Лабораторный блок питания: мастер-класс как сделать простое устройство своими руками. Хороший лабораторный бп своими руками

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания . У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

Ну еще есть и самопальный блок питания:


Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:


Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

— можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

— очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

— защита от перегрузки и неправильного подключения

— на блоке питания путем короткого замыкания (КЗ) «крокодилов» устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):


Цифры в кружочках — это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
- 1 и 2 к трансформатору.
- 3 (+) и 4 (-) выход постоянного тока.
- 5, 10 и 12 на P1.
- 6, 11 и 13 на P2.
- 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост . Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

На восьмом выводе написано «NC», что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А


Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!


Вот его распиновка:

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство — это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

У нас вот так:


Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K многооборотный подстроечный резистор
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ
C5 = 200нФ
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5401…1N5408
D5, D6 = 1N4148
D7, D8 = стабилитроны на 5,6V
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548 или BC547
Q2 = КТ961А
Q3 = BC557 или BC327
Q4 = КТ 827А
U1, U2, U3 = TL081, операционный усилитель
D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)


протравил


отмыл тонер


просверлил отверстия:


Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:


А вот так плата выглядит уже с полным монтажом:


Подготавливаем место под платку в нашем корпусе:


Приделываем к корпусу радиатор:


Не забываем про кулер, который будет охлаждать наши транзисторы:


Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?


Описание работы, печатку и список радиоэлементов я взял в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке


Каждый начинающий радиолюбитель нуждается в лабораторном блоке питания. Чтобы правильно его сделать, нужно подобрать подходящую схему, а с этим обычно возникает много проблем.

Виды и особенности блоков питания

Встречаются два типа блоков питания:

  • Импульсный;
  • Линейный.

Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.

Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.


Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.

Эта схема разработана достаточно давно, и периодически модернизировалась. На ней появилось несколько диодных мостов, а измерительная головка получила не стандартный метод включения. На замену транзистору MJ4502 пришел менее мощный аналог – КТ818. Так же появились фильтрующие конденсаторы.

Монтаж блока своими руками

При очередной сборке, схема блока получила новую интерпретацию. В конденсаторах выходного типа увеличилась емкость, а для защиты были добавлены несколько диодов.

Транзистор типа КТ818 был в этой схеме неподходящим элементом. Он сильно перегревался, и часто приводил к поломке. Ему нашли замену более выгодным вариантом TIP36C, в схеме он имеет параллельное подключение.


Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Этот этап регулировки позволяет подсоединять нагрузку к выходному концу блока питания. Следует стараться избегать короткого замыкания, иначе транзисторы тут же перегорят, а вслед за ними стабилизатор LM317.


Дальнейшим шагом буде монтаж LM301. Сперва, нужно удостовериться, что на операционном усилителе в 4 ножке имеется -6В. Если на ней присутствует +6В, то возможно имеется неправильное подключение диодного моста BR2.

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Основные радиоэлементы

Чтобы собрать мощный лабораторный блок питания своими руками, нужно приобрести подходящие компоненты:

  • Для питания потребуется трансформатор;
  • Несколько транзисторов;
  • Стабилизаторы;
  • Операционный усилитель;
  • Несколько разновидностей диодов;
  • Электролитические конденсаторы – не более 50В;
  • Резисторы разных типов;
  • Резистор Р1;
  • Предохранитель.

Номинал каждой радиодетали необходимо сверять со схемой.


Блок в конечном виде

Для транзисторов необходимо подобрать подходящий радиатор, который сможет рассеивать тепло. Более того, внутри монтируется вентилятор, для охлаждения диодного моста. Еще один устанавливается на внешнем радиаторе, который будет обдувать транзисторы.

Для внутренней начинки желательно подобрать качественный корпус, так как вещь получилась серьезной. Все элементы следует хорошо зафиксировать. На фото лабораторного блока питания, можно заметить, что на замену стрелочным вольтметрам пришли цифрового устройства.

Фото лабораторного блока питания

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Всем привет. Сегодня заключительный обзор, сборка лабораторного линейного блока питания. Сегодня много слесарных работ, изготовление корпуса и финальная сборка. Обзор размещен в блоге «DIY или Сделай Сам», надеюсь я тут никого не отвлекаю и не кому не мешаю тешить свой взгляд прелестями Лены и Игоря))). Всем кому интересны самоделки и радиотехника - Добро пожаловать!!!
ВНИМАНИЕ: Очень много букв и фото! Трафик!

Добро пожаловать радиолюбитель и любитель самоделок! Для начала давайте вспомним, этапы сборки лабораторного линейного блока питания. Непосредственно к данному обзору не имеет отношения, потому разместил под спойлер:

Этапы сборки

Сборка силового модуля. Плата, радиатор, силовой транзистор, 2 переменных многооборотных резистора и зеленый трансформатор (из Восьмидесятых ®) Как подсказал мудрый kirich , я самостоятельно собрал схему, которую китайцы продают в виде конструктора, для сборки блока питания. Я сначала расстроился, но потом решил, что, видать схема хороша, раз китайцы её копируют… В то же время вылезли и детские болячки этой схемы (которые полностью были скопированы китайцами), без замены микросхем на более «высоковольтные», на вход нельзя подавать больше 22 вольт переменного напряжения… И несколько более мелких проблем, которые подсказали мне наши форумчане, за что им огромное спасибо. Совсем недавно будущий инженер "AnnaSun " предложила избавления от трансформатора. Конечно каждый может модернизировать свой БП как угодно, можно и импульсник поставить в качестве источника питания. Но у любого импульсника (быть может кроме резонансных) на выходе куча помех, и эти помехи частично перейдут на выход ЛабБП… А если там имульсные помехи, то (ИМХО) это не ЛабБП. Потому я не буду избавляться от «зеленого трансформатора».


Поскольку это линейный блок питания, у него есть характерный и существенный недостаток, вся лишняя энергия выделяется на силовом транзисторе. Для примера, на вход мы подаем 24В переменного напряжения, которое после выпрямления и сглаживания превратится в 32-33В. Если на выход присоединить мощную нагрузку, потребляющую 3А при напряжении 5В, вся оставшаяся мощность (28В при токе 3А), а это 84Вт, будет рассеиваться на силовом транзисторе, переходя в тепло. Одним из способов предотвратить эту проблему, и соответственно повысить КПД, это поставить модуль ручного или автоматического переключения обмоток. Данный модуль был рассмотрен в :

Для удобства работы с блоком питания и возможности мгновенного отключения нагрузки, с схему был введен дополнительный модуль на реле, позволяющий включать или выключать нагрузку. Этому был посвящен .


К сожалению, из-за отсутствия нужных реле (нормально замкнутых), данный модуль работал некорректно, потому он будет заменен другим модулем, на D-триггере, позволяющий включать или выключать нагрузку при помощи одной кнопки.

Вкратце расскажу про новый модуль. Схема довольно известная (прислали мне в личку):


Немножко модифицировал её под свои нужды и собрал такую плату:


С обратной стороны:


На это раз никаких проблем не было. Все работает очень четко и управляется одной кнопкой. При подаче питания, на 13 выходе микросхемы всегда логический ноль, транзистор (2n5551) закрыт и реле обесточено - соответственно нагрузка не подключена. При нажатии кнопки, на выходе микросхемы появляется логическая единица, транзистор открывается и реле срабатывает подключая нагрузку. Повторное нажатие на кнопку возвращает микросхему в исходное состояние.

Какой же блок питания без индикатора напряжения и тока? Потому в я попытался сделать ампервольтметр самостоятельно. В принципе получился неплохой прибор, однако он имеет некоторую нелинейность в диапазоне от 0 до 3.2А. Эта погрешность никак не будет влиять при использовании данного измерителя, скажем в зарядном устройстве для АКБ автомобиля, но недопустима для Лабораторного БП, потому, я заменю этот модуль, китайскими щитовыми прецизионными и с дисплеями, имеющими 5 разрядов… А собранный мною модуль найдет применение в какой-нибудь другой самоделке.


Наконец-то приехали из Китая более высоковольтные микросхемы, о чем я Вам рассказал в . И теперь можно подавать на вход 24В переменного тока, не опасаясь, что пробьет микросхемы…

Теперь дело осталось за «малым», изготовить корпус и собрать все блоки вместе, чем я и займусь в этом финальном обзоре по данной тематике.
Поискав готовый корпус, ничего подходящего не нашел. У китайцев есть неплохие коробки, но, к сожалению, цена их, а особенно …

Отдать китайцам 60 баксов мне «жаба» не позволила, да и глупо такие деньги отдавать за корпус, можно еще немного добавить и купить . По крайней мере, корпус из этого Бп выйдет хороший.

Потому я поехал на строительный базар и купил 3 метра алюминиевого уголка. С его помощью будет собран каркас прибора.
Подготавливаем детали нужного размера. Расчерчиваем заготовки и спиливаем уголки при помощи отрезного диска. .



Затем выкладываем заготовки верхней и нижней панели, чтобы прикинуть, что получится.


Пробуем расположить модули внутри


Сборка идет на потайных винтах (под шляпку зенкером, разенковывается отверстие, что бы головка винта не выступала над уголком), и гайках с обратной стороны. Потихоньку появляются очертания каркаса блока питания:


И вот каркас собран… Не очень ровный, особенно по углам, но думаю, что покраска скроет все неровности:


Размеры каркаса под спойлером:

Измерение размеров





К сожалению времени мало свободного, потому слесарные работы продвигаются медленно. Вечерами за неделю изготовил лицевую панель из листа алюминия и панельку под вход питания и предохранитель.






Расчерчиваем будущие отверстия под Вольтметр и Амперметр. Посадочное гнездо должно быть размерами 45.5мм на 26.5мм
Обклеиваем посадочные отверстия малярным скотчем:


И отрезным диском, при помощи дремеля делаем пропилы (скотч нужен, что бы не выйти за размеры гнезд, и не испортить панель царапинами) Дремель быстро справляется с алюминием, но на 1 отверстие уходит 3-4

Опять была заминка, банально, кончились отрезные диски для дремеля, поиск по всем магазинам Алматы ни к чему не привел, потому пришлось ждать диски из Китая… Благо пришли быстро за 15 дней. Дальше работа пошла более весело и быстро…
Пропилил дремелем отверстия под цифровые индикаторы, и обработал напильником.


Ставим на «уголки» зеленый трансформатор


Примеряем радиатор с силовым транзистором. Он будет изолирован от корпуса, так как на радиаторе установлен транзистор в корпусе ТО-3, а там сложно изолировать коллектор транзистора от корпуса. Радиатор будет стоять за декоративной решеткой с вентилятором охлаждения.




Обработал наждачкой на бруске лицевую панель. Решил примерить все что будет на ней закреплено. Получается вот так:


Два цифровых измерителя, кнопка включения нагрузки, два многооборотных потенциометра, выходные клеммы и держатель светодиода «Ограничение тока». Вроде ничего не забыл?


С обратной стороны лицевой панели.
Разбираем все и красим черной краской с баллончика каркас блока питания.


На заднюю стенку прикрепляем на болты декоративную решетку (куплено на авторынке, анодированный алюминий для тюнига воздухозабора радиатора 2000 тенге (6.13USD))


Вот так получилось, вид с обратной стороны корпуса блока питания.


Ставим вентилятор для обдува радиатора с силовым транзистором. Я прикрепил его на пластиковые черные хомуты, держит хорошо, внешний вид не страдает, их почти не видно.


Возвращаем на место пластиковое основание каркаса с уже установленным силовым трансформатором.


Размечаем места крепления радиатора. Радиатор изолирован от корпуса прибора, т.к. на нем напряжение равное напряжению на коллекторе силового транзистора. Думаю, что он хорошо будет обдуваться вентилятором, что позволит значительно снизить температуру радиатора. Вентилятор будет управляться схемой снимающей информацию с датчика (терморезистора) закрепленного на радиаторе. Таким образом вентилятор не будет «молотить» в пустую, а будет включатся при достижении определенной температуры на радиаторе силового транзистора.


Прикрепляем на место лицевую панель, поглядеть что получилось.


Декоративной решетки осталось много, потому решил попробовать сделать П-образную крышку корпуса блока питания (на манер компьютерных корпусов), если не понравится, переделаю на что-нибудь другое.


Вид спереди. Пока решетка «наживлена» и еще не плотно прилегает к каркасу.


Вроде неплохо получается. Решетка достаточно прочная, можно смело ставить сверху что-либо, ну а про качество вентиляции внутри корпуса, даже не стоит говорить, вентиляция будет просто отличная, по сравнению с закрытыми корпусами.

Ну чтож, продолжаем сборку. Подключаем цифровой амперметр. Важно: не наступайте на мои грабли, не используйте штатный разъем, только пайка непосредственно к контактам разъема. Иначе будет в место тока в Амперах, показывать погоду на Марсе.


Провода для подключения амперметра, да и всех остальных вспомогательных устройств должны быть максимально короткими.
Между выходными клеммами (плюс-минус) установил панельку из фольгированного текстолита. Очень удобно прочертив изолирующие бороздки в медной фольге, создавать площадки для подключения всех вспомогательных устройств (амперметр, вольтметр, плата отключения нагрузки и т.п.)

Основная плата установлена рядом с радиатором выходного транзистора.



Плата переключения обмоток установлена над трансформатором, что позволило значительно сократить длину шлейфа проводов.

Наступил черед собрать модуль дополнительного питания для модуля переключения обмоток, амперметра, вольтметра и т.п.
Поскольку у нас линейный - аналоговый БП, будем использовать так же вариант на трансформаторе, никаких импульсных блоков питания. :-)
Вытравливаем плату:


Впаиваем детали:


Тестируем, ставим латунные «ножки» и встраиваем модуль в корпус:



Ну вот, все блоки встроены (кроме модуля управления вентилятором, который будет изготовлен позже) и установлены на свои места. Провода подключены, предохранителя вставлены. Можно проводить первое включение. Осеняем себя крестом, закрываем глаза и даем питание…
Бабаха и белого дыма нет - уже хорошо… Вроде на холостом ходу ничего не греется… Нажимаем кнопку включения нагрузки - зажигается зеленый светодиод и щелкает реле. Вроде все пока нормально. Можно приступать к тестированию.

Как говорится, «скоро сказка сказывается, да не скоро дело делается». Опять выплыли подводные камни. Модуль переключения обмоток трансформатора работает некорректно с силовым модулем. При напряжении переключения с первой обмотки на следующую происходит скачек напряжения, т.е при достижении 6.4В происходит скачек до 10.2В. Потом конечно можно уменьшить напряжение, но это не дело. Сначала я думал, что проблема в питании микросхем, поскольку их питание тоже от обмоток силового трансформатора, и соответственно растет с каждой последующей подключенной обмоткой. Потому попробовал дать питание на микросхемы с отдельного источника питания. Но это не помогло.
Потому есть 2 варианта: 1. Полностью переделать схему. 2. Отказаться от модуля автоматического переключения обмоток. Начну с 2 варианта. Полностью без переключения обмоток я остаться не могу, потому как вариант мириться с печкой мне не нравится, потому поставлю тумблер- переключатель позволяющий выбирать подаваемое напряжение на вход БП из 2-х вариантов 12В или 24В. Это конечно «полумера», но лучше чем вообще ничего.
Заодно решил поменять амперметр на другой подобный, но с зеленым цветом свечения цифр, поскольку красные цифры амперметра светятся довольно слабо и при солнечном свете их плохо видно. Вот что получилось:


Вроде так получше. Возможно, так же, что я заменю вольтметр на другой, т.к. 5 разрядов в вольтметре явно избыточно, 2 разряда после запятой вполне достаточно. Варианты замены у меня есть, так что проблем не будет.

Ставим переключатель и подключаем к нему провода. Проверяем.
При положении переключателя «вниз» - максимальное напряжение без нагрузки составило около 16В

При положении переключателя вверх - доступно максимальное напряжение для данного трансформатора 34В (без нагрузки)

Теперь ручки, долго не стал придумывать варианты и нашел пластмассовые дюбели подходящего диаметра, как внутреннего, так и внешнего.


Отрезаем трубочку нужной длины и надеваем на штоки переменных резисторов:


Затем надеваем ручки и фиксируем винтами. Поскольку трубка дюбеля достаточно мягкая, ручка фиксируется очень хорошо, что бы сорвать её необходимы значительные усилия.

Обзор получился очень большим. Потому не буду отнимать Ваше время и вкратце протестируем Лабораторный блок питания.
Помехи осциллографом мы уже смотрели в первом обзоре, и с тех пор ничего не изменилось в схемотехнике.
Потому проверим минимальное напряжение, ручка регулировки в крайнем левом положении:

Теперь максимальный ток

Ограничение тока в 1А

Максимальное ограничение тока, ручка регулировки тока в крайне правом положении:

На этом Всё мои дорогие радиогубители и сочувствующие… Спасибо всем, кто дочитал до конца. Прибор получился брутальный, тяжелый и я надеюсь надежный. До новых встреч в эфире!

UPD: Осциллограммы на выходе блока питания при включении напряжения:


И выключения напряжения:

UPD2: Друзья с форума «Паяльник» дали идею, как с минимальными переделками схемы запустить модуль переключения обмоток. Спасибо всем за проявленный интерес, буду доделывать прибор. Поэтому - продолжение следует. Добавить в избранное Понравилось +72 +134

!
Если вы ищете схему простого и надежного линейного блока питания, то эта статья именно для вас. Тут вы найдете полную инструкцию по сборке, а также настройке данного блока питания. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).


Для начала немного предыстории. Совсем недавно автор переделывал свое рабочее место и в качестве третьего блока питания хотел установить именно линейный блок, так как иногда ему приходится собирать схемы, которые не переносят пульсации напряжения. А как нам известно, то у линейного блока на выходе, пульсация напряжения практически полностью отсутствует.




До этого момента линейные блоки автора не сильно интересовали, и он как-то особо не вникал в данную тему. Когда же пришла идея по построению такого блока, Роман сразу открыл всеми любимый и широко известный видеохостинг YouTube. В итоге после продолжительных поисков автор для себя смог выделить 2 схемы. Автором первой является AKA KASYAN (автор одноименного YouTube канала), а вторая схема построена на операционниках.




Но так как операционники могут работать на напряжении до 32В, то и выходное напряжение соответственно не могло превышать данного предела, а это значит эта схема отпадает.


Ладно, можно собрать схему от Касьяна, но и тут нас ждало разочарование. Данная схема боится статики. Это проявлялось взрывом транзисторов если взяться за выходные контакты.




Так было несколько раз. И тогда автор решил оставить данную схему в покое. Вы скажете, что в интернете полно схем линейных блоков питания.


Да, несомненно это так, но только эти две схемы упомянутые выше, имели нормально разведенные печатки, которое можно было просто скачать. Все остальное, либо без печаток, либо собрано навесным монтажом. А мы (радиолюбители) привыкли к тому, что все подается на блюдечке с голубой каёмочкой.


Автор решил развести нормальную печатку. Плата получилось довольно компактной. После проведенного тестирования данной схемы, на удивление она отлично проявила себя.


При такой простоте автору это так понравилось, что он даже решил сделать kit-набор из данной платы. Для этого необходимо преобразовать печатку в Gerber файл (файл с расширением.gbr, представляющий собой проект печатной платы для последующего изготовления фотошаблонов на различном оборудовании). Затем необходимо отправить платы на изготовление.

И вот спустя пару недель после заказа получаем наши долгожданные платы. Вскрыв посылку и рассмотрев платы поближе, можем убедиться, что все очень качественно и красиво получилось.






Итак, давайте уже запаяем данную плату и проверим ее в работе. Компонентов для установки не так уж много, паять от силы минут 20, не больше.






Закончили с пайкой. Производим первое включение. И тут нас ждет небольшое разочарование. Данная плата не обошлась без косяков. Проявились они в том, что при вращении ручки потенциометра влево идёт увеличение напряжения и тока, а при правом вращении происходит уменьшение.




Так произошло потому, что резисторы для данной платы автор вынес на провода (для последующей установки на корпус) и там без проблем можно было поменять направление вращения просто поменяв боковые контакты. Ну ладно, зато все остальное работает как положено.




Но все же автор исправил печатку, теперь там при правом вращении потенциометра идёт увеличение напряжения, все как и должно быть. Так что можете смело скачивать и повторять данную конструкцию (архив с данной печатной платой находится в описании под оригинальным видеороликом автора, необходимо пройти по ссылке ИСТОЧНИК в конце статьи).

А теперь давайте перейдем к детальному рассмотрению схемы и непосредственно самой платы. Схему вы можете видеть на своих экранах.


Данный блок питания оснащен регулятором напряжения и тока, а также системой защиты от короткого замыкания, которая просто необходима в таких блоках.


Представьте себе на минуточку, что происходит при коротком замыкании, когда на входе напряжение 36В. Получается, что все напряжение рассеивается на силовом транзисторе, который конечно же такого издевательства вряд ли выдержит.



Защиту тут можно настроить. С помощью вот этого подстроечного резистора выставляем любой ток срабатывания.


Здесь установлена релюшка защиты на 12В, а входное напряжение может достигать 40В. Поэтому необходимо было получить напряжение 12В.




Это можно реализовать с помощью параметрического стабилизатора на транзисторе и стабилитроне. Стабилитрон на 13В, так как идет падение напряжения на переходах коллектор-эмиттер двух транзисторов.




Итак, теперь можно приступать к тестам данного линейного блока питания. Подаем напряжение в 40В от лабораторного блока питания. На нагрузку вешаем лампочку рассчитанную на напряжение 36В, мощностью 100Вт.

Затем начинаем потихоньку вращать переменный резистор.




Как видим регулировка напряжения работает отлично. Теперь давайте попробуем регулировать ток.


Как можно наблюдать, при вращении второго резистора ток уменьшается, а это значит, что схема работает в штатном режиме.
Так как это линейный блок и все «лишнее» напряжение превращается в тепло, ему нужен радиатор довольно таки больших размеров. Для этих целей отлично зарекомендовали себя радиаторы от процессора компьютера. Такие радиаторы имеют большую площадь рассеивания, а если их еще оснастить вентилятором, то можно в принципе полностью забыть про перегрев транзистора.






А теперь о том, как работает защита. Выставляем необходимый ток с помощью подстроечного резистора. При коротком замыкании срабатывает реле. Пара его контактов размыкает выходную цепь и транзистор находится в безопасности.


Для возвращения в нормальный режим работы предусмотрена вот такая кнопка на размыкание, при нажатии на которую снимается защита.


Ну или же можно просто отключить блок от сети и подать напряжение снова. Таким образом, защита тоже выключится. Также на плате имеются 2 светодиода. Один сигнализирует про работу блока, а второй про срабатывание защиты.




Подводя итоги можно сказать, что блок получился очень классным и подойдет как для новичков, так и для уже опытных радиолюбителей. Так что скачивайте архив и собирайте себе такой блок.


Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:

Понравилась статья? Поделиться с друзьями: