Квантовый компьютер. Появление квантовых вычислений. Отличие квантового компьютера от обычного

January 29th, 2017

Для меня словосочетание "квантовый компьютер" сравнимо например с "фотонным двигателем", т.е это что то очень сложное и фантастическое. Однако читаю сейчас в новостях - "квантовый компьютер продается любому желающему". Странно, то ли под этим выражением теперь подразумевают что то другое, то ли это просто фейк?

Давайте разберемся подробнее...


КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.


В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.


Основа алгоритма Шора: способность кубитов хранить несколько значений одновременно)

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических.


Если сказать простыми словами, то: "квантовая система даёт результат, только с некоторой вероятностью являющийся правильным. Другими словами, если вы посчитаете 2+2, то 4 получится только с некоторой долей точности. Точно 4 вы не получите никогда. Логика его процессора совсем не похожа на привычный нам процессор.

Существуют методы посчитать результат с заранее оговоренной точностью, естественно с увеличением затрат машинного времени.
Этой особенностью и определяется перечень задач. И эта особенность не афишируется, а у публики создается впечатление, что квантовый компьютер, это тоже, что и обычный PC (те же 0 и 1), только быстрый и дорогой. Это принципиально не так.

Да, и еще момент — для квантового компьютера и квантовых вычислений в целом, особенно для того, чтобы использовать "мощь и быстродействие" квантовых вычислений — нужны особые, специально под специфику квантовых вычислений разработанные алгоритмы и модели. Поэтому сложность применения квантового компьютера не только в наличии "железа", но и в составлении новых, до сих пор не применявшихся методик расчета. "

А теперь снова перейдем к практической реализации квантового компьютера: уже ведь некоторое время существует и даже продается коммерческий 512-кубитный процессор D-Wave !!!

Вот, он, казалось бы, настоящий прорыв!!! И группа солидных ученых в не менее солидном журнале Physical Review убедительно свидетельствует, что в D-Wave действительно обнаружены эффекты квантовой сцепленности.

Соответственно, данное устройство с полным основанием имеет право именоваться настоящим квантовым компьютером, архитектурно вполне допускает дальнейшее наращивание числа кубитов, а, значит, имеет замечательные перспективы на будущее… (T. Lanting et al. Entanglement in a Quantum Annealing Processor. PHYSICAL REVIEW X 4, 021041 (2014) (http://dx.doi.org/10.1103/PhysRevX.4.021041))

Правда, чуть позже, другая группа солидных ученых в не менее солидном журнале Science, изучавшие ту же самую вычислительную систему D-Wave, оценивали ее сугубо практически: насколько хорошо это устройство выполняет свои вычислительные функции. И эта группа ученых столь же обстоятельно и убедительно, как и первая, демонстрирует, что в реальных проверочных тестах, оптимально подходящих для этой конструкции, квантовый компьютер D-Wave не дает никакого выигрыша в скорости по сравнению с компьютерами обычными, классическими. (T.F. Ronnow, M. Troyer et al. Defining and detecting quantum speedup. SCIENCE, Jun 2014 Vol. 344 #6190 (http://dx.doi.org/10.1126/science.1252319))

По сути дела, для дорогущей, но специализированной "машины будущего" не нашлось задач, где она могла бы продемонстрировать свое квантовое превосходство. Иначе говоря, оказывается под большим сомнением сам смысл весьма недешевых усилий по созданию подобного устройства…
Итоги таковы: сейчас в научном сообществе уже нет никаких сомнений, что в процессоре компьютера D-Wave работа элементов действительно происходит на основе реальных квантовых эффектов между кубитами.

Но (и это чрезвычайно серьезное НО) ключевые особенности в конструкции процессора D-Wave таковы, что при реальной эксплуатации вся его квантовая физика не дает никакого выигрыша в сравнении с обычным мощным компьютером, имеющим специальное программное обеспечение, заточенное под решение задач оптимизации.

Попросту говоря, не только ученые, тестирующие D-Wave, пока не смогли увидеть ни одной реальной задачи, где квантовый компьютер мог бы убедительно продемонстрировать свое вычислительное превосходство, но даже сама компания-изготовитель понятия не имеет, что это может быть за задача…

Все дело в особенностях конструкции 512-кубитного процессора D-Wave, который собирается из групп по 8 кубитов. При этом, внутри этих групп по 8 кубитов они все напрямую сообщаются между собой, а вот между этими группами связи очень слабые (в идеале же ВСЕ кубиты процессора должны напрямую сообщаться между собой). Это, конечно, ОЧЕНЬ существенно снижает сложность построения квантового процессора... НО, отсюда нарастает масса прочих проблем, замыкающихся в финале и на очень недешевую в эксплуатации криогенную аппаратуру, охлаждающую схему до сверхнизких температур.

Так что же нам предлагают сейчас?

Канадская компания D-Wave объявила о начале продаж своего анонсированного в сентябре прошлого года квантового компьютера D-Wave 2000Q. Придерживаясь собственного аналога закона Мура, в соответствии с которым количество транзисторов на интегральной схеме удваивается каждые два года, D-Wave разместила на КПУ (квантовом процессорном устройстве) 2,048 кубитов. Динамика роста числа кубитов на КПУ за последние годы выглядит так:

2007 — 28

— 2013 — 512
— 2014 — 1024
— 2016 — 2048.

Причем в отличие от традиционных процессоров, ЦПУ и ГПУ, удвоение кубитов сопровождается не 2-кратным, а 1000-кратным ростом производительности. По сравнению с компьютером, имеющим традиционную архитектуру и конфигурацию в виде одноядерного ЦПУ и 2500-ядерного ГПУ, разница в быстродействии составляет от 1,000 до 10,000 раз. Все эти цифры безусловно впечатляют, но есть несколько «но».

Во-первых, D-Wave 2000Q стоит чрезвычайно дорого — $15 млн. Это довольно массивное и сложное устройство. Его мозгом является КПУ из цветного металла под названием ниобий, сверхпроводниковые свойства которого (необходимые для квантовых компьютеров) возникают в вакууме при близкой к абсолютному нулю температуре ниже 15 милликельвинов (это в 180 раз ниже температуры в открытом космосе).

Поддержание такой экстремально низкой температуры требует больших затрат энергии, 25 кВт. Но все же, согласно производителю, это в 100 раз меньше, чем у эквивалентных по производительности традиционных суперкомпьютеров. Так что производительность D-Wave 2000Q на один ватт потребляемой энергии в 100 раз выше. Если компании удастся и дальше следовать своему «закону Мура», то в её будущих компьютерах эта разница будет расти в геометрической прогрессии, с сохранением энергопотребления на нынешнем уровне.

Во-первых, у квантовых компьютеров весьма специфическое назначение. В случае D-Wave 2000Q речь идет о т.н. адиабатических компьютерах и решении задач квантовой нормализации. Они, в частности, возникают в следующих областях:

Машинное обучение:

Выявление статистических аномалий
— нахождения сжатых моделей
— распознавание изображений и образов
— тренировка нейросетей
— проверка и утверждение программного обеспечения
— классификация безструктурных данных
— диагностика ошибок в схеме

Безопасность и планирование

Обнаружение вирусов и взлома сети
— распределение ресурсов и нахождение оптимальных путей
— определение принадлежности множеству
— анализ свойств графика
— факторизация целых чисел (применяется в криптографии)

Финансовое моделирование

Выявление рыночной нестабильности
— разработка торговых стратегий
— оптимизация торговых траекторий
— оптимизация ценообразования активов и хеджирования
— оптимизация портфолио

Здравоохранение и медицина

Выявление мошенничества (вероятно речь идет о медицинских страховках)
— генерирование таргетной («молекулярно-прицельной») лекарственной терапии
— оптимизация лечения [рака] методом радиотерапии
— создание моделей протеина.

Первым покупателем D-Wave 2000Q стала компания TDS (Temporal Defense Systems), занятая в области кибер-безопасности. Вообще же продукцией D-Wave пользуются такие компании и учреждения как Lockheed Martin, Google, Исследовательский центр Эймса при НАСА, Университет Южной Калифорнии и Лос-Аламосская национальная лаборатория при Министерстве энергетики США.

Таким образом, речь идет о редкой (D-Wave является единственной в мире компанией, выпускающей коммерческие образцы квантовых компьютеров) и дорогой технологии с довольно узким и специфическим применением. Но темпы роста её производительности потрясают воображение, и если эта динамика сохранится, то благодаря адиабатическим компьютерам D-Wave (к которой со временем возможно присоединятся и другие компании) в ближайшие годы нас могут ожидать настоящие прорывы в науке и технике. Особый интерес вызывает сочетание квантовых компьютеров с такой перспективной и быстро развивающейся технологией как искусственный интеллект — тем более, что в этом видит перспективу такой авторитетный специалист как Энди Рубин.

Да, кстати, вы знали, что Корпорация IBM разрешила пользователям интернета бесплатно подключаться к построенному ей универсальному квантовому компьютеру и экспериментировать с квантовыми алгоритмами. Этому устройству не хватит мощности, чтобы взламывать криптографические системы с открытым ключом, но если планы IBM осуществятся, то появление более сложных квантовых компьютеров не за горами.

Квантовый компьютер, к которому IBM открыла доступ, содержит пять кубитов: четыре служат для работы с данными, а пятый — для коррекции ошибок во время вычислений. Коррекция ошибок — главное нововведение, которым гордятся его разработчики. Она упростит увеличение количества кубитов в будущем.

В IBM подчёркивают, что её квантовый компьютер является универсальным и способен исполнять любые квантовые алгоритмы. Это отличает его от адиабатических квантовых компьютеров, которые разрабатывает компания D-Wave. Адиабатические квантовые компьютеры предназначены для поиска оптимального решения функций и не подходят для других целей.

Считается, что универсальные квантовые компьютеры позволят решать некоторые задачи, которые не под силу обычным компьютерам. Наиболее известный пример такой задачи — разложение чисел на простые множители. Обычному компьютеру, даже очень быстрому, понадобятся сотни лет, чтобы отыскать простые множители большого числа. Квантовый компьютер найдёт их при помощи алгоритма Шора почти так же быстро, как происходит умножение целых чисел.

Невозможность быстрого разложения чисел на простые множители — это основа криптографических систем с открытым ключом. Если эту операцию научатся выполнять с той скоростью, которую обещают квантовые алгоритмы, то о большей части современной криптографии придётся забыть.

На квантовом компьютере IBM можно запустить алгоритм Шора, но пока кубитов не станет больше, пользы от этого мало. В течение следующих десяти лет ситуация изменится. К 2025 году в IBM планируют построить квантовый компьютер, содержащий от пятидесяти до ста кубитов. По мнению специалистов, уже при пятидесяти кубитах квантовые компьютеры смогут решать некоторые практические задачи.

Вот еще немного интересного про компьютерные технологии: почитайте, как , а вот А еще оказывается можно и что это за

Квантовый компьютер — это не просто компьютер будущего поколения, это нечто гораздо большее. Не только с точки зрения применения новейших технологий, но и с точки зрения его неограниченных, невероятных, фантастических возможностей, способных не только изменить мир людей, но даже … создавать иную реальность.

Как известно, современные компьютеры используют память, представленную в двоичном коде: 0 и 1. Точно так же как в азбуке Морзе — точка и титре. С помощью двух знаков можно зашифровать любую информацию, путем варьирования их сочетаний.

В памяти современного компьютера миллиарды этих битов. Но каждый из них может быть в одном из двух состояний — либо ноль, либо один. Как лампочка: либо включена, либо выключена.

Квантовый бит (кубит) — наименьший элемент хранения информации в компьютере будущего. Единицей информации в квантовом компьютере теперь может быть не только нуль или единица, а то и другое одновременно .

Одна ячейка выполняет два действия, две -четыре, четыре — шестнадцать и т. д. Именно поэтому квантовые системы могут работать в два раза быстрее и с большими объемами информации, чем современные.

Впервые «измерили» кубит (Q-bit) ученые Российского квантового центра (РКЦ) и Лаборатории сверхпроводящих мета материалов.

С технической стороны, кубит, — это диаметром в несколько микрон металлическое кольцо с разрезами, напылённое на полупроводник. Кольцо охлаждается до сверхнизких температур для того, что бы оно стало сверхпроводником. Допускаем, что ток, протекающий по кольцу, идет по часовой стрелке — это 1. Против — 0. То есть два обычных состояния.

Через кольцо пропустили микроволновое излучение. На выходе из кольца этого излучения, измеряли сдвиг тока по фазе. Оказалось, что вся эта система может находиться как в двух основных, так и смешанном состоянии: тем и другим одновременно!!! В науке это называется принципом суперпозиции.

Эксперимент русских ученых (аналогичный провели и ученые других стран), доказал, что кубит имеет право на жизнь. Создание кубита подвело к идее и приблизило ученых к мечте по созданию оптического квантового компьютера. Осталось его только сконструировать и создать. Но не все так просто…

Сложности, проблемы в создании квантового компьютера

Если требуется, к примеру, обсчитать миллиард вариантов в современном компьютере, то ему нужно «прокрутить» миллиард подобных циклов. На квантовом компьютере имеется принципиальное отличие, он может просчитывать все эти варианты одновременно.
Один из главных принципов, на которых будет работать квантовый компьютер, — это принцип суперпозиции и иначе, как магическим, его не назовешь!
Он означает, что один и тот же человек может находится в разных местах в одно и то же время. Физики шутят: » Если вас не шокирует квантовая теория, значит вы ее не поняли».

Внешний вид создаваемых сейчас квантовых компьютеров разительно отличается от классических. Они похожи… на самогонный аппарат:

Такая конструкция, сотоящая из медных и золотых частей, змеевиков-охладителей и пр. характерных деталей, разумеется не устраивает его создателей. Одна из основных задач ученых сделать ее компактной и дешевой. Что бы это произошло, нужно решить несколько проблем.

Проблема первая — неустойчивость суперпозиций

Все эти квантовые суперпозиции очень «нежные». Как только на них начинаешь смотреть, как только они начинают взаимодействовать с другими объектами, так они сразу разрушаются. Становятся, как бы классическими. Это одна из самых важных проблем в создании квантового компьютера.

Проблема вторая — требуется сильное охлаждение

Второе препятствие — для достижения стабильной работы квантового компьютера. в том виде, какой имеем на сегодня, требуется его сильное охлаждение. Сильное, это создание аппаратуры, в которой поддерживается температура близкая к абсолютному нулю — минус 273 градуса по Цельсию! Поэтому сейчас прототипы таких компьютеров, со своими криогенно-вакуумными установками, выглядят очень громоздко:

Однако ученые уверены, что вскоре все технические проблемы будут решены и однажды квантовые компьютеры, обладающие огромной вычислительной мощью, заменят современные.

Некоторые технические решения в решении проблем

К настоящему времени, ученые нашли ряд существенных решений в решении вышеизложенных проблем. Эти технологические находки, результат сложной, а иногда и длительной, напряженной работы ученых, заслуживает всяческого уважения.

Лучший путь к совершенствованию работы кубита… бриллианты

Все очень похоже на известную песню о девушках и бриллиантах. Главное, над чем сейчас работают ученые -поднять время жизни кубита, а так же «заставить» работать квантовый компьютер при обычных температурах . Да, для связи между квантовыми компьютерами нужны бриллианты! Для всего этого пришлось создавать и использовать искусственные алмазы сверх высокой прозрачности. С их помощью смогли продлить жизнь кубита до двух секунд. Эти скромные достижения: две секунды жизни кубита и работа компьютера при комнатной температуре, на самом деле революция в науке.

Суть эксперимента французского ученого Сержа Ароша основана на том, что он сумел показать всему миру, что свет (квантовый поток фотонов), проходящий между двумя специально созданными им зеркалами, не теряет квантового состояния.

Заставив свет пройти 40 000 км между этими зеркалами, он определил, все происходит без потери квантового состояния. Свет состоит из фотонов и до сих пор никто не мог выяснить, теряют ли они свое квантовое состояние при прохождении определенного расстояния. Лауреат Нобелевской премии Серж Арош: «Один фотон находится в нескольких местах одновременно , нам удалось это зафиксировать.» На самом деле это и есть принцип суперпозиции . «В нашем большом мире такое невозможно. А в микро-мире — другие законы.», — говорит Арош.


Внутри резонатора находились классические атомы, которые можно измерить. По поведению атомов физик научился определять и измерять неуловимые квантовые частицы. До экспериментов Ароша считалось, что наблюдение за квантами невозможно. После эксперимента — заговорили о покорении фотонов, то есть о приближении эры квантовых компьютеров.

Почему многие с нетерпением ждут создания полноценного квантового генератора, а другие его боятся

Квантовый компьютер подарит человечеству огромные возможности

Квантовый компьютер откроет перед человечеством необозримые возможности. Например, поможет создать искусственный разум, о котором столько времени бредят фантасты. Или смоделировать вселенную. Целиком. По самым скромным прогнозам он позволит заглянуть за грани возможного. Давайте представим мир, где можно смоделировать абсолютно все, что пожелаешь: спроектировать молекулу, сверхпрочный металл, быстро разлагающийся пластик, придумать лекарства от неизлечимых болезней. Машина смоделирует весь наш мир, целиком, до последнего атома. Можно даже смоделировать другой мир, пусть даже виртуальный.

Квантовый компьютер сможет стать орудием Апокалипсиса

Многие люди, вникнув в суть квантовой технологии, боятся ее по разным причинам. Уже сейчас компьютеризация и все околокомпьютерные технологии, пугают обывателя. Достаточно вспомнить скандалы о том, как специальные службы с помощью встроенных программ в ПК и даже бытовые приборы, организуют слежку и сбор данных об их потребителях. Например во многих странах запретили всем известные очки — ведь они являются идеальным средством для скрытой съемки и слежки. Уже сейчас, наверняка, каждый житель любой страны, а тем более пользователь в Сети, занесен в какую-нибудь базу данных. Более того и вполне реально, определенные службы могут просчитывать каждое его действие в интернете.

Но для квантовых компьютеров не будет тайн! Вообще никаких. Вся компьютерная безопасность держится на очень длинных числах-паролях. Что бы получить подобрать ключ к коду, обычному компьютеру понадобиться миллион лет. Но с помощью квантового это сможет сделать любой и мгновенно. Получается, что в мире станет совершенно небезопасно: ведь в современном мире все контролируется с помощью компьютеров: банковские переводы, полеты самолетов, фондовые биржи, ракетно-ядерное оружие! Вот и получается: кто владеет информацией, тот владеет Миром. Кто первый — тот и бог. Квантовый компьютер станет сильнее любого комплекса вооружений . На Земле может начаться (или уже началась) новая гонка вооружений, только теперь не ядерная, а компьютерная.

Дай нам Бог выйти из нее благополучно…

Еще пять лет назад о квантовых компьютерах знали разве что специалисты в области квантовой физики. Однако в последние годы количество публикаций в Интернете и в специализированных изданиях, посвященных квантовым вычислениям, возрастало лавинообразно. Тема квантовых вычислений стала популярной и вызвала множество различных мнений, далеко не всегда соответствующих действительности.
В настоящей статье мы постараемся как можно более доступно рассказать о том, что же такое квантовый компьютер и на какой стадии находятся современные разработки в этой области.

Ограниченные возможности современных компьютеров

О квантовых компьютерах и квантовых вычислениях часто говорят как об альтернативе кремниевым технологиям создания микропроцессоров, что, в общем-то, не совсем верно. Собственно, почему вообще приходится искать альтернативу современным компьютерным технологиям? Как показывает вся история существования компьютерной индустрии, вычислительная мощность процессоров возрастает экспоненциально. Ни одна другая индустрия не развивается столь бурными темпами. Как правило, когда говорят о темпах роста вычислительной мощности процессоров, вспоминают так называемый закон Гордона Мура, выведенный в апреле 1965 года, то есть всего через шесть лет после изобретения первой интегральной схемы (ИС).

По просьбе журнала «Электроникс» (“Electronics”) Гордон Мур написал статью, приуроченную к 35-й годовщине издания. Он сделал прогноз относительно того, как будут развиваться полупроводниковые устройства в течение ближайших десяти лет. Проанализировав темпы развития полупроводниковых устройств и экономические факторы за прошедшие шесть лет, то есть начиная с 1959 года, Гордон Мур предположил, что к 1975 году количество транзисторов в одной интегральной микросхеме составит 65 тыс.

Фактически по прогнозу Мура количество транзисторов в одной микросхеме за десять лет должно было увеличиться более чем в тысячу раз. В то же время это означало, что каждый год количество транзисторов в одной микросхеме должно удваиваться.

Впоследствии в закон Мура были внесены коррективы (дабы соотнести его с реальностью), но смысл от этого не поменялся: количество транзисторов в микросхемах увеличивается экспоненциально. Естественно, увеличение плотности размещения транзисторов на кристалле возможно лишь за счет сокращения размеров самих транзисторов. В связи с этим уместен вопрос: до какой степени можно уменьшать размеры транзисторов? Уже сейчас размеры отдельных элементов транзисторов в процессорах сопоставимы с атомарными, например ширина диоксидного слоя, отделяющего диэлектрик затвора от канала переноса заряда, составляет всего несколько десятков атомарных слоев. Понятно, что существует чисто физический предел, делающий невозможным дальнейшее уменьшение размеров транзисторов. Даже если предположить, что в будущем они будут иметь несколько иную геометрию и архитектуру, теоретически невозможно создать транзистор или подобный ему элемент с размером менее 10 -8 см (диаметр атома водорода) и рабочей частотой более 10 15 Гц (частота атомных переходов). А потому, хотим мы того или нет, неизбежен тот день, когда закон Мура придется сдать в архив (если, конечно, его в очередной раз не подкорректируют).

Ограниченные возможности по наращиванию вычислительной мощности процессоров за счет сокращения размеров транзисторов - это лишь одно из узких мест классических кремниевых процессоров.

Как мы увидим в дальнейшем, квантовые компьютеры никоим образом не представляют собой попытку решения проблемы миниатюризации базовых элементов процессоров.

Решение проблемы миниатюризации транзисторов, поиск новых материалов для создания элементной базы микроэлектроники, поиск новых физических принципов для приборов с характерными размерами, сравнимыми с длиной волны Де-Бройля, имеющей величину порядка 20 нм, - эти вопросы стоят на повестке дня уже почти два десятилетия. В результате их решения была разработана нанотехнология. Серьезной проблемой, с которой пришлось столкнуться при переходе в область наноэлектронных устройств, является уменьшение рассеиваемой энергии в процессе вычислительных операций. Мысль о возможности «логически обратимых» операций, не сопровождающихся рассеянием энергии, впервые высказал Р.Ландауер еще в 1961 году. Существенный шаг в решении данной задачи был сделан в 1982 году Ч.Беннеттом, который теоретически доказал, что универсальный цифровой компьютер может быть построен на логически и термодинамически обратимых вентилях таким образом, что энергия будет рассеиваться только за счет необратимых периферийных процессов ввода информации в машину (приготовление исходного состояния) и соответственно вывода из нее (считывание результата). К типичным обратимым универсальным вентилям относятся вентили Фредкина и Тоффоли.

Другая проблема, связанная с классическими компьютерами, кроется в самой фон-неймановской архитектуре и двоичной логике всех современных процессоров. Все компьютеры, начиная с аналитической машины Чарльза Бэббиджа и заканчивая современными суперкомпьютерами, основаны на одних и тех же принципах (фон-неймановская архитектура), которые были разработаны еще в 40-х годах прошлого столетия.

Любой компьютер на программном уровне оперирует битами (переменными, принимающими значение 0 или 1). С применением логических элементов-вентилей над битами выполняются логические операции, что позволяет получить определенное конечное состояние на выходе. Изменение состояния переменных производится с помощью программы, которая определяет последовательность операций, каждая из которых использует небольшое число бит.

Традиционные процессоры выполняют программы последовательно. Несмотря на существование многопроцессорных систем, многоядерных процессоров и различных технологий, направленных на повышение уровня параллелизма, все компьютеры, построенные на основе фон-неймановской архитектуры, являются устройствами с последовательным режимом выполнения команд. Все современные процессоры реализуют следующий алгоритм обработки команд и данных: выборка команд и данных из памяти и исполнение инструкций над выбранными данными. Этот цикл повторяется многократно и с огромной скоростью.

Однако фон-неймановская архитектура ограничивает возможность увеличения вычислительной мощности современных ПК. Типичный пример задачи, которая оказывается не по силам современным ПК, - это разложение целого числа на простые множители (простым называется множитель, который делится без остатка только на себя и на 1).

Если требуется разложить на простые множители число х , имеющее n знаков в двоичной записи, то очевидный способ решения этой задачи заключается в том, чтобы попробовать последовательно разделить его на числа от 2 до Для этого придется перебрать 2 n/2 вариантов. К примеру, если рассматривается число, у которого 100 000 знаков (в двоичной записи), то потребуется перебрать 3x10 15 051 вариантов. Если предположить, что для одного перебора требуется один процессорный такт, то при скорости в 3 ГГц для перебора всех чисел будет нужно время, превышающее возраст нашей планеты. Существует, правда, хитроумный алгоритм, решающий ту же задачу за exp(n 1/3) шагов, но даже в этом случае с задачей разложения на простые множители числа, имеющего миллион знаков, не справится ни один современный суперкомпьютер.

Задача разложения числа на простые множители относится к классу задач, которые, как говорят, не решаются за полиномиальное время (NP-полная задача - Nondeterministic polynomial-time complete). Такие задачи входят в класс невычисляемых в том смысле, что они не могут быть решены на классических компьютерах за время, полиномиально зависящее от числа битов n , представляющих задачу. Если говорить о разложении числа на простые множители, то по мере увеличения разрядности числа время, необходимое для решения задачи, возрастает экспоненциально, а не полиномиально.

Забегая вперед, отметим, что с квантовыми вычислениями связывают перспективы решения NP-полных задач за полиномиальное время.

Квантовая физика

Конечно, квантовая физика слабо связана с тем, что называют элементной базой современных компьютеров. Однако, говоря о квантовом компьютере, избежать упоминания некоторых специфических терминов квантовой физики просто невозможно. Мы понимаем, что далеко не все изучали легендарный третий том «Теоретической физики» Л.Д.Ландау и Е.М.Лифшица и для многих такие понятия, как волновая функция и уравнение Шредингера, - это что-то из потустороннего мира. Что же касается специфического математического аппарата квантовой механики, то это сплошные формулы и малопонятные слова. Поэтому мы постараемся придерживаться общедоступного уровня изложения, избегая по возможности тензорного анализа и прочей специфики квантовой механики.

Для подавляющего большинства людей квантовая механика находится за гранью понимания. Дело даже не столько в сложном математическом аппарате, сколько в том, что законы квантовой механики нелогичны и не имеют подсознательной ассоциации - их невозможно себе представить. Впрочем, анализ нелогичности квантовой механики и парадоксального рождения из этой нелогичности стройной логики - это удел философов, мы же коснемся аспектов квантовой механики лишь в той мере, в какой это необходимо для понимания сути квантовых вычислений.

История квантовой физики началась 14 декабря 1900 года. Именно в этот день немецкий физик и будущий нобелевский лауреат Макс Планк доложил на заседании Берлинского физического общества о фундаментальном открытии квантовых свойств теплового излучения. Так в физике появилось понятие кванта энергии, а среди других фундаментальных постоянных - постоянная Планка.

Открытие Планка и появившаяся затем, в 1905 году, теория фотоэлектрического эффекта Альберта Эйнштейна, а также создание в 1913 году Нильсом Бором первой квантовой теории атомных спектров стимулировали создание и дальнейшее бурное развитие квантовой теории и экспериментальных исследований квантовых явлений.

Уже в 1926 году Эрвин Шредингер сформулировал свое знаменитое волновое уравнение, а Энрико Ферми и Поль Дирак получили квантово-статистическое распределение для электронного газа, учитывающее заполнение отдельных квантовых состояний.

В 1928 году Феликс Блох произвел анализ квантово-механической задачи о движении электрона во внешнем периодическом поле кристаллической решетки и показал, что электронный энергетический спектр в кристаллическом твердом теле имеет зонную структуру. Фактически это стало началом нового направления в физике - теории твердого тела.

Весь XX век - это период интенсивного развития квантовой физики и всех тех разделов физики, для которых квантовая теория стала прародителем.

Появление квантовых вычислений

Идея использования квантовых вычислений впервые была высказана советским математиком Ю.И. Маниным в 1980 году в его знаменитой монографии «Вычислимое и невычислимое». Правда, интерес к его труду возник лишь два года спустя, в 1982 году, после опубликования статьи на ту же тему американского физика-теоретика нобелевского лауреата Ричарда Фейнмана. Он заметил, что определенные квантово-механические операции нельзя в точности переносить на классический компьютер. Это наблюдение привело его к мысли, что подобные вычисления могут быть более эффективными, если их осуществлять при помощи квантовых операций.

Рассмотрим, к примеру, квантово-механическую задачу об изменении состояния квантовой системы, состоящей из n спинов, за определенный промежуток времени. Не вникая в подробности математического аппарата квантовой теории, отметим, что общее состояние системы из n спинов описывается вектором в 2 n -мерном комплексном пространстве, а изменение ее состояния - унитарной матрицей размером 2 n x2 n . Если рассматриваемый промежуток времени очень мал, то матрица устроена очень просто и каждый из ее элементов легко вычислить, зная взаимодействие между спинами. Если же необходимо узнать изменение состояния системы за большой промежуток времени, то нужно перемножать такие матрицы, причем для этого требуется экспоненциально большое количество операций. Опять мы сталкиваемся с PN-полной задачей, нерешаемой за полиномиальное время на классических компьютерах. В настоящее время способа упростить данное вычисление не существует, и, скорее всего, моделирование квантовой механики является экспоненциально сложной математической задачей. Но если классические компьютеры не способны решать квантовые задачи, то, возможно, для этого целесообразно использовать саму квантовую систему? И если это действительно возможно, то подходят ли квантовые системы для решения других вычислительных задач? Подобные вопросы как раз и рассматривались Фейнманом и Маниным.

Уже в 1985 году Дэвид Дойч предложил конкретную математическую модель квантовой машины.

Однако вплоть до середины 90-х годов направление квантовых вычислений развивалось довольно вяло. Практическая реализация квантовых компьютеров оказалась весьма сложной. К тому же в научном сообществе с пессимизмом относились к тому, что квантовые операции способны ускорить решение определенных вычислительных задач. Так продолжалось вплоть до 1994 года, когда американский математик Питер Шор предложил для квантового компьютера алгоритм разложения n -значного числа на простые множители за время, полиномиально зависящее от n (квантовый алгоритм факторизации). Квантовый алгоритм факторизации Шора стал одним из основных факторов, приведших к интенсивному развитию квантовых методов вычислений и появлению алгоритмов, позволяющих решать некоторые NP-проблемы.

Естественно, возникает вопрос: почему, собственно, предложенный Шором квантовый алгоритм факторизации привел к таким последствиям? Дело в том, что задача разложения числа на простые множители имеет прямое отношение к криптографии, в частности к популярным системам шифрования RSA. Благодаря возможности разложения числа на простые множители за полиномиальное время квантовый компьютер теоретически позволяет расшифровывать сообщения, закодированные при помощи многих популярных криптографических алгоритмов, таких как RSA. До сих пор этот алгоритм считался сравнительно надежным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Шор придумал квантовый алгоритм, позволяющий разложить на простые множители n -значное число за n 3 (log n ) k шагов (k = const ). Естественно, практическая реализация такого алгоритма могла иметь скорее негативные, чем позитивные последствия, поскольку позволяла подбирать ключи к шифрам, подделывать электронные подписи и т.п. Впрочем, до практической реализации настоящего квантового компьютера еще далеко, а потому в течение ближайших десяти лет можно не опасаться, что шифры могут быть взломаны с помощью квантовых компьютеров.

Идея квантовых вычислений

Итак, после краткого описания истории квантовых вычислений можно перейти к рассмотрению самой их сути. Идея (но не ее реализация) квантовых вычислений достаточно проста и интересна. Но даже для ее поверхностного понимания необходимо ознакомиться с некоторыми специфическими понятиями квантовой физики.

Прежде чем рассматривать обобщенные квантовые понятия вектора состояния и принципа суперпозиции, разберем простой пример поляризованного фотона. Поляризованный фотон - это пример двухуровневой квантовой системы. Состояние поляризации фотона можно задать вектором состояния, определяющим направление поляризации. Поляризация фотона может быть направлена вверх или вниз, поэтому говорят о двух основных, или базисных, состояниях, которые обозначают как |1 и |0.

Данные обозначения (бра/кэт-обозначения) были введены Дираком и имеют строго математическое определение (векторы базисных состояний), которое обусловливает правила работы с ними, однако, дабы не углубляться в математические дебри, мы не станем детально рассматривать эти тонкости.

Возвращаясь к поляризованному фотону, отметим, что в качестве базисных состояний можно было бы выбрать не только горизонтальное и вертикальное, но и любые взаимно ортогональные направления поляризации. Смысл базисных состояний заключается в том, что любая произвольная поляризация может быть выражена как линейная комбинация базисных состояний, то есть a|1+b|0. Поскольку нас интересует только направление поляризации (величина поляризации не важна), то вектор состояния можно считать единичным, то есть |a| 2 +|b| 2 = 1.

Теперь обобщим пример с поляризацией фотона на любую двухуровневую квантовую систему.

Предположим, имеется произвольная двухуровневая квантовая система, которая характеризуется базисными ортогональными состояниями |1 и |0. Согласно законам (постулатам) квантовой механики (принцип суперпозиции) возможными состояниями квантовой системы будут также суперпозиции y = a|1+b|0, где a и b - комплексные числа, называемые амплитудами. Отметим, что аналога состояния суперпозиции в классической физике не существует.

Один из фундаментальных постулатов квантовой механики утверждает, что для того, чтобы измерить состояние квантовой системы, нужно ее разрушить. То есть любой процесс измерения в квантовой физике нарушает первоначальное состояние системы и переводит ее в новое состояние. Понять это утверждение не так-то просто, а потому остановимся на нем более подробное.

Вообще, понятие измерения в квантовой физике играет особую роль, и не стоит рассматривать его как измерение в классическом понимании. Измерение квантовой системы происходит всякий раз, когда она приходит во взаимодействие с «классическим» объектом, то есть с объектом, подчиняющимся законам классической физики. В результате такого взаимодействия состояние квантовой системы изменяется, причем характер и величина этого изменения зависят от состояния квантовой системы и потому могут служить его количественной характеристикой.

В связи с этим классический объект обычно называют прибором, а о его процессе взаимодействия с квантовой системой говорят как об измерении. Необходимо подчеркнуть, что при этом отнюдь не имеется в виду процесс измерения, в котором участвует наблюдатель. Под измерением в квантовой физике подразумевается всякий процесс взаимодействия между классическим и квантовым объектами, происходящий помимо и независимо от какого-либо наблюдателя. Выяснение роли измерения в квантовой физике принадлежит Нильсу Бору.

Итак, чтобы измерить квантовую систему, необходимо каким-то образом подействовать на нее классическим объектом, после чего ее первоначальное состояние будет нарушено. Кроме того, можно утверждать, что в результате измерения квантовая система будет переведена в одно из своих базисных состояний. К примеру, для измерения двухуровневой квантовой системы требуется как минимум двухуровневый классический объект, то есть классический объект, который может принимать два возможных значения: 0 и 1. В процессе измерения состояние квантовой системы будет преобразовано в один из базисных векторов, причем если при измерении классический объект принимает значение равное 0, то квантовый объект преобразуется к состоянию |0, а в случае если классический объект принимает значение равное 1, то квантовый объект преобразуется к состоянию |1.

Таким образом, хотя квантовая двухуровневая система может находиться в бесчисленном множестве состояний суперпозиции, но в результате измерения она принимает только одно из двух возможных базисных состояний. Квадрат модуля амплитуды |a| 2 определяет вероятность обнаружения (измерения) системы в базисном состоянии |1, а квадрат модуля амплитуды |b| 2 - в базисном состоянии |0.

Однако вернемся к нашему примеру с поляризованным фотоном. Для измерения состояния фотона (его поляризации) нам потребуется некоторое классическое устройство с классическим базисом {1,0}. Тогда состояние поляризации фотона a|1+b|0 будет определено как 1 (горизонтальная поляризация) с вероятностью |a| 2 и как 0 (вертикальная поляризация) с вероятностью |b| 2 .

Поскольку измерение квантовой системы приводит ее к одному из базисных состояний и, следовательно, разрушает суперпозицию (к примеру, при измерении получается значение равное |1), то это означает, что в результате измерения квантовая система переходит в новое квантовое состояние и при следующем измерении мы получим значение |1 со стопроцентной вероятностью.

Вектор состояния двухуровневой квантовой системы называется также волновой функцией квантовых состояний y двухуровневой системы, или, в интерпретации квантовых вычислений, кубитом (quantum bit, qubit). В отличие от классического бита, который может принимать только два логических значения, кубит - это квантовый объект, и число его состояний, определяемых суперпозицией, неограниченно. Однако еще раз подчеркнем, что результат измерения кубита всегда приводит нас к одному из двух возможных значений.

Теперь рассмотрим систему из двух кубитов. Измерение каждого из них может дать значение классического объекта 0 или 1. Поэтому у системы двух кубитов имеется четыре классических состояния: 00, 01, 10 и 11. Аналогичные им базисные квантовые состояния: |00, |01, |10 и |11. Соответствующий вектор квантового состояния записывается в виде a |00+ b |01+ c |10+ d |11, где |a | 2 - вероятность при измерении получить значение 00, |b | 2 - вероятность получить значение 01 и т.д.

В общем случае если квантовая система состоит из L кубитов, то у нее имеется 2 L возможных классических состояний, каждое из которых может быть измерено с некоторой вероятностью. Функция состояния такой квантовой системы запишется в виде:

где |n - базисные квантовые состояния (например, состояние |001101, а |c n | 2 - вероятность нахождения в базисном состоянии |n .

Для того чтобы изменить состояние суперпозиции квантовой системы, необходимо реализовать селективное внешнее воздействие на каждый кубит. С математической точки зрения такое преобразование представляется унитарными матрицами размера 2 L x2 L . В результате будет получено новое квантовое состояние суперпозиции.

Структура квантового компьютера

Рассмотренное нами преобразование состояния суперпозиции квантовой системы, состоящей из L кубитов, по сути, представляет собой модель квантового компьютера. Рассмотрим, к примеру, более простой пример реализации квантовых вычислений. Допустим, имеется система из L кубитов, каждый из которых идеально изолирован от внешнего мира. В каждый момент времени мы можем выбрать произвольные два кубита и подействовать на них унитарной матрицей размером 4x4. Последовательность таких воздействий - это своего рода программа для квантового компьютера.

Чтобы использовать квантовую схему для вычисления, нужно уметь вводить входные данные, проделывать вычисления и считывать результат. Поэтому принципиальная схема любого квантового компьютера (см. рисунок) должна включать следующие функциональные блоки: квантовый регистр для ввода данных, квантовый процессор для преобразования данных и устройство для считывания данных.

Квантовый регистр представляет собой совокупность некоторого числа L кубитов. До ввода информации в компьютер все кубиты квантового регистра должны быть приведены в базисные состояния |0. Эта операция называется подготовкой, или инициализацией. Далее определенные кубиты (не все) подвергаются селективному внешнему воздействию (например, с помощью импульсов внешнего электромагнитного поля, управляемых классическим компьютером), которое изменяет значение кубитов, то есть из состояния |0 они переходят в состояние |1. При этом состояние всего квантового регистра перейдет в суперпозицию базисных состояний |n с, то есть состояние квантового регистра в начальный момент времени будет определяться функцией:

Понятно, что данное состояние суперпозиции можно использовать для бинарного (двоичного) представления числа n .

В квантовом процессоре введенные данные подвергаются последовательности квантовых логических операций, которые с математической точки зрения описываются унитарным преобразованием , действующим на состояние всего регистра. В результате через некоторое количество тактов работы квантового процессора исходное квантовое состояние системы становится новой суперпозицией вида:

Говоря о квантовом процессоре, нужно сделать одно важное замечание. Оказывается, для построения любого вычисления достаточно всего двух базовых логических булевых операций. С помощью базовых квантовых операций можно имитировать работу обычных логических элементов, из которых сделаны компьютеры. Поскольку законы квантовой физики на микроскопическом уровне являются линейными и обратимыми, то и соответствующие квантовые логические устройства, производящие операции с квантовыми состояниями отдельных кубитов (квантовые вентили), оказываются логически и термодинамически обратимыми. Квантовые вентили аналогичны соответствующим обратимым классическим вентилям, но, в отличие от них, способны совершать унитарные операции над суперпозициями состояний. Выполнение унитарных логических операций над кубитами предполагается осуществлять с помощью соответствующих внешних воздействий, которыми управляют классические компьютеры.

Схематическая структура квантового компьютера

После реализации преобразований в квантовом компьютере новая функция суперпозиции представляет собой результат вычислений в квантовом процессоре. Остается лишь считать полученные значения, для чего производится измерение значения квантовой системы. В итоге образуется последовательность нулей и единиц, причем, в силу вероятностного характера измерений, она может быть любой. Таким образом, квантовый компьютер может с некоторой вероятностью дать любой ответ. При этом квантовая схема вычислений считается правильной, если правильный ответ получается с вероятностью, достаточно близкой к единице. Повторив вычисления несколько раз и выбрав тот ответ, который встречается наиболее часто, можно снизить вероятность ошибки до сколь угодно малой величины.

Для того чтобы понять, чем различаются в работе классический и квантовый компьютеры, давайте вспомним, что классический компьютер хранит в памяти L бит, которые за каждый такт работы процессора подвергаются изменению. В квантовом компьютере в памяти (регистр состояния) хранятся значения L кубитов, однако квантовая система находится в состоянии, являющемся суперпозицией всех базовых 2L состояний, и изменение квантового состояния системы, производимое квантовым процессором, касается всех 2L базовых состояний одновременно. Соответственно в квантовом компьютере вычислительная мощность достигается за счет реализации параллельных вычислений, причем теоретически квантовый компьютер может работать в экспоненциальное число раз быстрее, чем классическая схема.

Считается, что для реализации полномасштабного квантового компьютера, превосходящего по производительности любой классический компьютер, на каких бы физических принципах он ни работал, следует обеспечить выполнение следующих основных требований:

  • физическая система, представляющая собой полномасштабный квантовый компьютер, должна содержать достаточно большое число L >103 хорошо различимых кубитов для выполнения соответствующих квантовых операций;
  • необходимо обеспечить максимальное подавление эффектов разрушения суперпозиции квантовых состояний, обусловленных взаимодействием системы кубитов с окружающей средой, в результате чего может стать невозможным выполнение квантовых алгоритмов. Время разрушения суперпозиции квантовых состояний (время декогерентизации) должно по крайней мере в 104 раз превышать время выполнения основных квантовых операций (время такта). Для этого система кубитов должна быть довольно слабо связана с окружением;
  • необходимо обеспечить измерение с достаточно высокой надежностью состояния квантовой системы на выходе. Измерение конечного квантового состояния является одной из основных проблем квантовых вычислений.

Практическое применение квантовых компьютеров

Для практического применения пока не создано ни одного квантового компьютера, который бы удовлетворял всем вышеперечисленным условиям. Однако во многих развитых странах разработке квантовых компьютеров уделяется пристальное внимание и в такие программы ежегодно вкладываются десятки миллионов долларов.

На данный момент наибольший квантовый компьютер составлен всего из семи кубитов. Этого достаточно, чтобы реализовать алгоритм Шора и разложить число 15 на простые множители 3 и 5.

Если же говорить о возможных моделях квантовых компьютеров, то их, в принципе, довольно много. Первый квантовый компьютер, который был создан на практике, - это импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения, хотя он, конечно же, как квантовый компьютер не рассматривался. Лишь когда появилась концепция квантового компьютера, ученые поняли, что ЯМР-спектрометр представляет собой вариант квантового компьютера.

В ЯМР-спектрометре спины ядер исследуемой молекулы образуют кубиты. Каждое ядро имеет свою частоту резонанса в данном магнитном поле. При воздействии импульсом на ядро на его резонансной частоте оно начинает эволюционировать, остальные же ядра не испытывают никакого воздействия. Для того чтобы заставить эволюционировать другое ядро, нужно взять иную резонансную частоту и дать импульс на ней. Таким образом, импульсное воздействие на ядра на резонансной частоте представляет собой селективное воздействие на кубиты. При этом в молекуле есть прямая связь между спинами, поэтому она является идеальной заготовкой для квантового компьютера, а сам спектрометр представляет собой квантовый процессор.

Первые эксперименты на ядерных спинах двух атомов водорода в молекулах 2,3-дибромотиофена SCH:(CBr) 2:CH и на трех ядерных спинах - одном в атоме водорода H и двух в изотопах углерода 13 C в молекулах трихлорэтилена CCl 2:CHCl - были поставлены в 1997 году в Оксфорде (Великобритания).

В случае использования ЯМР-спектрометра важно, что для селективного воздействия на ядерные спины молекулы необходимо, чтобы они заметно различались по резонансным частотам. Позднее были осуществлены квантовые операции в ЯМР-спектрометре с числом кубитов 3, 5, 6 и 7.

Главным преимуществом ЯМР-спектрометра является то, что в нем можно использовать огромное количество одинаковых молекул. При этом каждая молекула (точнее, ядра атомов, из которых она состоит) представляет собой квантовую систему. Последовательности радиочастотных импульсов, выполняющие роль определенных квантовых логических вентилей, осуществляют унитарные преобразования состояний соответствующих ядерных спинов одновременно для всех молекул. То есть селективное воздействие на отдельный кубит заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого (bulk-ensemble quantum computer) ЯМР квантового компьютера. Такие компьютеры могут работать при комнатной температуре, а время декогерентизации квантовых состояний ядерных спинов составляет несколько секунд.

В области ЯМР квантовых компьютеров на органических жидкостях к настоящему времени достигнуты наибольшие успехи. Они обусловлены в основном хорошо развитой импульсной техникой ЯМР-спектроскопии, обеспечивающей выполнение различных операций над когерентными суперпозициями состояний ядерных спинов, и возможностью использования для этого стандартных ЯМР-спектрометров, работающих при комнатной температуре.

Основным ограничением ЯМР квантовых компьютеров является сложность инициализации начального состояния в квантовом регистре. Дело в том, что в большом ансамбле молекул исходное состояние кубитов различно, что осложняет приведение системы к начальному состоянию.

Другое ограничение ЯМР квантовых компьютеров связано с тем, что измеряемый на выходе системы сигнал экспоненциально убывает с ростом числа кубитов L . Кроме того, число ядерных кубитов в отдельной молекуле с сильно различающимися резонансными частотами ограничено. Это приводит к тому, что ЯМР квантовые компьютеры не могут иметь больше десяти кубитов. Их следует рассматривать лишь как прототипы будущих квантовых компьютеров, полезные для отработки принципов квантовых вычислений и проверки квантовых алгоритмов.

Другой вариант квантового компьютера основан на использовании ионных ловушек, когда в роли кубитов выступает уровень энергии ионов, захваченных ионными ловушками, которые создаются в вакууме определенной конфигурацией электрического поля в условиях лазерного охлаждения их до сверхнизких температур. Первый прототип квантового компьютера, основанного на этом принципе, был предложен в 1995 году. Преимущество такого подхода состоит в сравнительно простом индивидуальном управлении отдельными кубитами. Основными недостатками квантовых компьютеров этого типа являются необходимость создания сверхнизких температур, обеспечение устойчивости состояния ионов в цепочке и ограниченность возможного числа кубитов - не более 40.

Возможны и другие схемы квантовых компьютеров, разработка которых ведется в настоящее время. Однако пройдет еще как минимум десять лет, прежде чем настоящие квантовые компьютеры наконец будут созданы.

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт конфидециальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?


Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам. Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

Понравилась статья? Поделиться с друзьями: