Управление звуком с гарнитуры (Android). Volume2 — стильный регулятор громкости

В этой статье говорится о проводных гарнитурах работающих с устройствами на базе ОС Android .
Гарнитура - это наушники с микрофоном.

Гарнитуры с одной кнопкой

Гарнитура с одной кнопкой столь проста, что практически любой современный андрофон совместим с любой однокнопочной гарнитурой. Исключение составляют гарнитуры «для старых Нокий» из-за того, что распаяны по «старому» стандарту , но их надо ещё поискать.

В пульте однокнопочной гарнитуры находятся микрофон, конденсатор и кнопка на замыкание. Все они распаяны параллельно друг другу и выведены на контакты №3 и №4 штекера TRRS ▼

При нажатии на кнопку микрофон шунтируется и сопротивление между контактами штекера 3-4 падает до нуля . По этому признаку смартфон понимает, что нажали кнопку. Конденсатор же служит для сглаживания щелчка, возникающего при нажатии кнопки. К тому же, именно по наличию конденсатора некоторые смартфоны определяют, что к ним подключили гарнитуру.

Основные функции кнопки - приём вызова, прекращение разговора и включение голосового поиска. Голосовой поиск вызывается удержанием кнопки до появления характерного сигнала - «OK Google beep» ▼

При воспроизведении звука или видео кнопка выполняет функции паузы. Кстати, при записи на диктофон тоже.

Можно расширить возможности кнопки, типа, двойное нажатие - переход на следующий трек, тройное - на предыдущий. Для этого служат специальные приложения - ищите их на Google Play по запросу вроде «headset button control ». К тому же некоторые плееры позволяют настроить функционал гарнитурной кнопки, например «Плеер мечты ».

Гарнитуры с тремя и более кнопками

Более сложные гарнитуры позволяют регулировать громкость и переключать треки вперёд/назад. Та или иная функция вызывается установкой определённого сопротивления между контактами 3-4 штекера TRRS ▼

И вот тут не всё так однозначно, как с однокнопочной гарнитурой. Беды́, как водится, две:

Никакого единого стандарта на номинал этих резисторов нет! Отчего нет и полной совместимости трёхкнопочных гарнитур с различными моделями смартфонов. У каждого производителя свои сопротивления. Хотя, есть , пытающаяся всех помирить.

Смартфон вовсе не обязан выполнять все команды управления звуком. Samsung, к примеру, умеет безо всякого ПО менять громкость по команде с гарнитуры, а переключать треки - не умеет. А некоторые модели Fly вообще не управляются сопротивлением.

То есть, трёхкнопочная гарнитура HTC конечно же будет воспроизводить звук с Samsung и микрофон будет работать. Но переключение треков работать не будет, хотя кнопки перемотки на пульте есть. Единственное, что работает со всеми смартфонами - кнопка Play/Pause. Она просто замыкает контакты 3-4 штекера TRRS.

Разумеется, с андрофонами не работают медиа-кнопки на гарнитуре от iPhone.

Xiaomi, Nexus One

Xiaomi и Nexus One по команде с пульта переключают треки. Номиналы резисторов отвечают распространённой в сети информации о якобы стандартном наборе сопротивлений для смартфонов Android. На самом деле не все андрофоны поддерживают этот «стандарт».

Пауза ⏸ - 0 Ω
Предыдущий трек ⏪ - 220 Ω
Следующий трек ⏩ - 600 Ω

HTC Desire

Бюджетная модель HTC Desire управляет громкостью. Для сравнения замечу, что HTC Sensation XE управляет переключением треков.

Управление звуком 0 out of 5 0 based on 0 voters.



  • < Назад
  • Вперёд >

Управление звуком

Управление звуком 0 out of 5 0 based on 0 voters.



После того как вы, насколько смогли, защитили помещение от внешнего мира, вам следует разобраться, как звук распространяется внутри самого помещения.

Звук распространяется в воздухе в виде волн. Эти волны отражаются от стен комнаты и вызывают такие эффекты, как реверберация и эхо. Одним из проклятий домашних студий является то, что они, как правило, имеют очень маленькие размеры. Так как звук распространяется достаточно быстро (со скоростью около 330 м/с), то когда вы сидите около акустических систем и слушаете музыку, вы в равной степени слышите звук, исходящий от колонок, и звук, отраженный от стен. В больших помещениях исходный и отраженный звук вы слышите раздельно, что уменьшает проблемы. В хорошей студии нужно "укротить" эти отражения, чтобы они не мешали слышать чистый звук, исходящий из акустических систем.

Описать все отражения, происходящие в комнате, довольно трудно. Почитайте книги по акустике (науке о распространении звуков), и вы узнаете, что существуют разные моды резонанса: аксиальные (одно измерение), тангенциальные (два измерения) и косые (три измерения). Каждая из мод связана с определенным способом распространения и взаимодействия звуковых волн в помещении. Знание мод своего помещения может помочь с выбором стратегии работы с акустикой. Однако формулы, служащие для вычисления мод, действительно очень сложные, особенно для тангенциальных и косых.

Вы можете более подробно узнать о модах резонанса помещения и даже найти калькуляторы мод в Internet, задав в любимой поисковой системе словосочетание “моды резонанса”. Вам будет предложено всего несколько ссылок, с которых вы и сможете начать изучение данного вопроса. Изучите его самостоятельно, так как подробное его рассмотрение достойно целой книги.

Итак, рискуя быть преданным анафеме профессиональными инженерами-акустиками всего мира, я все же поделюсь с вами некоторыми хитростями, которые я использовал в своих студиях. Моей главной целью было создание комнаты с тем звучанием, которое нравится лично мне, и достаточным уровнем контроля над отражениями. Я, как и многие, записывал и микшировал в одной и той же комнате, что давало возможность выполнять по ходу небольшие корректировки для того, чтобы звук больше напоминал то, к чему я стремился.

Существуют два момента, при которых звучание играет очень важную роль, - собственно записывание и микширование. Каждый из этих процессов требует особого подхода, чтобы запись имела наилучшее из возможных звучание. Оба эти процесса мы рассмотрим в настоящем разделе.

Для создания звуковых эффектов используются процедуры модуля CRT:

Sound(X)- звуковой сигнал частотой X герц;

Delay (N)- задержка на N миллисекунд;

NoSound- отменить звук.

Любой звуковой эффект используется конструкцию аналогичную следующей:

Sound(500); Delay(2000); NoSound; В данном примере звуковой сигнал частотой 500 Гц будет звучать в течение 2 с (2000 мс). Для генерации мелодий этого используется набор частот или элементы массива, соответствующие нотам различных октав:

PROGRAM Demo_Sound ;{ заголовок программы}

USES CRT ;{ подключение модуля Crt}

CONST M: ARRAY OF INTEGER= {M-массив частот нот}

(262,294,330,349,392,440,494,523);{значение частот}

VAR I: INTEGER; ChCHAR;{объявление служебных переменных}

BEGIN {начало раздела операторов}

WHILE True DO BEGIN {организация цикла WHILE}

Ch: =READKEY; {ожидание нажатия клавиши}

CASE Ch OF {анализ результата нажатия клавиши}

#49:I: =1 ;{ действие, если нажата клавиша 1}

#50:I: =2 ;{ действие, если нажата клавиша 2}…

#55:I: =7; {действие, если нажата клавиша 7}

#48:HALT ;{ выход при нажатии клавиши 0}

END ;{ завершение оператора CASE}

SOUND (M [I]) ;{ звучание с частотой M [I]}

DELAY (100) ;{ установка длительности звучания}

NOSOUND ;{ отмена звучания}

END ;{ конец оператора WHILE}

END. {конец программы}

Конец работы -

Эта тема принадлежит разделу:

Двоичное кодирование информации. Физические, математические и информационные модели

Контрольные вопросы Дайте определение логики Какие высказывания называются ложными а какие истинными Какие логические связки.. Лекция Постановка цели.. Контрольные вопросы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 1.
Тема: «Введение». 1. Информационная картина мира. Мы живем в мире, который существует в III основных формах: вещество, энергия, информация. Почему именно так, да

Лекция 2.
Тема: «Алгебра логики». Логика (от греческого слова «logos» - слово, мысль, речь, разум) – совокупность наук о законах и формах мышления, о наиболее общих

Лекция 3.
Тема: «Преобразование формул алгебры логики». Постановка цели. 2) Устная работа. Какие из следующих предложений не являются объектами алг

Лекция 4.
Тема: «Система счисления». I. Система счисления – это совокупность приемов и правил для записи чисел цифровыми знаками. Существуют непозиционные и позиционные сис

Лекция 5.
Тема: «Перевод чисел из одной системы счисления в другую». 1) Перевод целых чисел. Чтобы перевести целое десятичное число, в двоичную (8-ю, 16-ю) систему с

Операция над двоичным числами
1. Сложение. При выполнении операции «+» можно пользоваться таблицей «+» двоичных цифр. Двоичное число 10 показывает, что при сложении в каком-нибудь разряде двух двоичных

Двоичная система счисления
Двоичная система используется в ЭВМ всех размеров, т.к. именно в двоичной форме внутри машины запоминается, перемещается из одного устройства в другое и перерабатывается вся информация. Обусловлено

Моделирование как метод познания
В своей деятельности – научной, практической, художественной – человек очень часто использует модели, т.е. создает образ того объекта (процесса или явления), с которым ему приходится иметь дело. К

Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью
Все модели можно разбить на II больших класса: - модели предметные (материальные); - модели знаковые (информационные). Предметные модели воспроизводят геометрические, физ

Формы представления информационных моделей
1) Язык как средство информационного моделирования. Язык является знаковой системой, которая позволяет создавать информационные модели. Естественные языки используются

Лекция 8.
Тема: «Этапы решения задач с помощью ЭВМ». Подготовка любой задачи к решению на ЭВМ состоит из нескольких этапов. Все этапы взаимосвязаны. I этап – четкая формули

Лекция 9.
Тема: «Алгоритм и его свойства. Способы записи алгоритмов». I. Алгоритм и его свойства. Алгоритмом называется определенная, формальная, общеп

Лекция 10.
Тема: «Линейный алгоритм. Составление линейных алгоритмов» Если команды алгоритма выполняются последовательно, одна за другой, то такой алгоритм называется лине

Лекция 11.
Тема: «Разветвляющийся алгоритм». В отличие от линейных алгоритмов, в которых команды выполняются последовательно одна за другой, в разветвляющиеся алгорит

Составление алгоритмов циклической и сложной структуры
1). Составить программу вычисления значения функции: а=1, b=2,2

Представление информации в компьютере
Компьютер может обрабатывать данные, которые представлены в специальном виде – только с помощью нулей и единиц. Каждый 0 или 1 называют битом. Один бит – это минимальная е

Внешняя память
В отличие от основной памяти внешняя память предназначена для долговременного хранения, и только хранения информации. Способность этой памяти хранить информацию не зависит от наличи

Краткая характеристика языка Паскаль
Язык программирования Паскаль разработан швейцарским профессором Высшей федеральной технической школы в Цюрихе, Н.Виртом в 1970 году. Затем в него были внесены несколько изменений и в 1979 году язы

Интегрированная среда программирования Turbo Pascal
Интегрированная среда программирования - IDE (Integrated Development Environment) включает в себя совокупность программ: экранный редактор, компилятор, компоновщик, отладчик, систему контекстной по

Клавиши оперативного вмешательства
Они представляют собой клавиши, которые устанавливаются для выполнения определенной функции, причем, находясь в любой точке среды Паскаль, нажатие клавиши Alt вместе с первой буквой любой команды и

File Edit Search Run Compile Debug Tools Options Window Help
File - работа с файлами; Debug - отладка; Edit - редактирование; Tools

Экранный редактор
Встроенный экранный редактор ТР предназначен для создания исходных текстов программ и их коррекции. В ТР 6.0 и 7.0 максимальный размер создаваемого файла – 1 Мбайт. Практически не ограничен размер

Основные команды перемещения
Команды управления перемещением курсора Ctrl-S, Ctrl-D, Ctrl-У и Ctrl-X позволяют свободно перемещаться по экрану без перехода на первый столбец в пустых стоках. Этот способ перемещения курсора осо

Символы языка
Паскаль использует следующие символы: 1. Буквы: 26 прописных латинских букв. 2. Цифры: 0,1,2,3,4,5,6,7,8,9. 3. Специальные символы: = + - * / <> () {} . , ; :

Лекция 16.
Тема: «Типы данных в языке программирования Turbo Pascal. Структура программы Turbo Pascal.» Типы данных в Паскале можно разделить на скалярны

Структура программы на языке Турбо Паскаль
Программа, написанная на языке Турбо Паскаль, имеет следующую структуру: · заголовок программы; · раздел описаний; · тело программы. Заголовок программы с

Лекция 17.
Тема: «Линейные программы» Строки программы, выполняемые одна за другой, называются линейными. Операторы языка. Операторы програм

Цикл FOR
Цикл FOR используется в трех случаях, когда число повторений может быть заранее известно. Существует две формы цикла: FOR i: =A TO B DO<тело цикла>

Понятие подпрограммы
Подпрограмма – это повторяющая группа операторов, оформленная в виде самостоятельной программой единицы. Она записывается однократно, а в соответствующих местах программы обеспечивается лишь обраще

Процедуры и функции
Цикл – это повторение группы операторов на данном этапе обработки информации. Если же какую-то группу одних и тех же команд требуется посторенние в разных местах программы, меняя лишь параметры, то

Операция над массивами
Инициализация. Инициализация-это присваивание компонентам массива начальных значений. Выполняется в цикле: FOR I: =1 TO 10 DO MASI [I]:=0 ;{ все элементы массива MASI равны 0}

Способы объявления двумерного массива
Способ 1. Если в программе используется один массива в разделе описания переменных: Var a: Array Of<тип элементов>; Спос

Сортировка массива
Сортировка – один из наиболее распространенных процессов современной обработки данных. Сортировкой называется распределение элементов множества по группам в соответствии с о

Линейная сортировка (сортировка отбором)
Идея линейной сортировки по не возрастанию заключается в том, чтобы, последовательно просматривая весь массив, отыскать наибольшее число и поместить его на первую позицию, обменяв его с элементом,

Сортировка методом пузырька
Один из самых популярных методов сортировки – ″пузырьковый″ метод основан на том, что в процессе исполнения алгоритма более ″легкие″ элементы массива

Бинарный поиск в упорядоченных массивах
Едва ли не самой внушительной демонстрацией эффективности применения компьютеров являются задачи, в которых осуществляется поиск информации в некотором списке. Ранее мы использовали метод линейного

Графический экран
Отличие графического экрана от текстового: единица управления в графическом режиме - точка (пиксел), в текстовом – символ. Прежде чем работать с графическими командами, надо запустить графическую с

Текстовый экран
Текстовый экран позволяет разместить 25х80 символов. Минимальная единица управления - символ. Для управления цветом и фоном используются процедуры, находящиеся в модуле CRT: Cl

Лекция 24.
Тема: «Операционные системы семейства Microsoft Windows». Windows- это название семейства операционных систем для IBM -совместимых персон

Основы взаимодействия пользователя с системой
После запуска системы Windows экран монитора приобретает специфическое оформление, называемое термином Рабочий стол.На нем размещаются значки-пиктограммыосновных п

Управление окнами
В основе системы Windowsтак же, как и других аналогичных систем, лежит понятие окна. Каждое окно имеет рамку и заголовок.Рамка использует

Навигация по дискам и каталогам с помощью пиктограммы
«Мой компьютер» пиктограмма «Мой компьютер» дает доступ к файловой системе ПК и позволяет запустить любое приложение. Для этого необходимо дважды щелкнуть значок «

Лекция 25.
Тема: «Запуск операционной системы. Работа с окнами, папкам и файлами». Для создания новой папки в приложении «Мой компьютер» нужно перейти в папку, где необходимо создать

Лекция 26.
Тема: «Основные возможности текстового редактора Word». В последнее время все большую популярность среди широкого круга пользователей завоевывает текстовый редактор Word д

Для отмены удаления
- на панели инструментов пиктографического меню нажать на кнопку с изображением изогнутой влево стрелки; - или использовать команду меню ПРАВКА – ОТМЕНИТЬ ВВОД. Добавление

Лекция 28.
Тема: «Работа с электронными таблицами в программе Excel». Для представления данных в удобном виде используют таблицы. Компьютер расширяет возможности использования таблиц

Ввод текста и чисел
Ввод текста осуществляется непосредственно в текущую ячейку или в строку формул, располагающуюся в верхней части окна программы непосредственно под панелями инструментов. Содержимое строки ф

Форматирование содержимого ячеек
Текстовые данные по умолчанию выравниваются по левому краю ячейки, а числа – по правому. Способ выполнения вычисления не зависит от того, каким способом данные отформатированы, но для человека внеш

Лекция 29.
Тема: «Диаграмма-графическое представление и редактирование данных». Большую помощь при обработке и анализе информации оказывает ее графическое представление. Это неудивит

Полное описание параметров, а также инструкция по настройке встроенных звуковых карт Realtek. Настройка воспроизведения, записи, 3D звука. Windows Vista/7/8

2012-02-17T18:19

2012-02-17T18:19

Audiophile"s Software

Copyright 2017, Taras Kovrijenko

Полное или частичное копирование текста допускается только с письменного разрешения автора .

Пролог

На этот раз я затрону тему, актуальную, так сказать, для энтузиастов начинающих - т. е., для тех, кто ещё не разжился на дискретную звуковую карту и хочет выжать максимум из интегрированной.

1. Ликбез

Для начала - краткий ликбез. Кто не знает, или не до конца понимает, что такое аппаратный аудиокодек , внимательно ознакомьтесь с соответствующими страницами Википедии:

Прочитали? Отлично! А теперь было бы ещё очень неплохо, если бы вы ознакомились с двумя моими статьями:

Ну вот, теперь можем и начать.

2. Что мы имеем

Итак, в моём распоряжении ОС Windows 7 SP1 Ultimate x64 (описанная в статье настройка подходит для всех ОС, начиная с Vista), встроенный в материнскую плату (ASUS P7H55-V) кодек ALC887 (имеется даташит), подключенные в задние разъемы внешний усилитель и микрофон (зелёное и розовое гнезда соответственно). Обратите внимание, что настраивать мы будем карту для вывода стерео звука по аналоговому интерфейсу.

3. Установка ПО

Прежде всего надо установить драйвера. Конечно, скорее всего ОС Windows уже сама нашла и установила драйвера для звукового устройства, однако для получения доступа ко всему функционалу, а также для душевного спокойствия, установим пакет драйверов непосредственно от Realtek, последнюю версию которого вы можете скачать на соответствующей странице моего сайта. К слову, указанные здесь настройки проверялись на версии драйверов R2.67.

Скачиваем драйвера, производим несложную процедуру установки (запустив HD_Audio/Setup.exe ), перезагружаем компьютер.

После загрузки ОС в системном трее должен появиться коричневый значок динамика:

4. Настройка драйверов

Прежде всего заходим в Панель Управления Windows->Оборудование и звук->Звук и, убедившись, что наши наушники или динамики подключены в зеленое гнездо звуковой карты, отключаем все ненужные устройства, а наше подключённое устройство делаем устройством по умолчанию:

Заодно проделаем тоже самое с устройствами записи:

Теперь дважды кликаем по значку в трее. Если значка нет, ищем его в скрытых значках, если и там нет - заходим в Панель управления->Оборудование и звук->. Так или иначе, должно открыться окно диспетчера:


Здесь сразу задаем конфигурацию динамиков (стерео), задаем наше аналоговое устройство устройством по умолчанию (после чего соответствующая кнопка потухнет), отключаем, если, не дай Бог, включено, объёмное звучание.


По кнопке в виде жёлтой папки можно настроить отключение определения разъемов передней панели:

Также обратите внимание, что подключённые разъемы отображаются ярким цветом - в нашем случае к зелёному выходу подключены динамики, к розовому входу - микрофон. Здесь - одна весьма важная деталь: дважды нажав по значку разъема, вы увидите окно с выбором типа подключенного устройства. Важно это потому, что если выбрать «наушники» , то кодек будет использовать специальный дополнительный усилитель (иначе звук в наушниках будет слишком тихим), для подключенных же активных колонок или внешних усилителей следует выбирать «Выход на передние динамики» . Здесь же включается автоматическое всплывание данного окна при подключении устройства в какой-либо из разъёмов карты:

С помощью кнопки «i» можно открыть окно с информацией о версии драйвера, DirectX, аудиоконтроллере и версии кодека, там же включается/выключается отображение значка в системном трее:


Теперь поотключаем эффекты:


Настройки «Поправки на помещение» для стерео конфигурации недоступны, что вобщем-то странно - в той же консоли от THX (которая включена, например, в пакет драйверов Creative X-Fi) можно отрегулировать расстояние и угол направления на динамики относительно вашего расположения, что бывает очень полезно, когда вы не сидите непосредственно перед колонками, или же они расположены относительно вас несимметрично. Ну да ладно, пусть это будет на совести разработчиков.

Последняя вкладка дублирует настройки панели управления (впрочем, большинство настроек из Диспетчера есть и в панели управления):


Здесь можно задать параметры системного микшера - с какой частотой дискретизации и глубиной бит Windows будет микшировать все воспроизводимые звуки. Установим 24 бит, 96 кГц. Почему - расскажу далее.

Так как меня постоянно штурмуют вопросами, как настроить микрофон (что, по моему мнению, должно вызывать минимум непоняток), я всё же остановлюсь на настройке устройств записи. Их настройки, кстати, как и устройств воспроизведения, находятся на отдельных вкладках вверху окна. Начнём со стерео микшера:


Здесь всё элементарно. Данное устройство записывает всё, что вы слышите через динамики, т. е., тот готовый звуковой поток, который Windows передает на звуковую карту. Приводится он к указанному виду (раз микшер работает с частотой дискретизации 96 кГц, то и тут поставим столько же).

Но нашим основным устройством записи является, конечно же, микрофон:

Итак, ставим громкость записи на максимум, а усиление микрофона выключаем (потом, если понадобится, можно включить). Также, очень часто люди жалуются, что у них воспроизводится звук воспринимаемый микрофоном, чтобы этого не было - отключаем воспроизведение. На свой вкус - фильтрация шума , подавление эхо . На вкладке , опять же, задается формат записи:

Учитывая характеристики звукозаписывающего тракта, здесь хватит и стандартного 16 бит/44.1 кГц.

5. Настройка foobar2000

В принципе, проделанной работы хватит, чтобы обеспечить наиболее высокое (для данной карты) качество звучания в любом плеере. Но для настоящих параноиков я приведу настройки foobar2000. Нам понадобится, собственно, сам плеер и несколько плагинов к нему - WASAPI output support и SoX Resampler . Ну или вы можете скачать мою сборку , в которой всё уже имеется.

Итак, в настройках вывода плеера (File->Preferences->Playback->Output) выбираем WASAPI: <наше устройство> , разрядность ставим 24 бит :

При выводе через WASAPI Exclusive обходятся все эффекты звуковой карты (если они включены), а также микшер Windows (для которого мы указывали частоту семплирования).

Теперь перейдём к настройкам DSP:


Тут добавляем в цепочку ресемплер SOund eXchange и Advanced Limiter. В настройках ресемплера ставим частоту 96 кГц.

А вот теперь - почему 96 кГц. Я провел серию экспериментов, и вот что мне удалось выяснить. В режиме «выход на передние динамики», если регулятор громкости установлен более чем на 90%, при воспроизведении тестового сигнала udial (частота дискретизации - 44.1 кГц) слышны сильные искажения. Искажения пропадают, если или понизить громкость, или переключиться на режим наушников, или выполнить передискретизацию аудио до 96 кГц.

О причинах данного явления по имеющимся данным судить трудно, но можно сделать выводы и дважды перестраховаться: всё аудио выводить с частотой дискретизации 96 кГц, а громкость не повышать более чем до 90% .

И пара слов о необходимости настройки foobar2000. В принципе, можно выводить звук на устройство «DS: Первичный звуковой драйвер». В этом случае передискретизация будет выполняться средствами Windows (ресемплер там не самый плохой), к тому же ещё и не будут отключаться все остальные звуки (как при воспроизведении через WASAPI Exclusive). Кроме того, выбрав данное устройство, Windows будет выводить звук на то устройство, которое установлено по умолчанию в панели управления, что бывает удобно (например, при отключении одного из устройств звук автоматически переключается на другое). Так что выбор за вами - удобство, или же уверенность в качестве.

6. Воскрешение трехмерного звука и аппаратного микширования

И конечно же я не забыл про геймеров. Так как в Windows, начиная с Vista, отсутствует доступ к аппаратному микшированию потоков (все операции выполняет Windows, а потом один единственный поток выводится на звуковую карту), то разработчики придумали специальную программу, аналог Creative ALchemy, но для Realtek - 3D SoundBack . Она подключается к аппаратным ресурсам через интерфейс OpenAL, эмулируя для указанных программ Windows эмулирует DirectSound устройство (как в Windows XP), а затем просто выполняет преобразование команд DirectSound (или DirectSound 3D) в команды OpenAL, в итоге - получаем настоящий EAX 2.0 в играх, а также возможность преобразования многоканального аудио в стерео с эффектами окружения.

Для запуска программы откройте папку .../Program Files/Realtek/3D Sound Back Beta0.1 , в свойствах файла 3DSoundBack.exe на вкладке «Совместимость» установите режим совместимости с Windows Vista SP2 :

Теперь запустите этот файл. Чтобы добавить приложение - нажмите Add Game , введите название и адрес папки, в которой содержится исполняемый файл программы. Например:


После добавления не забудьте выделить добавленное приложение и нажать кнопку Enable .

Теперь указанное приложение будет по умолчанию использовать эмулированное DirectSound устройство и получит доступ к аппаратным ресурсам звуковой карты:

Эпилог

Ну вот, очередная грандиозная статья завершена. Кстати, я тут подумал: а ведь по-хорошему, эту статью надо было написать одной из первых... Впрочем, на то время у меня ещё не хватило бы знаний, чтобы всё так вот подробно описать, так что оно может быть и к лучшему.

Если что-то непонятно, остались какие-то вопросы - спрашивайте, комментируйте. Желаю удачи!

Информация от спонсора

ЕвроТехника: сеть магазинов бытовой техники. На сайте http://euro-technika.com.ua/ Вы можете ознакомиться с ассортиментом современных 8-ядерных смартфонов (воспользовавшись удобным каталогом) и здесь же сделать заказ (с доставкой или самовывозом).

Ко мне обратился человек с просьбой написать программу, которая позволила бы управлять компьютерной мышью при помощи голоса. Тогда я и представить себе не мог, что, практически полностью парализованный человек, который даже не может сам повернуть голову, а может лишь разговаривать, способен развить бурную деятельность, помогая себе и другим жить активной жизнью, получать новые знания и навыки, работать и зарабатывать, общаться с другими людьми по всему свету, участвовать в конкурсе социальных проектов.

Позволю себе привести здесь пару ссылок на сайты, автором и/или идейным вдохновителем которых является этот человек – Александр Макарчук из города Борисов, Беларусь:

Для работы на компьютере Александр использовал программу «Vocal Joystick» - разработку студентов Университета штата Вашингтон, выполненную на деньги Национального Научного Фонда (NSF). См. melodi.ee.washington.edu/vj

Не удержался

Кстати, на сайте университета (http://www.washington.edu/) 90% статей именно про деньги. Трудно найти что-нибудь про научную работу. Вот, например, выдержки с первой страницы: «Том, выпускник университета, раньше питался грибами и с трудом платил за квартиру. Теперь он старший менеджер ИТ-компании и кредитует университет», «Большие Данные помогают бездомным», «Компания обязалась заплатить 5 миллионов долларов за новый учебный корпус».

Это одному мне режет глаз?


Программа была сделана в 2005-2009 годах и хорошо работала на Windows XP. В более свежих версиях Windows программа может зависнуть, что неприемлемо для человека, который не может встать со стула и её перезапустить. Поэтому программу нужно было переделать.

Исходных текстов нет, есть только отдельные публикации, приоткрывающие технологии, на которых она основана (MFCC, MLP – читайте об этом во второй части).

По образу и подобию была написана новая программа (месяца за три).

Собственно, посмотреть, как она работает, можно :

Скачать программу и/или посмотреть исходные коды можно .

Никаких особенных действий для установки программы выполнять не надо, просто щёлкаете на ней, да запускаете. Единственное, в некоторых случаях требуется, чтобы она была запущена от имени администратора (например, при работе с виртуальной клавиатурой “Comfort Keys Pro”):

Пожалуй, стоит упомянуть здесь и о других вещах, которые я ранее делал для того, чтобы можно было управлять компьютером без рук.

Если у вас есть возможность поворачивать голову, то хорошей альтернативой eViacam может послужить гироскоп, крепящийся к голове. Вы получите быстрое и точное позиционирование курсора и независимость от освещения.

Если вы можете двигать только зрачками глаз, то можно использовать трекер направления взгляда и программу к нему (могут быть сложности, если вы носите очки).

Часть II. Как это устроено?

Из опубликованных материалов о программе «Vocal Joystick» было известно, что работает она следующим образом:
  1. Нарезка звукового потока на кадры по 25 миллисекунд с перехлёстом по 10 миллисекунд
  2. Получение 13 кепстральных коэффициентов (MFCC) для каждого кадра
  3. Проверка того, что произносится один из 6 запомненных звуков (4 гласных и 2 согласных) при помощи многослойного персептрона (MLP)
  4. Воплощение найденных звуков в движение/щелчки мыши
Первая задача примечательна лишь тем, что для её решения в реальном времени пришлось вводить в программу три дополнительных потока, так как считывание данных с микрофона, обработка звука, проигрывание звука через звуковую карту происходят асинхронно.

Последняя задача просто реализуется при помощи функции SendInput.

Наибольший же интерес, мне кажется, представляют вторая и третья задачи. Итак.

Задача №2. Получение 13 кепстральных коэффициентов

Если кто не в теме – основная проблема узнавания звуков компьютером заключается в следующем: трудно сравнить два звука, так как две непохожие по очертанию звуковые волны могут звучать похоже с точки зрения человеческого восприятия.

И среди тех, кто занимается распознаванием речи, идёт поиск «философского камня» - набора признаков, которые бы однозначно классифицировали звуковую волну.

Из тех признаков, что доступны широкой публике и описаны в учебниках, наибольшее распространение получили так называемые мел-частотные кепстральные коэффициенты (MFCC).

История их такова, что изначально они предназначались совсем для другого, а именно, для подавления эха в сигнале (познавательную статью на эту тему написали уважаемые Оппенгейм и Шафер, да пребудет радость в домах этих благородных мужей. См. A. V. Oppenheim and R.W. Schafer, “From Frequency to Quefrency: A History of the Cepstrum”).

Но человек устроен так, что он склонен использовать то, что ему лучше знакомо. И тем, кто занимался речевыми сигналами, пришло в голову использовать уже готовое компактное представление сигнала в виде MFCC. Оказалось, что, в общем, работает. (Один мой знакомый, специалист по вентиляционным системам, когда я его спросил, как бы сделать дачную беседку, предложил использовать вентиляционные короба. Просто потому, что их он знал лучше других строительных материалов).

Являются ли MFCC хорошим классификатором для звуков? Я бы не сказал. Один и тот же звук, произнесённый мною в разные микрофоны, попадает в разные области пространства MFCC-коэффициентов, а идеальный классификатор нарисовал бы их рядом. Поэтому, в частности, при смене микрофона вы должны заново обучать программу.

Это всего лишь одна из проекций 13-мерного пространства MFCC в 3-мерное, но и на ней видно, что я имею в виду – красные, фиолетовые и синие точки получены от разных микрофонов: (Plantronix, встроенный массив микрофонов, Jabra), но звук произносился один.

Однако, поскольку ничего лучшего я предложить не могу, также воспользуюсь стандартной методикой – вычислением MFCC-коэффициентов.

Чтобы не ошибиться в реализации, в первых версиях программы в качестве основы был использован код из хорошо известной программы CMU Sphinx, точнее, её реализации на языке C, именующейся pocketsphinx, разработанной в Университете Карнеги-Меллона (мир с ними обоими! (с) Хоттабыч).

Исходные коды pocketsphinx открыты, да вот незадача – если вы их используете, то должны в своей программе (как в исходниках, так и в исполняемом модуле) прописать текст, содержащий, в том числе, следующее:

* This work was supported in part by funding from the Defense Advanced * Research Projects Agency and the National Science Foundation of the * United States of America, and the CMU Sphinx Speech Consortium.
Мне это показалось неприемлемым, и пришлось код переписать. Это сказалось на быстродействии программы (в лучшую сторону, кстати, хотя «читабельность» кода несколько пострадала). Во многом благодаря использованию библиотек “Intel Performance Primitives”, но и сам кое-что оптимизировал, вроде MEL-фильтра. Тем не менее, проверка на тестовых данных показала, что получаемые MFCC-коэффициенты полностью аналогичны тем, что получаются при помощи, например, утилиты sphinx_fe.

В программах sphinxbase вычисление MFCC-коэффициентов производится следующими шагами:

Шаг Функция sphinxbase Суть операции
1 fe_pre_emphasis Из текущего отсчёта вычитается большая часть предыдущего отсчета (например, 0.97 от его значения). Примитивный фильтр, отбрасывающий нижние частоты.
2 fe_hamming_window Окно Хемминга – вносит затухание в начале и конце кадра
3 fe_fft_real Быстрое преобразование Фурье
4 fe_spec2magnitude Из обычного спектра получаем спектр мощности, теряя фазу
5 fe_mel_spec Группируем частоты спектра [например, 256 штук] в 40 кучек, используя MEL-шкалу и весовые коэффициенты
6 fe_mel_cep Берём логарифм и применяем DCT2-преобразование к 40 значениям из предыдущего шага.
Оставляем первые 13 значений результата.
Есть несколько вариантов DCT2 (HTK, legacy, классический), отличающихся константой, на которую мы делим полученные коэффициенты, и особой константой для нулевого коэффициента. Можно выбрать любой вариант, сути это не изменит.

В эти шаги ещё вклиниваются функции, которые позволяют отделить сигнал от шума и от тишины, типа fe_track_snr, fe_vad_hangover, но нам они не нужны, и отвлекаться на них не будем.

Были выполнены следующие замены для шагов по получению MFCC-коэффициентов:

Задача №3. Проверка того, что произносится один из 6 запомненных звуков

В программе-оригинале «Vocal Joystick» для классификации использовался многослойный персептрон (MLP) – нейронная сеть без новомодных наворотов.

Давайте посмотрим, насколько оправдано применение нейронной сети здесь.

Вспомним, что делают нейроны в искусственных нейронных сетях.

Если у нейрона N входов, то нейрон делит N-мерное пространство пополам. Рубит гиперплоскостью наотмашь. При этом в одной половине пространства он срабатывает (выдаёт положительный ответ), а в другой – не срабатывает.

Давайте посмотрим на [практически] самый простой вариант – нейрон с двумя входами. Он, естественно, будет делить пополам двумерное пространство.

Пусть на вход подаются значения X1 и X2, которые нейрон умножает на весовые коэффициенты W1 и W2, и добавляет свободный член C.


Итого, на выходе нейрона (обозначим его за Y) получаем:

Y=X1*W1+X2*W2+C

(опустим пока тонкости про сигмоидальные функции)

Считаем, что нейрон срабатывает, когда Y>0. Прямая, заданная уравнением 0=X1*W1+X2*W2+C как раз и делит пространство на часть, где Y>0, и часть, где Y<0.

Проиллюстрируем сказанное конкретными числами.

Пусть W1=1, W2=1, C=-5;

Теперь посмотрим, как нам организовать нейронную сеть, которая бы срабатывала на некоторой области пространства, условно говоря – пятне, и не срабатывала во всех остальных местах.

Из рисунка видно, что для того, чтобы очертить область в двумерном пространстве, нам потребуется по меньшей мере 3 прямых, то есть 3 связанных с ними нейрона.

Эти три нейрона мы объединим вместе при помощи ещё одного слоя, получив многослойную нейронную сеть (MLP).

А если нам нужно, чтобы нейронная сеть срабатывала в двух областях пространства, то потребуется ещё минимум три нейрона (4,5,6 на рисунках):

И тут уж без третьего слоя не обойтись:

А третий слой – это уже почти Deep Learning…

Теперь обратимся за помощью к ещё одному примеру. Пусть наша нейронная сеть должна выдавать положительный ответ на красных точках, и отрицательный – на синих точках.

Если бы меня попросили отрезать прямыми красное от синего, то я бы сделал это как-то так:

Но нейронная сеть априори не знает, сколько прямых (нейронов) ей понадобится. Этот параметр надо задать перед обучением сети. И делает это человек на основе… интуиции или проб и ошибок.

Если мы выберем слишком мало нейронов в первом слое (три, например), то можем получить вот такую нарезку, которая будет давать много ошибок (ошибочная область заштрихована):

Но даже если число нейронов достаточно, в результате тренировки сеть может «не сойтись», то есть достигнуть некоторого стабильного состояния, далёкого от оптимального, когда процент ошибок будет высок. Как вот здесь, верхняя перекладина улеглась на два горба и никуда с них не уйдёт. А под ней большая область, порождающая ошибки:

Снова, возможность таких случаев зависит от начальных условий обучения и последовательности обучения, то есть от случайных факторов:

- Что ты думаешь, доедет то колесо, если б случилось, в Москву или не доедет?
- А ты как думаешь, сойдётся ента нейронная сеть или не сойдётся?

Есть ещё один неприятный момент, связанный с нейронными сетями. Их «забывчивость».

Если начать скармливать сети только синие точки, и перестать скармливать красные, то она может спокойно отхватить себе кусок красной области, переместив туда свои границы:

Если у нейронных сетей столько недостатков, и человек может провести границы гораздо эффективнее нейронной сети, зачем же их тогда вообще использовать?

А есть одна маленькая, но очень существенная деталь.

Я очень хорошо могу отделить красное сердечко от синего фона отрезками прямых в двумерном пространстве.

Я неплохо смогу отделить плоскостями статую Венеры от окружающего её трёхмерного пространства.

Но в четырёхмерном пространстве я не смогу ничего, извините. А в 13-мерном - тем более.

А вот для нейронной сети размерность пространства препятствием не является. Я посмеивался над ней в пространствах малой размерности, но стоило выйти за пределы обыденного, как она меня легко уделала.

Тем не менее вопрос пока открыт – насколько оправдано применение нейронной сети в данной конкретной задаче, учитывая перечисленные выше недостатки нейронных сетей.

Забудем на секунду, что наши MFCC-коэффициенты находятся в 13-мерном пространстве, и представим, что они двумерные, то есть точки на плоскости. Как в этом случае можно было бы отделить один звук от другого?

Пусть MFCC-точки звука 1 имеют среднеквадратическое отклонение R1, что [грубо] означает, что точки, не слишком далеко отклоняющиеся от среднего, наиболее характерные точки, находятся внутри круга с радиусом R1. Точно так же точки, которым мы доверяем у звука 2 находятся внутри круга с радиусом R2.

Внимание, вопрос: где провести прямую, которая лучше всего отделяла бы звук 1 от звука 2?

Напрашивается ответ: посередине между границами кругов. Возражения есть? Возражений нет.
Исправление: В программе эта граница делит отрезок, соединяющий центры кругов в соотношении R1:R2, так правильнее.

И, наконец, не забудем, что где-то в пространстве есть точка, которая является представлением полной тишины в MFCC-пространстве. Нет, это не 13 нулей, как могло бы показаться. Это одна точка, у которой не может быть среднеквадратического отклонения. И прямые, которыми мы отрежем её от наших трёх звуков, можно провести прямо по границам окружностей:

На рисунке ниже каждому звуку соответствует кусок пространства своего цвета, и мы можем всегда сказать, к какому звуку относится та или иная точка пространства (или не относится ни к какому):

Ну, хорошо, а теперь вспомним, что пространство 13-мерное, и то, что было хорошо рисовать на бумаге, теперь оказывается тем, что не укладывается в человеческом мозгу.

Так, да не так. К счастью, в пространстве любой размерности остаются такие понятия, как точка, прямая, [гипер]плоскость, [гипер]сфера.

Мы повторяем все те же действия и в 13-мерном пространстве: находим дисперсию, определяем радиусы [гипер]сфер, соединяем их центры прямой, рубим её [гипер]плоскостью в точке, равно отдалённой от границ [гипер]сфер.

Никакая нейронная сеть не сможет более правильно отделить один звук от другого.

Здесь, правда, следует сделать оговорку. Всё это справедливо, если информация о звуке – это облако точек, отклоняющихся от среднего одинаково во всех направлениях, то есть хорошо вписывающееся в гиперсферу. Если бы это облако было фигурой сложной формы, например, 13-мерной изогнутой сосиской, то все приведённые выше рассуждения были бы не верны. И возможно, при правильном обучении, нейронная сеть смогла бы показать здесь свои сильные стороны.

Но я бы не рисковал. А применил бы, например, наборы нормальных распределений (GMM), (что, кстати и сделано в CMU Sphinx). Всегда приятнее, когда ты понимаешь, какой конкретно алгоритм привёл к получению результата. А не как в нейронной сети: Оракул, на основе своего многочасового варения бульона из данных для тренировки, повелевает вам принять решение, что запрашиваемый звук – это звук №3. (Меня особенно напрягает, когда нейронной сети пытаются доверить управление автомобилем. Как потом в нестандартной ситуации понять, из-за чего машина повернула влево, а не вправо? Всемогущий Нейрон повелел?).

Но наборы нормальных распределений – это уже отдельная большая тема, которая выходит за рамки этой статьи.

Надеюсь, что статья была полезной, и/или заставила ваши мозговые извилины поскрипеть.

Понравилась статья? Поделиться с друзьями: