для этих элементов на данной форме будут следующими:

1. GroupBox - группировка схожих полей для ввода или выбора информации;

2. TextBox - поле для ручного ввода информации, которая после будет использоваться в запросах;

3. Label - подсказка пользователю о значении того или иного поля а также данных, которые необходимо ввести;

4. Button - подтверждение действия пользователем, считываемое системой.

В случае выбора того или иного элемента «RadioButton» («Ученик» или «Преподаватель»), будут разблокированы поля для ввода данных студента или преподавателя соответственно. По нажатию на кнопку «Начать работу» осуществляется авторизация.

Следующая форма приложения - форма добавления и изменения данных теста.

Данные из полей «Наименование», «Количество вопросов» и «Преподаватель» считываются и, при помощи запроса на вставку в методе «SetSQLData» класса «Connection» отправляются SQL-серверу.

В случае успеха или неудачи пользователю будет выведено соответствующее сообщение.

При загрузке формы наши выпадающий список «Преподаватель» (элемент «ComboBox») должен быть проинициализирован и заполнен некоторым набором значений, которые сможет выбирать пользователь. Для этого добавим в код формы метод «LoadComboboxes», код которого приведен ниже.

private void LoadComboboxes()

query = "Select Преподаватель from Преподаватели";

DataTable dt = Connection.GetSQLData(query);

comboBox1.DataSource = dt;

comboBox1.DisplayMember = "Преподаватель";

MessageBox.Show("Ошибка загрузки справочника <Преподаватели>");

Следующая форма приложения - отчет «Результаты тестирования». Добавляем форму, как было описано ранее, размещаем на форме элемент «ListView» и придаем форме следующий вид.

Данный отчет группирует все попытки зарегистрированных учеников успешно пройти тестирование при помощи системы. Для считывания полученной от SQL сервера таблицы добавим в код формы приведенный ниже метод.

private void Load_Tables(string query)

listView1.Items.Clear();

DataTable dt = Connection.GetSQLData(query);

foreach (DataRow row in dt.Rows)

DateTime d = new DateTime();

ListViewItem item = new ListViewItem(row.ToString());

for (int i = 1; i < dt.Columns.Count; i++)

if (i == dt.Columns.Count - 1)

d = Convert.ToDateTime(row[i]);

item.SubItems.Add(d.ToShortDateString());

item.SubItems.Add(row[i].ToString());

listView1.Items.Add(item);

Следующая форма - форма тестирования знаний. Элемент «DateTimePicker» размещен на форме для возможности точного слежения за временем начала и окончания сдачи теста. Данный элемент скрыт от пользователя и не отображается.

Для работы изменения вопросов и ответов теста добавим еще одну форму и придадим ей следующий вид.

Аналогичным путем были созданы и реализованы остальные формы автоматизированной системы тестирования знаний по дисциплине «Русский язык». Более подробно функционал программы представлен в разделе «Руководство пользователя» и в приложении «Листинг кода программы».

Бесплатная визуальная среда разработки программного обеспечения. Конструктор «Алгоритм» поможет начинающим пользователям быстро создать собственную, полноценную программу, без использования специальных языков. Воплощайте в жизнь самые оригинальные идеи уже сегодня, с помощью гибких настроек и удобного интерфейса.

Создание программ в Алгоритм

Принцип разработки ПО, в конструкторе Алгоритм 2, представляет собой построение логической цепи действий. С помощью визуальных функций создается интерфейс будущей программы, после чего к элементам привязываются события, условия и действия. Например, добавив в программу кнопку, вы можете назначить ей действие открывания файла, воспроизведения звука, смены текста и т.д. Функционал Алгоритм 2.7 весьма разнообразен и при умелом подходе может выдать очень интересные результаты.

Особенности конструктора:

  • Удобный интерфейс.
  • Множество готовых функций и визуальных объектов.
  • Возможность создания браузеров, текстовых редакторов и медиа-плееров за пару минут.
  • Создание программ, работающих с файлами, папками и реестром.
  • Набор полезных объектов с расширенными возможностями. К примеру перезагрузка ПК, или рабочий стол.
  • Вывод готовой программы в формате exe, за пару кликов.
  • Экспорт программы в язык Visual Basic.NET, для доработки на высоком уровне программирования.

Конечно, для серьезной разработки программ, Алгоритму 2, существенно не достает возможностей, но для простых задач этот конструктор подойдет идеально. Если вам нужно быстро создать программу с определенным набором функций и уникальным интерфейсом, то данная среда разработки отлично вам в этом поможет.

Понятие алгоритма так же фундаментально для информатики, как и понятие информации. Существует много различных определений алгоритма, так как это понятие достаточно широкое и используется в различных областях науки, техники и повседневной жизни.

Алгоритм – понятная и точная последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное.

Исполнителем алгоритма может быть как человек (кулинарные рецепты, различные инструкции, алгоритмы математических вычислений), так и техническое устройство. Различные машины (компьютеры, промышленные роботы, современная бытовая техника) являются формальными исполнителями алгоритмов. От формального исполнителя не требуется понимание сущности решаемой задачи, но требуется точное выполнение последовательности команд.

Алгоритм можно записывать различными способами (словесное описание, графическое описание – блок схема, программа на одном из языков программирования и т.д.). Программа – это алгоритм, записанный на .

Для создания алгоритма (программы) необходимо знать:

    полный набор исходных данных задачи (начальное состояние объекта);

    цель создания алгоритма (конечное состояние объекта);

    систему команд исполнителя (то есть набор команд, которые исполнитель понимает и может выполнить).

Полученный алгоритм (программа) должен обладать следующим набором свойств:

    дискретность (алгоритм разбит на отдельные шаги - команды);

    однозначность (каждая команда определяет единственно возможное действие исполнителя);

    понятность (все команды алгоритма входят в систему команд исполнителя);

    результативность (исполнитель должен решить задачу за конечное число шагов).

Большая часть алгоритмов обладает также свойством массовости (с помощью одного и того же алгоритма можно решать множество однотипных задач).

Выше отмечалось, что один и тот же алгоритм может быть записан по-разному. Можно записывать алгоритм естественным языком. В таком виде мы используем рецепты, инструкции и т.п. Для записи алгоритмов, предназначенных формальным исполнителям, разработаны специальные языки программирования . Любой алгоритм можно описать графически в виде блок-схемы . Для этого разработана специальная система обозначений:

Обозначение Описание Примечания
Начало и конец алгоритма
Ввод и вывод данных. Вывод данных иногда обозначают иначе:

Действие В вычислительных алгоритмах так обозначают присваивание
Развилка Развилка - компонент, необходимый для реализации ветвлений и циклов
Начало цикла с параметром
Типовой процесс В программировании - процедуры или подпрограммы
Переходы между блоками

Приведем пример описания алгоритма суммирования двух величин в виде блок-схемы:

Такой способ описания алгоритм наиболее нагляден и понятен человеку. Поэтому, алгоритмы формальных исполнителей обычно разрабатывают сначала в виде блок-схемы, и только затем создают программу на одном из .

Программист имеет возможность конструировать и использовать нетипичные алгоритмические структуры, однако, в этом нет необходимости. Любой сколь угодно сложный алгоритм может быть разработан на основе трёх типовых структур: следования, ветвления и повторения. При этом структуры могут располагаться последовательно друг за другом или вкладываться друг в друга.

Линейная структура (следование).

Наиболее простой алгоритмической структурой является линейная . В ней все операции выполняются один раз в том порядке, в котором они записаны.

Ветвление.

В полном ветвлении предусмотрено два варианта действий исполнителя в зависимости от значения логического выражения (условия). Если условие истинно, то выполняться будет только первая ветвь, иначе только вторая ветвь.

Вторая ветвь может быть пустой. Такая структура называется неполным ветвлением или обходом .

Из нескольких ветвлений можно сконструировать структуру «выбор » (множественное ветвление), которая будет выбирать не из двух, а из большего количества вариантов действий исполнителя, зависящих от нескольких условий . Существенно, что выполняется только одна ветвь - в такой структуре важное значение приобретает порядок следования условий: если выполняются несколько условий, то сработает только одно из них - первое сверху.


Цикл (повторение).

Цикл позволяет организовать многократное повторение одной и той же последовательности команд - она называется телом цикла. В различных видах циклических алгоритмов количество повторений может зависеть от значения логического выражения (условия) или может быть жестко задано в самой структуре. Различают циклы: «д о », «п ока », циклы со счётчиком. В циклах «д о» и «п ока» логическое выражение (условие) может предшествовать телу цикла (цикл с предусловием ) или завершать цикл (цикл с послеусловием ).

Ц иклы «д о » - повторение тела цикла до выполнения условия:

Ц иклы «п ока » - повторение тела цикла пока условие выполняется (истинно):

Ц иклы со счётчиком (с параметром) – повторение тела цикла заданное число раз:

Вспомогательный алгоритм (подпрограмма, процедура).

Вспомогательный алгоритм представляет собой модуль, к которому можно многократно обращаться из основного алгоритма. Использование вспомогательных алгоритмов может существенно уменьшить размер алгоритма и упростить его разработку.

Методы разработки сложных алгоритмов.

Существует два метода разработки сложных алгоритмов:

Метод последовательной детализации задачи («сверху-вниз») состоит в том, что исходная сложная задача разбивается на подзадачи. Каждая из подзадач рассматривается и решается отдельно. Если какие-либо из подзадач сложны, они также разбиваются на подзадачи. Процесс продолжается до тех пор, пока подзадачи не сведутся к элементарным. Решения отдельных подзадач затем собираются в единый алгоритм решения исходной задачи. Метод широко используется, так как позволяет вести разработку общего алгоритма одновременно нескольким программистам, решающим локальные подзадачи. Это необходимое условие быстрой разработки программных продуктов.

Сборочный метод («снизу-вверх») заключается в создании множества программных модулей, реализующих решение типичных задач. При решении сложной задачи программист может использовать разработанные модули в качестве вспомогательных алгоритмов (процедур). Во многих уже существуют подобные наборы модулей, что существенно упрощает и ускоряет создание сложного алгоритма.

Управление - целенаправленное взаимодействие объектов, одни из которых являются управляющими, другие - управляемыми.

В простейшем случае таких объектов два:

С точки зрения информатики управляющие воздействия можно рассматривать как управляющую информацию. Информация может передаваться в форме команд. Последовательность команд по управлению объектом, приводящая к заранее поставленной цели, называется алгоритмом управления . Следовательно, объект управления можно назвать исполнителем управляющего алгоритма. В рассмотренном примере, управляющий объект работает "не глядя" на то, что происходит с управляющим объектом (управление без обратной связи ). Такая схема управления называется незамкнутой . Другая схема управления может учитывать информацию о процессах, происходящих в объекте управления:

В этом случае, алгоритм управления должен быть достаточно гибким, чтобы анализировать эту информацию и принимать решение о своих дальнейших действиях в зависимости от состояния объекта управления (управление с обратной связью ). Такая схема управления называется замкнутой .

Более подробно процессы управления изучаются рассматриваются кибернетикой . Эта наука утверждает, что самые разнообразные процессы управления в обществе, природе и технике происходят сходным образом, подчиняются одним и тем же принципам.

Понятие алгоритма является одним из основных в современной науке и практике. Еще на самых ранних ступенях развития математики (Древний Египет, Вавилон, Греция) в ней стали рассматриваться различные вычислительные процессы чисто механического характера. С их помощью искомые величины ряда задач вычислялись последовательно из исходных величин по определенным правилам и инструкциям. Со временем все такие процессы в математике получили название алгоритмов (алгорифмов).

Алгоритм есть совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.

Термин алгоритм происходит от имени средневекового узбекского математика Аль-Хорезми, который еще в IX в. (825 г.) дал правила выполнения четырех арифметических действий в десятичной системе счисления. Процесс выполнения арифметических действий был назван алгоризмом.

С 1747 г. вместо слова алгоризм стали употреблять алгорисмус, смысл которого состоял в комбинировании четырех операций арифметического исчисления - сложения, вычитания, умножения, деления.

К 1950 г. алгорисмус стал алгорифмом. Смысл алгорифма чаще всего связывался с алгорифмами Евклида - процессами нахождения наибольшего общего делителя двух многочленов, наибольшей общей меры двух отрезков и т. п.

Способы записи алгоритмов

Алгоритм должен быть понятен (доступен) пользователю и/или машине. Доступность пользователю означает, что он обязан отображаться посредством конкретных формализованных изобразительных средств, понятных пользователю. В качестве таких изобразительных средств используются следующие способы их записи:

  • словесный;
  • формульный;
  • табличный;
  • операторный;
  • графический;
  • язык программирования.

При словесном способе записи содержание последовательных этапов алгоритма описывается в произвольной форме на естественном языке.

Формульный способ основан на строго формализованном аналитическом задании необходимых для исполнения действий.

Табличный способ подразумевает отображение алгоритма в виде таблиц, использующих аппарат реляционного исчисления и алгебру логики для задания подлежащих исполнению взаимных связей между данными, содержащимися в таблице.

Операторный способ базируется на использовании для отображения алгоритма условного набора специальных операторов: арифметических, логических, печати, ввода данных и т. д.; операторы снабжаются индексами и между ними указываются необходимые переходы, а сами индексированные операторы описываются чаще всего в табличной форме.

Графическое отображение алгоритмов в виде блок-схем - весьма наглядный и распространенный способ. Графические символы, отображающие выполняемые процедуры, стандартизованы. Наряду с основными символами используются и вспомогательные, поясняющие процедуры и связи между ними.

Алгоритмы могут быть записаны и в виде команд какого-либо языка программирования. Если это макрокоманды, то алгоритм читаем и пользователем-программистом, и вычислительной машиной, имеющей транслятор с соответствующего языка.

Приведем пример словесного представления алгоритма на примере нахождения произведения п натуральных чисел (с= п = = 1 х 2 х 3 х 4 х... х п).

Этот процесс может быть записан в виде следующей системы последовательных указаний (пунктов):

  • 1. Полагаем с равным единице и переходим к следующему пункту.
  • 2. Полагаем / равным единице и переходим к следующему пункту.
  • 3. Полагаем с равным с=сх/ и переходим к следующему указанию.
  • 4. Проверяем, равно ли /" числу п. Если / = п, то вычисления прекращаем. Если / п, то увеличиваем / на единицу и переходим к пункту 3.

Классификация и свойства алгоритмов

Алгоритмы, в соответствии с которыми решение поставленных задач сводится к арифметическим действиям, называются численными алгоритмами.

Алгоритмы, в соответствии с которыми решение поставленных задач сводится к логическим действиям, называются логическими алгоритмами. Примерами логических алгоритмов могут служить алгоритмы поиска минимального числа, поиска пути на графе, поиска пути в лабиринте и др.

Алгоритмом является последовательность четких однозначных указаний, которые, будучи применены к определенным имеющимся данным, обеспечивают получение требуемого результата. Данными называют все величины, участвующие в решении задачи. Данные, известные перед выполнением алгоритма, являются начальными, исходными данными. Результат решения задачи - это конечные, выходные данные.

Каждое указание алгоритма предписывает исполнителю выполнить одно конкретное законченное действие. Исполнитель не может перейти к выполнению следующей операции, не закончив полностью выполнения предыдущей. Предписания алгоритма надо выполнять последовательно одно за другим, в соответствии с указанным порядком их записи. Выполнение всех предписаний гарантирует правильное решение задачи.

Поочередное выполнение команд алгоритма за конечное число шагов приводит к решению задачи, к достижению цели. Разделение выполнения решения задачи на отдельные операции (выполняемые исполнителем по определенным командам) - важное свойство алгоритмов, называемое дискретностью.

Для того чтобы алгоритм мог быть выполнен, нельзя включать в него команды, которые исполнитель не в состоянии исполнить. У каждого исполнителя имеется свой перечень команд, которые он может выполнить. Совокупность команд, которые могут быть выполнены исполнителем, называется системой команд исполнителя.

Каждая команда алгоритма должна определять однозначное действие исполнителя. Такое свойство алгоритмов называется определенностью (или точностью) алгоритма.

Алгоритм, составленный для конкретного исполнителя, должен включать только те команды, которые входят в его систему команд. Это свойство алгоритма называется понятностью. Алгоритм не должен быть рассчитан на принятие каких-либо самостоятельных решений исполнителем, не предусмотренных составлением алгоритма.

Еще одно важное требование, предъявляемое к алгоритмам, - результативность (или конечность) алгоритма. Оно означает, что исполнение алгоритма должно закончиться за конечное число шагов.

Поскольку разработка алгоритмов - процесс творческий, требующий умственных усилий и затрат времени, предпочтительно разрабатывать алгоритмы, обеспечивающие решения всего класса задач данного типа. Например, если составляется алгоритм решения кубического уравнения ах 3 + Ьх 2 + сх + с1 = 0, то он должен быть вариативен, т. е. обеспечивать возможность решения для любых допустимых исходных значений коэффициентов а, Ь, с, с1. Про такой алгоритм говорят, что он удовлетворяет требованию массовости. Свойство массовости не является необходимым свойством алгоритма. Оно, скорее, определяет качество алгоритма; в то же время свойства точности, понятности и конечности являются необходимыми (иначе это не алгоритм).

Запись алгоритмов в виде блок-схем

Алгоритмы можно записывать по-разному. Форма записи, состав и количество операций алгоритма зависят от того, кто будет исполнителем этого алгоритма. Если задача решается с помощью ЭВМ, алгоритм решения задачи должен быть записан в понятной для машины форме, т. е. в виде программы.

Схема алгоритма - графическое представление алгоритма, дополняемое элементами словесной записи. Каждый пункт алгоритма отображается на схеме некоторой геометрической фигурой или блоком. При этом правило выполнения схем алгоритмов регламентирует ГОСТ 19.002-80 «Единая система программной документации» (табл. 1.28).

Блоки на схемах соединяются линиями потоков информации. Основное направление потока информации идет сверху вниз и слева направо (стрелки могут не указываться), снизу вверх и справа налево - стрелка обязательна. Количество входящих линий для блока не ограничено. Выходящая линия - одна, за исключением логического блока.

Таблица 1.28. Основные элементы блок-схем

Наименование

по ГОСТ 19.003-80 (ЕСПД):а = 10,15,20 мм; b = ^, 5а

Блок вычислений

Вычислительные действия или последовательность действий

Логический

Выбор направления выполнения алгоритма в зависимости от некоторого условия

Блок ввода-

  • 1. Общие обозначения ввода (вывода) данных (вне зависимости от физического носителя).
  • 2. Вывод данных, носителем которых является документ

Начало или конец алгоритма, вход в программу или выход из нее

г = а/4

Процесс пользователя (подпрограмма)

Вычисление по стандартной программе или подпрограмме

модификации

Функция выполняет действия, изменяющие пункты (например, заголовок цикла) алгоритма

Соединитель

Указание связи прерванными линиями между потоками информации в пределах одного листа

Межстраничное соединение

Указание связи между информацией на разных листах

Базовые структуры алгоритмов

Это определенный набор блоков и стандартных способов их соединения для выполнения типичных последовательных действий. К основным структурам относятся следующие - линейные, разветвляющиеся, циклические (рис. 1.26).


Рис. 1.26. Примеры структур алгоритмов: а - линейный алгоритм; б - алгоритм с ветвлением; в - алгоритм с циклом

Линейными называются алгоритмы, в которых действия осуществляются последовательно друг за другом. Стандартная блок-схема линейного алгоритма приводится на рис. 1.26, а (вычисление суммы двух чисел - А и В).

Разветвляющимся называется алгоритм, который, в отличие от линейных алгоритмов, содержит условие, в зависимости от истинности или ложности которого выполняется та или иная последовательность команд. Таким образом, команда ветвления состоит из условия и двух последовательностей команд.

Примером может являться разветвляющийся алгоритм, изображенный в виде блок-схемы (рис. 1.26, б). Аргументами этого алгоритма являются две переменные А, В , а результатом - переменная X. Если условие А > В истинно, то выполняется операция X := А х В, в противном случае выполняется X := А + В. В результате печатается то значение переменной X, которое она получает при выполнении одной из серий команд.

Циклическим называется алгоритм, в котором некоторая последовательность операций (тело цикла) выполняется многократно. Однако «многократно» не означает «до бесконечности». Организация циклов, никогда не приводящая к остановке в выполнении алгоритма, является нарушением требования его результативности - получения результата за конечное число шагов.

В цикл в качестве базовых входят - блок проверки условия и тело цикла. Перед операцией цикла осуществляется начальное присвоение значений тем переменным, которые используются в теле цикла. Если тело цикла расположено после проверки условий Р (цикл с предусловием), то может случиться так, что при определенных условиях тело цикла не выполнится ни разу. Такой вариант организации цикла, управляемый предусловием, называется цикл «ПОКА»/«WHILE» (здесь условие - это условие на продолжение цикла).

Возможен другой случай, когда тело цикла выполняется, по крайней мере, один раз и будет повторяться до тех пор, пока не станет истинным условие. Такая организация цикла, когда его тело расположено перед проверкой условия, носит название цикла с постусловием, или цикла «ДО»/«FOR». Истинность условия в этом случае - условие окончания цикла. Отметим, что возможна ситуация с постусловием и при организации цикла «ПОКА». Итак, цикл «ДО» завершается, когда условие становится истинным, а цикл «ПОКА» - когда становился ложным. Современные языки программирования имеют достаточный набор операторов, реализующих как цикл «ПОКА», так и цикл «ДО».

Рассмотрим пример алгоритма вычисления факториала, изображенный на рис. 1.26 (с циклом «ПОКА»). Переменная N получает значение числа, факториал которого вычисляется. Переменной N, которая в результате выполнения алгоритма должна получить значение факториала, присваивается первоначальное значение 1. Переменной К также присваивается значение 1. Цикл будет выполняться, пока справедливо условие N> К. Тело цикла состоит из двух операций N = N1 х К и К= К + 1.

Циклические алгоритмы, в которых тело цикла выполняется заданное число раз, реализуются с помощью цикла со счетчиком. Цикл со счетчиком реализуется с помощью команды повторения.

Процесс решения сложной задачи довольно часто сводится к решению нескольких более простых подзадач. Соответственно при разработке сложного алгоритма он может разбиваться на отдельные алгоритмы, которые называются вспомогательными. Каждый такой вспомогательный алгоритм описывает решение какой-либо подзадачи.

Процесс построения алгоритма методом последовательной детализации состоит в следующем. Сначала алгоритм формулируется в «крупных» блоках (командах), которые могут быть непонятны исполнителю (не входят в его систему команд) и записываются как вызовы вспомогательных алгоритмов. Затем происходит детализация, и все вспомогательные алгоритмы подробно расписываются с использованием команд, понятных исполнителю.

Контрольные вопросы

  • 1. Дайте классификацию информации.
  • 2. Каковы преимущества цифровой информации по отношению к аналоговой?
  • 3. Перечислите методы кодирования символов.
  • 4. Перечислите методы кодирования численной информации.
  • 5. Переведите число 32 451 10 в шестнадцатеричную и восьмеричную системы счисления.
  • 6. Переведите число 32 451 16 в десятичную и восьмеричную системы счисления.
  • 7. В чем заключаются особенности двоичной арифметики?
  • 8. Подсчитайте произведение 1ГА 16 и 2ВС1 6 по модулю 8.
  • 9. Подсчитайте сумму 457 8 и 375 8 по модулю 3.
  • 10. Перечислите логические элементы ЭВМ.
  • 11. Что такое логические узлы ЭВМ?
  • 12. Составьте таблицы истинности для левого (-1(А д В)) и правого (-И V -,б) выражений 1-го закона де Моргана. Проверьте их на соответствие.
  • 13. Составьте таблицы истинности для левого (-1(А V В)) и правого (-.А V -,б) выражений 2-го закона де Моргана. Проверьте их на соответствие.
  • 14. Последний столбец таблицы истинности для двухместных операций, очевидно, может содержать 16 = 2 4 различных сочетаний «1» и «О». Следовательно, всего может быть определено 16 логических операций над двумя переменными, из которых нами рассмотрены только пять. Составьте таблицу истинности для одной из 9 оставшихся вне рассмотрения функций и попытайтесь построить логическое выражение для этой функции.
  • 15. Перечислите базовые структуры алгоритмов и программ.
Понравилась статья? Поделиться с друзьями: