Оборудование технологии разработки ардуино. Arduino для начинающих - стартовый набор или как начать ардуинить? Много фото и видео

Доброго времени суток, Хабр. Запускаю цикл статей, которые помогут Вам в знакомстве с Arduino. Но это не значит, что, если Вы не новичок в этом деле – Вы не найдёте ничего для себя интересного.

Введение

Было бы не плохо начать со знакомства с Arduino. Arduino – аппаратно-программные средства для построения систем автоматики и робототехники. Главным достоинством есть то, что платформа ориентирована на непрофессиональных пользователей. То есть любой может создать своего робота вне зависимости от знаний программирования и собственных навыков.

Начало

Создание проекта на Arduino состоит из 3 главных этапов: написание кода, прототипирование (макетирование) и прошивка. Для того, чтоб написать код а потом прошить плату нам необходима среда разработки. На самом деле их есть немало, но мы будем программировать в оригинальной среде – Arduino IDE. Сам код будем писать на С++, адаптированным под Arduino. Скачать можно на официальном сайте . Скетч (набросок) – программа, написанная на Arduino. Давайте посмотрим на структуру кода:


main(){ void setup(){ } void loop(){ } }

Важно заметить, что обязательную в С++ функцию main() процессор Arduino создаёт сам. И результатом того, что видит программист есть:


void setup(){ } void loop(){ }

Давайте разберёмся с двумя обязательными функциями. Функция setup() вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция loop() - циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера.

Первая программа

Для того, чтоб лучше понять принцип работы платформы, давайте напишем первую программу. Эту простейшую программу (Blink) мы выполним в двух вариантах. Разница между ними только в сборке.


int Led = 13; // объявляем переменную Led на 13 пин (выход) void setup(){ pinMode(Led, OUTPUT); // определяем переменную } void loop(){ digitalWrite(Led, HIGH); // подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду digitalWrite(Led, LOW); // не подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду }

Принцип работы этой программы достаточно простой: светодиод загорается на 1 секунду и тухнет на 1 секунду. Для первого варианта нам не понадобиться собирать макет. Так как в платформе Arduino к 13 пину подключён встроенный светодиод.

Прошивка Arduino

Для того, чтоб залить скетч на Arduino нам необходимо сначала просто сохранить его. Далее, во избежание проблем при загрузке, необходимо проверить настройки программатора. Для этого на верхней панели выбираем вкладку «Инструменты». В разделе «Плата», выберете Вашу плату. Это может быть Arduino Uno, Arduino Nano, Arduino Mega, Arduino Leonardo или другие. Также в разделе «Порт» необходимо выбрать Ваш порт подключения (тот порт, к которому вы подключили Вашу платформу). После этих действий, можете загружать скетч. Для этого нажмите на стрелочку или во вкладке «Скетч» выберете «Загрузка» (также можно воспользоваться сочетанием клавиш “Ctrl + U”). Прошивка платы завершена успешно.

Прототипирование/макетирование

Для сборки макета нам необходимы следующие элементы: светодиод, резистор, проводки (перемычки), макетная плата(Breadboard). Для того, чтоб ничего не спалить, и для того, чтоб всё успешно работало, надо разобраться со светодиодом. У него есть две «лапки». Короткая – минус, длинная – плюс. На короткую мы будем подключать «землю» (GND) и резистор (для того, чтоб уменьшить силу тока, которая поступает на светодиод, чтоб не спалить его), а на длинную мы будем подавать питание (подключим к 13 пину). После подключения, загрузите на плату скетч, если вы ранее этого не сделали. Код остаётся тот же самый.


На этом у нас конец первой части. Спасибо за внимание.

Цикл статей и обучающих схем с радиолюбительскими экспериментами на Arduino для начинающих. Это такая радиолюбительская игрушка-конструктор, из которой без паяльника, травления печатных плат и тому подобного любой чайник в электронике может собрать полноценное работающее устройство, подходящее как для профессионального прототипирования так и для любительских опытов при изучении электроники.


Плата Arduino для предназначена в первую очередь для обучения начинающих радиолюбителей основам программирования микроконтроллеров и созданию микроконтроллерных устройств своими руками без серьезной теоретической подготовки. Среда разработки Arduino позволяет, скомпилировать и загрузить в память платы готовый программный код. Причем загрузка кода предельно проста.

Arduino с чего начать новичку

В первую очередь для работы с платой Ардуино начинающему электронщику нужно скачать программу для разработки Arduino, она состоит из встроенного текстового редактора, в котором мы работаем с программным кодом, области сообщений, окна вывода текста(консоли), панели инструментов с кнопками часто применяемых команд и нескольких меню. Для загрузки своих программ и связи это программа через типовой шнур USB подключается к плате Arduino.


Код, написанный в среде Arduino, называют скетч . Он пишется в текстовом редакторе, имеющем специальные инструменты вставки/вырезки, замены/поиска текста. Во время сохранения и экспорта в области сообщений (смотри рисунок в первом уроке для начинающих, чуть ниже) появляются пояснения, также могут отображаться ошибки. Консоль показывает сообщения Arduino, включающие полные отчеты об ошибках и другую полезную информацию. Кнопки инструментальной панели позволяют проверить и записать скейтч, открыть, создать и сохранить его, открыть мониторинг последовательной шины и многое др.

Итак, переходим к первому уроку Arduino схемы начинающих электронщиков.

Контроллер Arduino UNO для удобства начинающих уже имеет сопротивление и LED-светодиод, подсоединенный к 13 выводу разъема, поэтому никаких внешних радиоэлементов в первом опыте нам не нужно.


Загрузив код, Ардуино позволяет нашей программе поучаствовать в инициализации системы. Для этого мы указываем микроконтроллеру команды, которые он выполнит в момент первоначальной загрузки и далее напрочь забудет об них (т.е. эти команды выполнятся Ардуинкой только один раз при старте). И именно с этой целью в нашем коде мы выделяем блок, в котором храняться эти команды. void setup() , а точнее в том пространстве внутри фигурных скобок этой функции, смотри программный скейтч.

Не забывайте про фигурные скобки! Потеря хотя бы одной из них сделает весь скейтч полностью нерабочим. Но и лишние скобки тоже не ставьте, т.к также возникнет ошибка.

Код скачать:
Скейтч с комментариями и пояснениями в файле 001-1_mig-led.ino

Функция void loop() это то место, куда мы помещаем команды, которые будут выполняться все то время, пока включена плата Arduino. Начав выполнение с первой команды, Ардуинка дойдет до самого конца и сразу же перейдет в начало, чтобы повторить ту же самую последовательность. И так бесконечное число раз, до тех пор, пока на плату поступает питание. По своей сути, void loop – это главная функция, точка входа в Arduino.


Функция delay (1000) задерживает обработку программы на 1000 милисекунд. Все это идет в вечном цикле loop() .

Главный вывод после восприятия нашей первой програмки на Ардуино: С помощью функций void loop и void setup мы передаем микроконтроллеру наши инструкции. Все то, что находится внутри блока setup выполнится всего один раз. Содержимое модуля loop будет повторятся в цикле до тех пор, пока останется включенным Arduino.

В предыдущей программе между включением и выключением светодиода была секундная задержка. В используемом выше простейшем коде начинающего ардуинщика был один большой минус. Для выдержки паузы между включением и отключением светодиода в одну секунду мы применили функцию delay() и поэтому в этот момент контроллер не способен выполнять другие команды в главной функции loop() . Корректировка кода в функции loop(), представленная ниже решает эту проблему.

Вместо установки значения в HIGH, а затем в LOW, мы получим значение ledPin и проинвертируем его. Допустим если оно было HIGH, то станет LOW и т.п.

Второй вариант кода Ардуино для управления светодиодом здесь:

Затем можно заменить функцию delay() . Вместо нее, лучше использовать функцию millis() . Она возвращает количество миллисекунд, прошедшее с момента старта программы. Функция переполнится приблизительно через 50 суток работы программного кода.

Похожей функцией является micros() , которая возвращает количество микросекунд, прошедшее с момента запуска программного кода. Функция вернется в ноль через 70 минут работы программы.

Конечно, это добавит немного строк кода в наш скетч, но это, сделает вас несомненно более опытным программистом и увеличит потенциал вашего Arduino. Для этого нужно всего лишь научиться применять функцию millis.

Следует четко понимать, что простейшая функция delay приостанавливает выполнение всей программы Ардуино, делая ее неспособной выполнять какие-либо задачи в этот период времени. Вместо того, чтобы приостанавливать всю нашу программ, можно подсчитывать, сколько времени прошло до завершения действия. Это, прекрасно, реализуется с помощью функции millis(). Чтобы все было легко в понимании, мы рассмотрим следующий вариант мигания светодиодом без временной задержки.

Начало этой программы такое же как и у любого другого стандартного скетча Arduino.


В данном примере используется два цифровых ввода-вывода Arduino. Светодиод подсоединяется к 8 пину, который сконфигурирован как OUTPUT. К 9 через подключена кнопка, которая настроена как INPUT. Когда нажимаем на кнопку пин 9 устанавливается в HIGH, и программа переключает вывод 8 в HIGH, тем самым включая светодиод. Отпускание кнопки сбрасывает девятый вывод в состояние LOW. Затем код переключает вывод 8 в LOW, отключая световой индикатор.

Для управления пятью светодиодами будем применять различные манипуляции с портами Arduino. Для этого напрямую запишем данные в порты Arduino, это позволит задать значения для светодиодов при помощи одной лишь функции.

Arduino UNO обладает тремя портами: B (цифровые входа/выхода с 8 по 13); C (аналоговые входа); D (цифровые входа/выхода с 0 по 7)

Каждый порт осуществляет управление тремя регистрами. Первый DDR задает чем будет являться pin входом или выходом. При помощи второго регистра PORT можно задать pin в состояние HIGH или LOW. При помощи третьего можно считать информацию о состояние ножек Arduino, в случае если они работает на вход.

Для работы схемы задействуем порт B. Для этого установим все ножки порта как цифровые выхода. У порта B всего 6 ножек. Биты регистра DDRB должны быть заданы в "1" , если пин будет использоваться как выход (OUTPUT), и в "0" , если пин планируем применять как вход (INPUT). Биты портов нумеруются с 0 по 7, но не всегда имеют все 8 пинов

Допустим: DDRB = B00111110; // установить ножки порта В с 1 по 5 как выхода, а 0 как вход.

В нашем схеме бегущих огней мы задействуем пять выходов: DDRB = B00011111 ; // установить пины порта В с 0 по 4 как выходы.

Для записи данных в порт В нужно задействовать регистр PORTB. Зажечь первый светодиод можно с помощью управляющей команды: PORTB = B00000001; , первый и четвертый LED: PORTB = B00001001 и т.п

Существует два оператора двоичного сдвига: влево и вправо. Оператор сдвига влево заставляет все биты данных переместиться влево, соответственно оператор сдвига вправо, перемещает их вправо.

Пример:

varA = 1; // 00000001
varA = 1 varA = 1 varA = 1

Теперь вернемся к исходному коду нашей программе. Нам требуется ввести две переменные: upDown будет включать в себя значения куда двигаться - вверх или вниз, а вторая cylon укажет какие Led зажигать.

Конструктивно такой светодиод имеет один общий вывод и три вывода для каждого цвета. Ниже показана схема подключения RGB-светодиода к плате Arduino с общим катодом. Все резисторы используемые в схеме для подключения должны быть одного номинала от 220-270 Ом.


Для подключения с общим катодом схема подключения трехцветного led будет почти аналогична, за исключением того, что общий вывод будет подключен не к земле (gnd на устройстве), а к выводу +5 вольт. Выводы Красный, зеленый и синий в обоих случаях подключаются к цифровым выходам контроллера 9, 10 и 11.

К девятому пину Arduino UNO подключим внешний светодиод через сопротивление 220 Ом. Для плавного управления яркостью последнего применим функцию analogWrite() . Она обеспечивает вывод ШИМ-сигнала на ножку контроллера. Причем команду pinMode() вызывать не требуется. Т.к analogWrite(pin,value) включает два параметра: pin - номер ножки для вывода, value - значение от 0 до 255.

Код:
/*
Учебный пример начинающего ардуинщика, раскрывает возможности команды analogWrite() для реализации Fade-эффекта светодиода
*/
int brightness = 0; // яркость LED
int fadeAmount = 5; // шаг изменения яркости
unsigned long currentTime;
unsigned long loopTime;

Void setup() {
pinMode(9, OUTPUT); // устанавливаем 9 пин как выход
currentTime = millis();
loopTime = currentTime;
}

Void loop() {
currentTime = millis();
if(currentTime >= (loopTime + 20)){
analogWrite(9, brightness); // устанавливаем значение на 9 выводе

Brightness = brightness + fadeAmount; // прибавляем шаг изменения яркости, которая установится в следующем цикле

// если достигли мин. или макс. значения, то идем в обратную сторону (реверс):
if (brightness == 0 || brightness == 255) {
fadeAmount = -fadeAmount ;
}
loopTime = currentTime;
}
}

Работа Arduino с энкодером

Энкодером предназначен для преобразования угла поворота в электрический сигнал. С него мы получаем два сигнала (А и В), которые противоположны по фазе. В этом учебном примере мы будем применять энкодер SparkFun COM-09117, имеющий двенадцать положений на один оборот (каждое положение ровно 30°). На приведенном ниже рисунке хорошо видно, как зависят выход А и В друг от друга при движении энкодера по часовой или против часовой стрелки.

Если сигнал А переходит от положительного уровня к нулевому, мы считываем значение выхода В. Если выход В в этот момент времени находится в положительном состоянии, значит энкодер двигается по направлению часовой стрелке, если В выдает нулевой уровень, то энкодер двигается в противоположном направлении. Считывая оба выхода, мы при помощи микроконтроллера способны вычислить направление вращения, а при помощи подсчета импульсов с А выхода энкодера - угол поворота.

При необходимости можно при помощи расчета частоты, определить насколько быстро происходит вращение энкодера.

Применяя энкодер в нашем учебном примере мы будем регулировать яркостью светодиода при помощи ШИМ выхода. Для считывания данных с энкодера мы будем использовать метод, базирующийся на программных таймерах, которые мы уже рассмотрели.

Учитывая тот факт, что в самом быстром случае, мы можем повернуть ручку энкодера на 180° за 1/10 секунды, то это будет 6 импульсов за 1/10 секунды или 60 импульсов в одну секунду.

В реальности быстрее вращать не возможно. Так как нам необходимо отслеживать все полупериоды, то частота должна быть около 120 Герц. Для полной уверенности, возьмем 200 Гц.

Так как, в данном случае, у нас используется механический энкодер, то возможен дребезг контактов, а низкая частота прекрасно отфильтровывает подобный дребезг.


По сигналам программного таймера необходимо постоянно осуществлять сравнение текущего значения выхода А энкодера с предыдущим значением. Если состояние меняется от положительного к нулю, то мы опрашиваем состояние выхода В. В зависимости от результата опроса состояния мы увеличиваем или снижаем счетчик значения яркости LED светодиода. Код программы с временным интервалом около 5 мс (200 Гц), представлен ниже:

Код начинающего ардуинщика:
/*
** Энкодер
** Для управлением яркостью светодиода применяется энкодер фирмы Sparkfun
*/

Int brightness = 120; // яркость светодиода, начинаем с половины
int fadeAmount = 10; // шаг изменения яркости
unsigned long currentTime;
unsigned long loopTime;
const int pin_A = 12; // pin 12
const int pin_B = 11; // pin 11
unsigned char encoder_A;
unsigned char encoder_B;
unsigned char encoder_A_prev=0;
void setup() {
// declare pin 9 to be an output:
pinMode(9, OUTPUT); // устанавливаем 9 вывод как выход
pinMode(pin_A, INPUT);
pinMode(pin_B, INPUT);
currentTime = millis();
loopTime = currentTime;
}
void loop() {
currentTime = millis();
if(currentTime >= (loopTime + 5)){ // проверяем состояния каждые 5мс (частота 200 Гц)
encoder_A = digitalRead(pin_A); // считываем состояние выхода А энкодера
encoder_B = digitalRead(pin_B); // выхода В энкодера
if((!encoder_A) && (encoder_A_prev)){ // если состояние меняется с положительного к нулевому
if(encoder_B) {
// выход В в положительном состояние, значит вращение осуществляется по часовой стрелке
// увеличиваем яркость свечения, не более чем до 255
if(brightness + fadeAmount }
else {
// выход В в нулевом состояние, значит вращение идет против часовой стрелки
// снижаем яркость, но не ниже нуля
if(brightness - fadeAmount >= 0) brightness -= fadeAmount;
}

}
encoder_A_prev = encoder_A; // сохраняем значение А для последующего цикла

AnalogWrite(9, brightness); // устанавливаем яркость на девятый пин

LoopTime = currentTime;
}
}

В этом примере для начинающих мы рассмотрим работу с пьезоизлучателем для генерирования звуков. Для этого возьмем пьезодатчик позволяющий генерировать звуковые волны в диапазоне частот 20 Гц - 20 кГц.

Это такая радиолюбительская конструкция где по всему объему расположены светодиоды. С помощью этой схемы можно генерировать различные световые и анимационные эффекты. Сложные схемы способны даже отображать различные объемные слова. Другими словами это элементарный объемным монитор

Сервопривод является основным элементом при конструировании различных радиоуправляемых моделей, а управление им с помощью контроллера просто и удобно.


Программа для управления проста и наглядна. Начинается она с подключения файла, содержащего все необходимые команды для управления сервоприводом. Далее, мы создаем объект servo, например servoMain. Следующая функция setup(), в которой мы прописываем, что сервопривод подсоединен к девятому выводу контроллера.

Код:
/*
Arduino Servo
*/
#include
Servo servoMain; // Обьект Servo

Void setup()
{
servoMain.attach(9); // Servo подключен к девятому выводу
}

Void loop()
{
servoMain.write(45); // Повернуть сервопривод влево на 45 °
delay(2000); // Ожидание 2000 милисекунд (2 секунды)
servoMain.write(0); // Повернуть серво влево на 0 °
delay(1000); // Пауза 1 с.

delay(1500); // Ожидание 1.5 с.
servoMain.write(135); // Повернуть серво вправо на 135 °
delay(3000); // Пауза 3 с.
servoMain.write(180); // Повернуть серво вправо на 180 °
delay(1000); // Ожидание 1 с.
servoMain.write(90); // Повернуть серво на 90 °. Центральная позиция
delay(5000); // Пауза 5 с.
}

В главной функции loop() , мы задаем команды для серводвигателя, выдерживая паузы между ними.

Схема Arduino счетчика на 7-сегментном индикаторе

Этот простой проект на Arduino для начинающих, заключается в создании схемы счетчика на обычном 7-сегментном индикаторе с общим катодом. Программный код, приведенный ниже, позволяет при нажатии на кнопку запускать счет от 0 до 9.

Семисегментный индикатор – представляет собой комбинацию 8 светодиодов (последний отвечает за точку) с общим катодом, которые можно включать в нужной последовательности так, чтобы они создавали цифры. Следует обратить внимание, что в данной схеме, смотри рисунок ниже, выводы 3 и 8 отведены под катод.


Справа показана таблица соответствия выводов Arduino и выводов светодиодного индикатора.

Код этого проекта:

byte numbers = {
B11111100, B01100000, B11011010, B11110010, B01100110,
B10110110, B10111110, B11100000, B11111110, B11100110
};
void setup() {
for(int i = 2; i pinMode(i, OUTPUT);
}
pinMode(9, INPUT);
}
int counter = 0;
bool go_by_switch = true;
int last_input_value = LOW;
void loop() {
if(go_by_switch) {
int switch_input_value = digitalRead(9);
if(last_input_value == LOW && switch_input_value == HIGH) {

}
last_input_value = switch_input_value;
} else {
delay(500);
counter = (counter + 1) % 10;
}
writeNumber(counter);
}

Void writeNumber(int number) {
if(number 9) {
return;
}
byte mask = numbers;
byte currentPinMask = B10000000;
for(int i = 2; i if(mask & currentPinMask) digitalWrite(i,HIGH);
else digitalWrite(i,LOW);
currentPinMask = currentPinMask >> 1;
}
}

Существенно расширить потенциал плат Ардуино можно и с помощью дополнительных модулей, которые можно подключить к PIN выводам практически любого устройства. Рассмотри наиболее популярные и интересные модули расширения или как их еще называют - шилды.

Данная статья поможет вам начать работу с Arduino и включает в себя описание различных типов Arduino, как загрузить среду разработки программного обеспечения Arduino, и описывает различные платы и принадлежности, доступные для Arduino, и которые понадобятся вам для разработки проектов на Arduino.

Arduino - это одноплатный контроллер с открытыми исходными кодами, который можно использовать в множестве различных приложений. Это возможно самый простой и самый дешевый вариант из микроконтроллеров для любителей, студентов и профессионалов для разработки проектов на основе микроконтроллеров. Платы Arduino используют либо микроконтроллер Atmel AVR, либо микроконтроллер Atmel ARM, и в некоторых версия имеет интерфейс USB. Они также имеют шесть или более выводов аналоговых входов и четырнадцать или более выводов цифровых входов/выходов (I/O), которые используются для подключения к микроконтроллеру датчиков, приводов и других периферийных схем. Цена на платы Arduino в зависимости от набора функций составляет от шести до сорока долларов.

Типы плат Arduino

Существует множество различных типов плат Arduino, как показано в списке ниже, каждая из которых обладает собственным набором функций. Они отличаются по скорости обработки, памяти, портам ввода/вывода и подключению, но основная составляющая их функционала остается неизменной.

На разнообразие плат Arduino и их технические описания можно посмотреть в подразделе « » раздела «Купить » данного сайта.

Программное обеспечение (IDE)

Программное обеспечение, используемое для программирования Arduino, представляет собой интегрированную среду разработки Arduino IDE. IDE представляет собой Java приложение, которое работает на множестве различных платформ, включая системы PC, Mac и Linux. Она разработана для начинающих, которые не знакомы с программированием. Она включает в себя редактор, компилятор и загрузчик. Также в IDE включены библиотеки кода для использования периферии, например, последовательных портов и различных типов дисплеев. Программы для Arduino называются «скетчами», и они написаны на языке, очень похожем на C или C++.

Большинство плат Arduino подключаются к компьютеру с помощью USB кабеля. Это соединение позволяет загружать скетчи на вашу плату Arduino, а также обеспечивает плату питанием.

USB кабель для Arduino

Программирование

Программирование Arduino легко: сначала вы используете редактор кода IDE для написания программы, а затем компилируете и загружаете её одним кликом.

Программа для Arduino включает в себя две основные функции:

  • setup()
  • loop()

Вы можете использовать функцию setup() для инициализации настроек платы. Эта функция выполняется только один раз, при включении платы.

Функция loop() выполняется после завершения функции setup() , и в отличие от функции setup() она работает постоянно.

Функции программ

Ниже приведен список наиболее часто используемых функции при программировании Arduino:

  • pinMode - устанавливает вывод в режим входа или выхода;
  • analogRead - считывает аналоговое напряжение на аналоговом входном выводе;
  • analogWrite - записывает аналоговое напряжение в аналоговый выходной вывод;
  • digitalRead - считывает значение цифрового входного вывода;
  • digitalWrite - задает значение цифрового выходного вывода в высокий или низкий уровень;
  • Serial.print - пишет данные в последовательный порт в виде удобочитаемого текста ASCII.

Библиотеки Arduino

Библиотеки Arduino представляют собой коллекции функций, которые позволят вам управлять устройствами. Вот некоторые из наиболее широко используемых библиотек:

  • EEPROM - чтение и запись в «постоянно» хранилище;
  • Ethernet - для подключения к интернету, используя плату Arduino Ethernet Shield;
  • Firmata - для связи с приложениями на компьютере, используя стандартный последовательный протокол;
  • GSM - для подключения к сети GSM/GRPS с помощью платы GSM;
  • LiquidCrystal - для управления жидкокристаллическими дисплеями (LCD);
  • SD - для чтения и записи SD карт;
  • Servo - для управления сервоприводами;
  • SPI - для связи с устройствами, используя шину SPI;
  • SoftwareSerial - для последовательной связи через любые цифровые выводы;
  • Stepper - для управления шаговыми двигателями;
  • TFT - для отрисовки текста, изображений и фигур Arduino TFT экранах;
  • WiFi - для подключения к интернету, используя плату Arduino WiFi shield;
  • Wire - двухпроводный интерфейс (TWI/I2C) для передачи и приема данных через сеть устройств или датчиков.

Этапы настройки Arduino


Внимание: возможно, вам понадобится установить драйвера, если ваша система не обнаружит Arduino.

Ardublock - это графический язык программирования для Ардуино, предназначенный для начинающих. Эта среда достаточно проста в использовании, ее легко установить, она практически полностью переведена на русский язык. Визуально сконструированную программу,напоминающую блоки...

Прерывания - очень важный механизм Arduino, позволяющий внешним устройствам взаимодействовать с контроллером при возникновении разных событий. Установив обработчик аппаратных прерываний в скетче, мы сможем реагировать на включение или выключение кнопки, нажатие клавиатуры,...

Serial.print() и Serial.println() – это основные функции Arduino для передачи информации от платы ардуино к компьютеру через последовательный порт. На самых популярных платах Arduino Uno, Mega, Nano нет встроенного дисплея, поэтому...

Можно ли заниматься ардуино проектами без самой платы Arduino? Оказывается, вполне. Благодаря многочисленным онлайн сервисам и программам, которые имеют свое название: эмулятор или симулятор Arduino. Самыми популярными представителями таких программ являются...

Serial begin - крайне важная инструкция Arduino, она позволяет установить контроллеру соединение с внешними устройствами. Чаще всего таким «внешним устройством» оказывается компьютер, к которому мы подключаем Arduino. Поэтому Serial begin интенсивней...

Глобальная переменная в Arduino – это переменная, область видимости которой распространяется на всю программу, ее видно во всех модулях и функциях. В этой статье мы рассмотрим несколько примеров использования глобальных переменных,...

Массивы Arduino – это элемент языка, активно используемый программистами для работы с наборами однотипных данных. Массивы есть практически во всех языках программирования, не исключением является и Arduino, синтаксис которого сильно похож...

» представляет учебный курс «Arduino для начинающих». Серия представлена 10 уроками, а также дополнительным материалом. Уроки включают текстовые инструкции, фотографии и обучающие видео. В каждом уроке вы найдете список необходимых компонентов, листинг программы и схему подключения. Изучив эти 10 базовых уроков, вы сможете приступить к более интересным моделям и сборке роботов на основе Arduino. Курс ориентирован на новичков, чтобы к нему приступить, не нужны никакие дополнительные сведения из электротехники или робототехники.

Краткие сведения об Arduino

Что такое Arduino?

Arduino (Ардуино) — аппаратная вычислительная платформа, основными компонентами которой являются плата ввода-вывода и среда разработки. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере. Arduino как и относится к одноплатным компьютерам.

Как связаны Arduino и роботы?

Ответ очень прост — Arduino часто используется как мозг робота.

Преимущество плат Arduino перед аналогичными платформами — относительно невысокая цена и практически массовое распространение среди любителей и профессионалов робототехники и электротехники. Занявшись Arduino, вы найдете поддержку на любом языке и единомышленников, которые ответят на вопросы и с которым можно обсудить ваши разработки.

Урок 1. Мигающий светодиод на Arduino

На первом уроке вы научитесь подключать светодиод к Arduino и управлять его мигать. Это самая простая и базовая модель.

Светодиод полупроводниковый прибор, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Урок 2. Подключение кнопки на Arduino

На этом уроке вы научитесь подключать кнопку и светодиод к Arduino.

При нажатой кнопке светодиод будет гореть, при отжатой – не гореть. Это также базовая модель.

Урок 3. Подключение потенциометра на Arduino

В этом уроке вы научитесь подключать потенциометр к Arduino.

Потенциометр — это резистор с регулируемым сопротивлением. Потенциометры используются как регуляторы различных параметров – громкости звука, мощности, напряжения и т.п. Это также одна из базовых схем. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода.

Урок 4. Управление сервоприводом на Arduino

На этом уроке вы научитесь подключать сервопривод к Arduino.

Сервопривод – это мотор, положением вала которого можно управлять, задавая угол поворота.

Сервоприводы используются для моделирования различных механических движений роботов.

Урок 5. Трехцветный светодиод на Arduino

На этом уроке вы научитесь подключать трехцветный светодиод к Arduino.

Трехцветный светодиод (rgb led) — это три светодиода разных цветов в одном корпусе. Они бывают как с небольшой печатной платой, на которой расположены резисторы, так и без встроенных резисторов. В уроке рассмотрены оба варианта.

Урок 6. Пьезоэлемент на Arduino

На этом уроке вы научитесь подключать пьезоэлемент к Arduino.

Пьезоэлемент — электромеханический преобразователь, который переводит электричеcкое напряжение в колебание мембраны. Эти колебания и создают звук.

В нашей модели частоту звука можно регулировать, задавая соответствующие параметры в программе.

Урок 7. Фоторезистор на Arduino

На этом уроке нашего курса вы научитесь подключать фоторезистор к Arduino.

Фоторезистор — резистор, сопротивление которого зависит от яркости света, падающего на него.

В нашей модели светодиод горит только если яркость света над фоторезистором меньше определенной, эту яркость можно регулировать в программе.

Урок 8. Датчик движения (PIR) на Arduino. Автоматическая отправка E-mail

На этом уроке нашего курса вы научитесь подключать датчик движения (PIR) к Arduino, а также организовывать автоматическую отправку e-mail.

Датчик движения (PIR) — инфракрасный датчик для обнаружения движения или присутствия людей или животных.

В нашей модели при получении с PIR-датчика сигнала о движении человека Arduino посылает компьютеру команду отправить E-mail и отправка письма происходит автоматически.

Урок 9. Подключение датчика температуры и влажности DHT11 или DHT22

На этом уроке нашего вы научитесь подключать датчик температуры и влажности DHT11 или DHT22 к Arduino, а также познакомитесь с различиями в их характеристиках.

Датчик температуры и влажности — это составной цифровой датчик, состоящий из емкостного датчика влажности и термистора для измерения температуры.

В нашей модели Arduino считывает показания датчика и осуществляется вывод показаний на экран компьютера.

Урок 10. Подключение матричной клавиатуры

На этом уроке нашего курса вы научитесь подключать матричную клавиатуру к плате Arduino, а также познакомитесь с различными интересными схемами.

Матричная клавиатура придумана, чтобы упростить подключение большого числа кнопок. Такие устройства встречаются везде - в клавиатурах компьютеров, калькуляторах и так далее.

Урок 11. Подключение модуля часов реального времени DS3231

На последнем уроке нашего курса вы научитесь подключать модуль часов реального времени из семейства
DS к плате Arduino, а также познакомитесь с различными интересными схемами.

Модуль часов реального времени - это электронная схема, предназначенная для учета хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства.

Приложение. Готовые каркасы и роботы Arduino


Начинать изучать Arduino можно не только с самой платы, но и с покупки готового полноценного робота на базе этой платы — робота-паука, робота-машинки, робота-черепахи и т.п. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и робототехнике. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

Еще один вариант — покупка каркаса или корпуса робота: платформы на колесиках или гусенице, гуманоида, паука и т.п. В этом случае начинку робота придется делать самостоятельно.

Приложение. Мобильный справочник


– помощник для разработчиков алгоритмов под платформу Arduino, цель которого дать конечному пользователю возможность иметь при себе мобильный набор команд (справочник).

Приложение состоит из 3-х основных разделов:

  • Операторы;
  • Данные;
  • Функции.

Где купить Arduino


Наборы Arduino

Курс будет пополняться дополнительными уроками. Подпишитесь на нас

Понравилась статья? Поделиться с друзьями: