Большая энциклопедия нефти и газа. Зигзаг в эфире. Характеристики дециметровых волн и их свойства

Когда-то хорошая телевизионная антенна была дефицитом, покупные качеством и долговечностью, мягко говоря, не отличались. Сделать антенну для «ящика» или «гроба» (старого лампового телевизора) своими руками считалось показателем мастерства. Интерес к самодельным антеннам не угасает и в наши дни. Ничего странного тут нет: условия приема ТВ кардинально изменились, а производители, полагая, что в теории антенн ничего существенно нового нет и не будет, чаще всего приспосабливают к давно известным конструкциям электронику, не задумываясь над тем, что главное для любой антенны – ее взаимодействие с сигналом в эфире.

Что изменилось в эфире?

Во-первых, почти весь объем ТВ-вещания в настоящее время осуществляется в диапазоне ДМВ . Прежде всего из экономических соображений, в нем намного упрощается и удешевляется антенно-фидерное хозяйство передающих станций, и, что еще более важно – потребность в его регулярном обслуживании высококвалифицированными специалистами, занятыми тяжелым, вредным и опасным трудом.

Второе – ТВ-передатчики теперь покрывают своим сигналом практически все более-менее населенные места , а развитая сеть связи обеспечивает подачу программ в самые глухие углы. Там вещание в обитаемой зоне обеспечивают маломощные необслуживаемые передатчики.

Третье, изменились условия распространения радиоволн в городах . На ДМВ промышленные помехи просачиваются слабо, но железобетонные многоэтажки для них – хорошие зеркала, многократно переотражающие сигнал вплоть до его полного затухания в зоне, казалось бы, уверенного приема.

Четвертое – ТВ-программ в эфире сейчас очень много, десятки и сотни . Насколько это множество разнообразно и содержательно – другой вопрос, но рассчитывать на прием 1-2-3 каналов ныне бессмысленно.

Наконец, получило развитие цифровое вещание . СигналDVB T2 – штука особенная. Там, где он еще хоть чуть-чуть, на 1,5-2 дБ, превышает шумы, прием отличный, как ни в чем ни бывало. А чуть дальше или в стороне – нет, как отрезало. К помехам «цифра» почти не чувствительна, но при рассогласовании с кабелем или фазовых искажениях в любом месте тракта, от камеры до тюнера, картинка может рассыпаться в квадратики и при сильном чистом сигнале.

Требования к антеннам

В соответствии с новыми условиями приема, изменились и основные требования к ТВ-антеннам:

  • Такие ее параметры, как коэффициент направленного действия (КНД) и коэффициент защитного действия (КЗД) ныне определяющего значения не имеют: современный эфир очень грязный, и по малюсенькому боковому лепестку диаграммы направленности (ДН), хоть какая-то помеха, да пролезет, и бороться с ней нужно уже средствами электроники.
  • Взамен особое значение приобретает собственный коэффициент усиления антенны (КУ). Антенна, хорошо «облавливающая» эфир, а не смотрящая на него сквозь маленькую дырочку, даст запас мощности принятого сигнала, позволяющий электронике очистить его от шумов и помех.
  • Современная телевизионная антенна, за редчайшими исключениями, должна быть диапазонной, т.е. ее электрические параметры должны сохраняться естественным образом, на уровне теории, а не втискиваться в приемлемые рамки путем инженерных ухищрений.
  • ТВ-антенна должна согласовываться в кабелем во всем своем рабочем диапазоне частот без дополнительных устройств согласования и симметрирования (УСС).
  • Амплитудно-частотная характеристика антенны (АЧХ) должна быть возможно более гладкой. Резким выбросам и провалам непременно сопутствуют фазовые искажения.

Последние 3 пункта обусловлены требованиями приема цифровых сигналов. Настроенные, т.е. работающие теоретически на одной частоте, антенны можно «растянуть» по частоте, напр. антенны типа «волновой канал» на ДМВ с приемлемым отношением сигнал/шум захватывают 21-40 каналы. Но их согласование с фидером требует применения УСС, которые либо сильно поглощают сигнал (ферритовые), либо портят фазовую характеристику на краях диапазона (настроенные). И «цифру» такая антенна, отлично работающая на «аналоге», будет принимать плохо.

В связи с этим, из всего великого антенного многообразия, в данной статье будут рассмотрены антенны для телевизора, доступные для самостоятельного изготовления, следующих типов:

  1. Частотнонезависимая (всеволновая) – не отличается высокими параметрами, но очень проста и дешева, ее можно сделать буквально за час. За городом, где эфир почище, она вполне сможет принимать цифру или достаточно мощный аналог не небольшом удалении от телецентра.
  2. Диапазонная логопериодическая. Ее, образно выражаясь, можно уподобить рыболовецкому тралу, уже при облавливании сортирующему добычу. Она тоже довольно проста, идеально согласуется с фидером во всем своем диапазоне, абсолютно не меняет в нем параметры. Техпараметры – средние, поэтому более подойдет для дачи, а в городе в качестве комнатной.
  3. Несколько модификаций зигзагообразной антенны , или Z-антенны. В диапазоне МВ это весьма солидная конструкция, требующая немалого умения и времени. Но на ДМВ она вследствие принципа геометрического подобия (см. далее), настолько упрощается и съеживается, что вполне может быть использована как высокоэффективная комнатная антенна при почти любых условиях приема.

Примечание: Z-антенна, если использовать предыдущую аналогию – частый бредень, сгребающий все, что есть в воде. По мере замусоривания эфира она было вышла из употребления, но с развитием цифрового ТВ вновь оказалась на коне – во всем своем диапазоне она так же отлично согласована и держит параметры, как «логопедка».

Точное согласование и симметрирование почти всех описанных далее антенн достигается благодаря прокладке кабеля через т.наз. точку нулевого потенциала. К ней предъявляются особые требования, о которых подробнее будет сказано далее.

О вибраторных антеннах

В полосе частот одного аналогового канала можно передать до нескольких десятков цифровых. И, как уже сказано, цифра работает при ничтожном отношении сигнал/шум. Поэтому в очень удаленных от телецентра, куда сигнал одного-двух каналов еле добивает, местах, для приема цифрового ТВ может найти применение и старый добрый волновой канал (АВК, антенна волновой канал), из класса вибраторных антенн, так что в конце уделим несколько строк и ей.

О спутниковом приеме

Делать самому спутниковую антенну нет никакого смысла. Головку и тюнер все равно нужно покупать, а за внешней простотой зеркала кроется параболическая поверхность косого падения, которую с нужной точностью может выполнить далеко не всякое промышленное предприятие. Единственное, что под силу самодельщикам — настроить спутниковую антенну, об этом .

О параметрах антенн

Точное определение упомянутых выше параметров антенн требует знания высшей математики и электродинамики, но понимать их значение, приступая к изготовлению антенны, нужно. Поэтому дадим несколько грубые, но все же поясняющие смысл определения (см. рис. справа):

  • КУ – отношение принятой антенной на основной (главный) лепесток ее ДН мощности сигнала, к его же мощности, принятой в том же месте и на той же частоте ненаправленной, с круговой, ДН, антенной.
  • КНД – отношение телесного угла всей сферы к телесному углу раскрыва главного лепестка ДН, в предположении, что его сечение – круг. Если главный лепесток имеет разные размеры в разных плоскостях, сравнивать нужно площадь сферы и площадь сечения ею главного лепестка.
  • КЗД – отношение принятой на главный лепесток мощности сигнала к сумме мощностей помех на той же частоте, принятой всеми побочными (задним и боковыми) лепестками.

Примечания:

  1. Если антенна диапазонная, мощности считаются на частоте полезного сигнала.
  2. Поскольку совершенно ненаправленных антенн не бывает, за такую принимают полуволновой линейный диполь, ориентированный по направлению электрического вектора поля (по его поляризации). Его КУ считается равным 1. ТВ программы передаются с горизонтальной поляризацией.

Следует помнить, что КУ и КНД не обязательно взаимосвязаны. Есть антенны (напр. «шпионская» – однопроводная антенна бегущей волны, АБВ) с высокой направленностью, но единичным или меньшим усилением. Такие смотрят вдаль как бы сквозь диоптрический прицел. С другой стороны, существуют антенны, напр. Z-антенна, у которых невысокая направленность сочетается со значительным усилением.

О тонкостях изготовления

Все элементы антенн, по которым протекают токи полезного сигнала (конкретно – в описаниях отдельных антенн), должны соединяться между собой пайкой или сваркой. В любом сборном узле на открытом воздухе электрический контакт скоро нарушится, и параметры антенны резко ухудшатся, вплоть до полной ее негодности.

Особенно это касается точек нулевого потенциала. В них, как говорят специалисты, наблюдается узел напряжения и пучность тока, т.е. его наибольшее значение. Ток при нулевом напряжении? Ничего удивительного. Электродинамика ушла от закона Ома на постоянном токе так же далеко, как Т-50 от воздушного змея.

Места с точками нулевого потенциала для цифровых антенн лучше всего выполнять гнутыми из цельного металла. Небольшой «ползучий» ток на сварке при приеме аналога на картинке, скорее всего, не скажется. Но, если принимается цифра на границе шумов, то тюнер из-за «ползучки» может не увидеть сигнала. Который при чистом токе в пучности дал бы стабильный прием.

О пайке кабеля

Оплетка (да и центральная жила нередко) современных коаксиальных кабелей делаются не из меди, а из стойких к коррозии и недорогих сплавов. Паяются они плохо и, если долго греть, можно пережечь кабель. Поэтому паять кабели нужно 40-Вт паяльником, легкоплавким припоем и с флюс-пастой вместо канифоли или спиртоканифоли. Пасты жалеть не нужно, припой сразу же растекается по жилкам оплетки только под слоем кипящего флюса.

Виды антенн

Всеволновая

Всеволновая (точнее, частотнонезависимая, ЧНА) антенна показана на рис. Она – две треугольных металлических пластинки, две деревянных рейки, да много медных эмалированных проволок. Диаметр проволоки значения не имеет, а расстояние между концами проволок на рейках – 20-30 мм. Зазор между пластинами, к которым припаяны другие концы проволок – 10 мм.

Примечание: вместо двух металлических пластин лучше взять квадрат из одностороннего фольгированного стеклотекстолита в вырезанными по меди треугольниками.

Ширина антенны равна ее высоте, угол раскрыва полотен – 90 градусов. Схема прокладки кабеля показана там же на рис. Точка, отмеченная желтым – точка квази-нулевого потенциала. Припаивать в ней оплетку кабеля к полотну не нужно, достаточно туго подвязать, для согласования хватит емкости между оплеткой и полотном.

ЧНА, растянутая в окне шириной 1,5 м, принимает все метровые и ДЦМ каналы почти со всех направлений, кроме провала около 15 градусов в плоскости полотна. В этом ее преимущество в местах, где возможен прием сигналов от разных телецентров, не нужно вращать. Недостатки – единичный КУ и нулевой КЗД, поэтому в зоне действия помех и вне зоны уверенного приема ЧНА не годится.

Примечание : есть и другие типы ЧНА, напр. в виде двухвитковой логарифимической спирали. Она компактнее ЧНА из треугольных полотен в том же диапазоне частот, поэтому иногда используется в технике. Но в быту это преимуществ не дает, сделать спиральную ЧНА сложнее, с коаксиальным кабелем согласовать труднее, поэтому не рассматриваем.

На основе ЧНА был создан очень популярный когда-то веерный вибратор (рога, рогулька, рогатка), см. рис. Его КНД и КЗД что-то около 1,4 при довольно гладкой АЧХ и линейной ФЧХ, так что для цифры он подошел бы и сейчас. Но – работает только на МВ (1-12 каналы), а цифровое вещание идет на ДМВ. Впрочем, на селе, при подъеме на 10-12 м, может сгодиться для приема аналога. Мачта 2 может быть из любого материала, но крепежные планки 1 – из хорошего ненамокающего диэлектрика: стеклотекстолита или фторопласта толщиной не менее 10 мм.

Пивная всеволновка

Всеволновая антенна из пивных банок явно не плод похмельных галлюцинаций спившегося радиолюбителя. Это действительно очень хорошая антенна на все случаи приема, нужно только сделать ее правильно. Причем исключительно простая.

В основе ее конструкции следующее явление: если увеличивать диаметр плеч обычного линейного вибратора, то рабочая полоса его частот расширяется, а прочие параметры остаются неизменными. В дальней радиосвязи с 20-х годов используется т.наз. диполь Надененко, основанный на этом принципе. А пивные банки по размерам как раз подходят в качестве плеч вибратора на ДМВ. В сущности, ЧНА и есть диполь, плечи которого неограниченно расширяются до бесконечности.

Простейший пивной вибратор из двух банок годится для комнатного приема аналога в городе даже без согласования с кабелем, если его длина не более 2 м, слева на рис. А если собрать из пивных диполей вертикальную синфазную решетку с шагом в полволны (справа на рис.), согласовать ее и отсимметрировать с помощью усилителя от польской антенны (о нем речь еще пойдет), то благодаря сжатию главного лепестка ДН по вертикали такая антенна даст и хороший КУ.

Усиление «пивнухи» можно еще увеличить, добавив заодно КЗД, если сзади нее поместить экран из сетки на расстоянии, равном половине шага решетки. Монтируется пивная решетка на мачте из диэлектрика; механические связи экрана с мачтой – тоже диэлектрические. Остальное ясно из след. рис.

Примечание: оптимальное количество этажей решетки – 3-4. При 2-х выигрыш в усилении будет небольшим, а большее трудно согласовать с кабелем.

Видео: изготовление простейшей антенны из пивных банок

«Логопедка»

Логопериодическая антенна (ЛПА) представляет собой собирающую линию, к которой попеременно подключаются половинки линейных диполей (т.е. куски проводника длиной в четверть рабочей волны), длина и расстояние между которыми меняются в геометрической прогрессии с показателем меньше 1, в центре на рис. Линия может быть как настроенной (с КЗ на противоположном от места подключения кабеля конце), так и свободной. ЛПА на свободной (ненастроенной) линии для приема цифры предпочтительнее: она выходит длиннее, но ее АЧХ и ФЧХ гладкие, а согласование с кабелем не зависит от частоты, поэтому на ней мы и остановимся.

ЛПА может быть изготовлена на любой, до 1-2 ГГц, наперед заданный диапазон частот. При изменении рабочей частоты ее активная область из 1-5 диполей смещается вперед-назад по полотну. Поэтому, чем ближе показатель прогрессии к 1, и соответственно меньше угол раскрыва антенны, тем большее усиление она даст, но при этом возрастает ее длина. На ДМВ от наружной ЛПА можно добиться 26 дБ, а от комнатной – 12 дБ.

ЛПА, можно сказать, по совокупности качеств идеальная цифровая антенна , поэтому остановимся на ее расчете несколько подробнее. Основное, что нужно знать, что увеличение показателя прогрессии (тау на рис.) дает прирост усиления, а уменьшение угла раскрыва ЛПА (альфа) увеличивает направленность. Экран для ЛПА не нужен, он на ее параметры почти не влияет.

Расчет цифровой ЛПА имеет особенности:

  1. Начинают его, ради запаса по частоте, со второго по длине вибратора.
  2. Затем, взяв обратную величину от показателя прогрессии, рассчитывают самый длинный диполь.
  3. После самого короткого, исходя из заданного диапазона частот, диполя, добавляют еще один.

Поясним на примере. Допустим, наши цифровые программы лежат в диапазоне 21-31 ТВК, т.е. в 470-558 МГц по частоте; длины волн соответственно – 638-537 мм. Также допустим, что нам нужно принимать слабый зашумленный сигнал вдали от станции, поэтому берем максимальный (0,9) показатель прогрессии и минимальный (30 градусов) угол раскрыва. Для расчета понадобится половина угла раскрыва, т.е. 15 градусов в нашем случае. Раскрыв можно еще уменьшить, но длина антенны непомерно, по котангенсу, возрастет.

Считаем В2 на рис: 638/2 = 319 мм, а плечи диполя будут по 160 мм, до 1 мм можно округлять. Расчет нужно будет вести, пока не получится Bn = 537/2 = 269 мм, и затем просчитать еще один диполь.

Теперь считаем А2 как В2/tg15 = 319/0,26795 = 1190 мм. Затем, через показатель прогрессии, А1 и В1: А1 = А2/0,9 = 1322 мм; В1 = 319/0,9 = 354,5 = 355 мм. Далее последовательно, начиная с В2 и А2, умножаем на показатель, пока не дойдем до 269 мм:

  • В3 = В2*0,9 = 287 мм; А3 = А2*0,9 = 1071 мм.
  • В4 = 258 мм; А4 = 964 мм.

Стоп, у нас уже меньше 269 мм. Проверяем, уложимся ли по усилению, хотя и так ясно, что нет: чтобы получить 12 дБ и более, расстояния между диполями не должны превышать 0,1-0,12 длины волны. В данном случае имеем для В1 А1-А2 = 1322 – 1190 = 132 мм, а это 132/638 = 0,21 длины волны В1. Нужно «подтянуть» показатель к 1, до 0,93-0,97, вот и пробуем разные, пока первая разница А1-А2 не сократится вдвое и более. Для максимума в 26 дБ нужно расстояние между диполями в 0,03-0,05 длины волны, но не менее 2-х диаметров диполя, 3-10 мм на ДМВ.

Примечание: остаток линии за самым коротким диполем, обрезаем, он нужен только для расчета. Поэтому реальная длина готовой антенны получится всего около 400 мм. Если наша ЛПА наружная, это очень хорошо: можно уменьшить раскрыв, получив большую направленность и защиту от помех.

Видео: антенна для цифрового ТВ DVB T2

О линии и мачте

Диаметр трубок линии ЛПА на ДМВ – 8-15 мм; расстояние между их осями – 3-4 диаметра. Учтем еще, что тонкие кабели-«шнурки» дают на ДМВ такое затухание на метр, что все антенно-усилительные ухищрения сойдут на нет. Коаксиал для наружной антенны нужно брать хороший, диаметром по оболочке от 6-8 мм. Т.е., трубки для линии должны быть тонкостенными цельнотянутыми. Подвязывать кабель к линии снаружи нельзя, качество ЛПА резко упадет.

Крепить наружную ЛПА к мачте нужно, разумеется, за центр тяжести, иначе малая парусность ЛПА превратится в огромную и трясущуюся. Но соединять металлическую мачту прямо с линией тоже нельзя: нужно предусмотреть диэлектрическую вставку не менее 1,5 м длиной. Качество диэлектрика большой роли тут не играет, пойдет проолифленное и покрашенное дерево.

Об антенне «Дельта»

Если ДМВ ЛПА согласуется с кабелем усилителем (см. далее, о польских антеннах), то к линии можно пристроить плечи метрового диполя, линейные или веерные, как у «рогатки». Тогда получим универсальную МВ-ДМВ антенну отличного качества. Такое решение использовано в популярной антенне «Дельта», см. рис.

Антенна «Дельта»

Зигзаг в эфире

Z-антенна с рефлектором дает усиление и КЗД такие же, как ЛПА, но главный лепесток ее ДН более чем вдвое шире по горизонтали. Это может быть важно на селе, когда есть прием ТВ с разных направлений. А дециметровая Z-антенна имеет небольшие в плане размеры, что существенно для комнатного приема. Но ее рабочий диапазон теоретически не безграничен, перекрытие по частоте при сохранении приемлемых для цифры параметров – до 2,7.

Конструкция Z-антенны МВ показана на рис; красным выделен путь прокладки кабеля. Там же слева внизу – более компактный кольцевой вариант, в просторечии – «паук». По нему хорошо видно, что Z-антенна родилась как комбинация ЧНА с диапазонным вибратором; есть в ней кое-что и от ромбической антенны, которая в тему не вписывается. Да, кольцо «паука» не обязательно должно быть деревянным, это может быть обруч из металла. «Паук» принимает 1-12 МВ каналы; ДН без рефлектора – почти круговая.

Классический же зигзаг работает или на 1-5, или на 6-12 каналах, но для его изготовления нужны только деревянные рейки, медный эмалированный провод c d = 0,6-1,2 мм да несколько обрезков фольгированного стеклотекстолита, поэтому даем размеры, через дробь для 1-5/6-12 каналов: А = 3400/950 мм, Б, С = 1700/450 мм, b = 100/28 мм, В = 300/100 мм. В точке Е – нулевой потенциал, здесь нужно оплетку спаять с металлизированной опорной пластиной. Размеры рефлектора, тоже 1-5/6-12: А = 620/175 мм, Б = 300/130 мм, Г = 3200/900 мм.

Диапазонная Z-антенна с рефлектором дает усиление в 12 дБ, настроенная на один канал – 26 дБ. Чтобы на основе диапазонного зигзага построить одноканальный, нужно взять сторону квадрата полотна по середине ее ширины в четверть длины волны и пересчитать пропорционально все прочие размеры.

Народный зигзаг

Как видим, Z-антенна МВ – довольно сложное сооружение. Но ее принцип показывает себя во всем блеске на ДМВ. Z-антенну ДМВ с емкостными вставками, сочетающая в себе достоинства «классики» и «паука», сделать настолько просто, что она еще в СССР заслужила звание народной, см. рис.

Материал – медная трубка или алюминиевый лист толщиной от 6 мм. Боковые квадратики цельные из металла или затянутые сеткой, или закрытые жестянкой. В двух последних случаях их нужно пропаять по контуру. Коаксиал резко гнуть нельзя, поэтому ведем его так, чтобы он дошел до бокового угла, а затем не выходил за пределы емкостной вставки (бокового квадратика). В т. А (точка нулевого потенциала) оплетку кабеля электрически соединяем с полотном.

Примечание: алюминий не паяется обычными припоями и флюсами, поэтому алюминиевая «народная» годится для наружной установки только после герметизации электрических соединений силиконом, в ней ведь все на винтах.

Видео: пример двойной треугольной антенны

Волновой канал

Антенна волновой канал (АВК), или антенна Удо-Яги из доступных для самостоятельного изготовления способна дать наибольшие КУ, КНД и КЗД. Но принимать цифру на ДМВ она может только на 1 или 2-3 соседних каналах, т.к. относится к классу остро настроенных антенн. Ее параметры за пределами частоты настройки резко ухудшаются. АВК рекомендуется применять с очень плохих условиях приема, причем для каждого ТВК делать отдельную. К счастью, это не очень сложно – АВК проста и дешева.

В основе работы АВК – «сгребание» электромагнитного поля (ЭМП) сигнала к активному вибратору. Внешне небольшая, легкая, с минимальной парусностью, АВК может иметь эффективную апертуру в десятки длин волн рабочей частоты. Укороченные и поэтому имеющие емкостный импеданс (полное сопротивление) директоры (направители) направляют ЭМП к активному вибратору, а рефлектор (отражатель), удлиненный, с индуктивным импедансом, отбрасывает к нему то, что проскочило мимо. Рефлектор в АВК нужен всего 1, но директоров может быть от 1 до 20 и более. Чем их больше, тем выше усиление АВК, но уже полоса ее частот.

От взаимодействия с рефлектором и директорами волновое сопротивление активного (с которого снимается сигнал) вибратора падает тем больше, чем ближе к максимуму усиления настроена антенна, и согласование с кабелем теряется. Поэтому активный диполь АВК делают петлевым, его исходное волновое сопротивление не 73 Ом, как у линейного, а 300 Ом. Ценой его снижения до 75 Ом АВК с тремя директорами (пятиэлементную, см. рис. справа) удается настроить почти что на максимум усиления в 26 дБ. Характерная для АВК ДН в горизонтальной плоскости приведена на рис. в начале статьи.

Элементы АВК соединяются со стрелой в точках нулевого потенциала, поэтому мачта и стрела могут быть любыми. Очень хорошо подходят пропиленовые трубы.

Расчет и настройка АВК под аналог и цифру несколько различны. Под аналог волновой канал нужно рассчитывать на несущую частоту изображения Fи, а под цифру – на середину спектра ТВК Fс. Почему так – здесь объяснять, к сожалению, нет места. Для 21-го ТВК Fи = 471,25 МГц; Fс = 474 МГц. ДМВ ТВК расположены вплотную друг к другу через 8 МГц, поэтому их настроечные частоты для АВК рассчитываются просто: Fn = Fи/Fс(21 ТВК) + 8(N – 21), где N – номер нужного канала. Напр. для 39 ТВК Fи = 615,25 МГц, а Fс = 610 МГц.

Чтобы не записывать множество цифр, удобно размеры АВК выражать в долях длины рабочей волны (она считается как Л = 300/F, МГц). Длину волны принято обозначать малой греческой буквой лямбда, но, поскольку в интернете греческого алфавита по умолчанию нет, мы условно обозначим ее большой русской Л.

Размеры оптимизированной под цифру АВК, по рис., таковы:

  • Р = 0,52Л.
  • В = 0,49Л.
  • Д1 = 0,46Л.
  • Д2 = 0,44Л.
  • Д3 = 0,43л.
  • a = 0,18Л.
  • b = 0,12Л.
  • c = d = 0,1Л.

Если не нужно большого усиления, но важнее уменьшение габаритов АВК, то Д2 и Д3 можно убрать. Все вибраторы выполняются из трубки или прутка диаметром 30-40 мм для 1-5 ТВК, 16-20 мм для 6-12 ТВК и 10-12 мм на ДМВ.

АВК требует точного согласования с кабелем. Именно небрежным выполнением устройства согласования и симметрирования (УСС) объясняется большинство неудач любителей. Самое простое УСС для АВК – U-петля из того же коаксиального кабеля. Ее конструкция ясна из рис. справа. Расстояние между сигнальными клеммами 1-1 140 мм для 1-5 ТВК, 90 мм для 6-12 ТВК и 60 мм на ДМВ.

Теоретически длина колена l должна быть в половину длины рабочей волны, так и значится в большинстве публикаций в интернете. Но ЭМП в U-петле сосредоточено внутри заполненного изоляцией кабеля, поэтому нужно обязательно (для цифры – особенно обязательно) учитывать его коэффициент укорочения. Для 75-омных коаксиалов он колеблется в пределах 1,41-1,51, т.е. l нужно брать от 0,355 до 0,330 длины волны, и брать точно, чтобы АВК была АВК, а не набором железок. Точное значение коэффициента укорочения всегда есть в сертификате на кабель.

В последнее время отечественная промышленность начала выпускать перенастраиваемые АВК для цифры, см. рис. Идея, надо сказать, отличная: передвигая элементы по стреле, можно точно настроить антенну под местные условия приема. Лучше, конечно, чтобы это делал специалист – поэлементная настройка АВК взаимозависима, и дилетант непременно запутается.

О «полячках» и усилителях

У многих пользователей польские антенны, ранее прилично принимавшие аналог, цифру брать отказываются – рвется, а то и вовсе пропадает. Причина, прошу прощения, похабно-коммерческий подход к электродинамике. Стыдно порой бывает за коллег, сляпавших такое «чудо»: АЧХ и ФЧХ похожи то ли на ежа-псориазника, то ли лошадиный гребень с выломанными зубьями.

Единственно, что хорошо в «полячках» – их усилители для антенны. Собственно, они и не дают сим изделиям бесславно помереть. Усилители «поячек», во-первых, широкополосные малошумящие. И, что еще важнее – с высокоомным входом. Это позволяет при той же напряженности ЭМП сигнала в эфире подать на вход тюнера в несколько раз большую его мощность, что дает возможность электронике «выдрать» цифру из совсем уж безобразных шумов. Кроме того, вследствие большого входного сопротивления польский усилитель – идеальное УСС для любых антенн: что ни цепляй ко входу, на выходе – точно 75 Ом без отраженки и ползучки.

Однако при очень плохом сигнале, вне зоны уверенного приема, польский усилитель уже не тянет. Питание на него подается по кабелю, и развязка по питанию отнимает 2-3 дБ отношения сигнал/шум, которых может как раз и не хватить, чтобы цифра пошла в самой глубинке. Тут нужен хороший усилитель ТВ сигнала с раздельным питанием. Располагаться он будет, скорее всего, возле тюнера, а УСС для антенны, если оно требуется, придется делать отдельно.

Схема такого усилителя, показавшая почти 100% повторяемость даже при выполнении начинающими радиолюбителями, приведена на рис. Регулировка усиления – потенциометром Р1. Дроссели развязки L3 и L4 – стандартные покупные. Катушки L1 и L2 выполняются по размерам на монтажной схеме справа. Они входят в состав полосовых фильтров сигнала, поэтому небольшие отклонения их индуктивности не критичны.

Если вы хотите принимать цифровой сигнал за пределами города, вам будет полезно знать информацию о структуре цифровой сети РТРС. Прежде всего надо понимать, что количество цифровых передатчиков, транслирующих телевидение в формате DVB-T2, значительно больше, чем классических аналоговых. Ранее жители районов, удаленных от больших городов, направляли свои антенны в сторону крупных населенных пунктов, в которых находились передающие телебашни. Теперь же телевизионный ретранслятор может находиться гораздо ближе к телезрителю, чем ранее.

Метровый и дециметровый диапазоны

На первом рисунке изображена ситуация, когда принимается аналоговый сигнал с телецентра. Прямой видимости нет, его закрывает холм, поэтому антенна поднята как можно выше и принимает в основном волны метрового диапазона. Возможно вы помните из курса школьной физике, что чем длиннее волна, тем лучше её способность огибать препятствия. Именно поэтому в условиях, изображенных на первом рисунке, некоторые аналоговые каналы будет ловиться хорошо, а другие совсем плохо. Более-менее нормально в такой ситуации можно принимать метровый диапазон (изображен оранжевым цветом), дециметровые волны (ДМВ) проходят значительно хуже. Такая же ситуация происходит при отсутствии явных препятствий, но при большом удалении приемной антенны от источника телесигнала.

Прием цифрового телевидения

В аналоговом телевидении часть каналов находится в метровом диапазоне, а часть в дециметровом. Поэтому жители глубинка раньше смотрели гораздо меньше каналов, чем жители городов. Цифровое эфирное телевидение, за редким исключением, всегда транслируется на дециметровых волнах. Поэтому, для обеспечения максимального покрытия сети РТРС установила много новых передатчиков, но транслируют они только цифровой сигнал . На рисунке снизу красным изображена новая цифровая вышка DVB-T2, поэтому жителю коричневого домика следует развернуть антенну на эту вышку, если он хочет смотреть цифровые каналы. А если вышка находится совсем недалеко, то и поднимать антенну высоко уже нет смысла. В некоторых случаях даже проще купить новую недорогую комнатную антенну, чем возиться со старой, тем более что со временем утрачивают свои свойства как кабель, так и сама антенна.

Несмотря на бурное развитие спутникового и кабельного телевидения, прием эфирного телевещания все еще остается актуальным, например, для мест сезонного проживания. Совсем не обязательно для этой цели покупать готовое изделие, домашняя дециметровая (ДМВ) антенна может быть собрана своими руками. Прежде чем переходить к рассмотрению конструкций, кратко расскажем, почему выбран именно этот диапазон телевизионного сигнала.

Почему именно ДМВ?

Есть две весомые причины, чтобы остановить свой выбор на конструкциях этого типа:

  1. Все дело в том, что большинство каналов транслируется в этом диапазоне, поскольку упрощается конструкция ретрансляторов, а это дает возможность установить большее число необслуживаемых маломощных передатчиков и тем самым расширить зону покрытия.
  2. Для трансляции «цифры» выбран этот диапазон.

Комнатная антенна для ТВ «Ромб»

Эта простая, но, в то же время, надежная конструкция, была одной из самых распространенных в эпоху расцвета эфирного телевещания.

Рис. 1. Простейшая самодельная Z-антенна, известная под названиями: «Ромб», «Квадрат» и «Народный зигзаг»

Как видно из эскиза (B рис. 1), устройство представляет собой упрощенный вариант классического зигзага (Z-конструкции). Для увеличения чувствительности, ее рекомендуется оборудовать емкостными вставками («1» и «2»), а также рефлектором («А» на рис.1). Если уровень сигнала вполне приемлем, делать это не обязательно.

В качестве материала можно использовать алюминиевые, медные, а также латунные трубки или полосы шириной 10-15 мм. Если планируется устанавливать конструкцию на улице, то лучше отказаться от алюминия, поскольку он подвержен коррозии. Емкостные вставки изготавливаются из фольги, жести или металлической сетки. После установки, они пропаиваются по контуру.

Кабель укладывается так, как продемонстрировано на рисунке, а именно: не имел резких изгибов и не покидал пределов боковой вставки.

Дециметровая антенна с усилителем

В местах, где в относительной близости не расположена мощная ретрансляционная башня, можно поднять уровень сигнала до приемлемого значения при помощи усилителя. Ниже представлена принципиальная схема устройства, которое может использоваться практически с любой антенной.


Рис. 2. Схема антенного усилителя для ДМВ диапазона

Перечень элементов:

  • Резисторы: R1 – 150 кОм; R2 – 1 кОм; R3 – 680 Ом; R4 – 75 кОм.
  • Конденсаторы: С1 – 3,3 пФ; С2 – 15 пФ; С3 – 6800 пФ; С4, С5, С6 – 100 пФ.
  • Транзисторы: VT1, VT2 – ГТ311Д (можно заменить на: KT3101, KT3115 и KT3132).

Индуктивность: L1 – представляет собой бескаркасную катушку диаметром 4 мм, намотанную медным проводом Ø 0,8 мм (необходимо сделать 2,5 витка); L2 и L3 – высокочастотные дроссели 25 мкГн и 100 мкГн, соответственно.

Если схема собрана правильно, мы получим усилитель со следующими характеристиками:

  • полоса пропускания от 470 до 790 МГц;
  • коэффициенты усиления и шума – 30 и 3 дБ, соответственно;
  • величина выходного и входного сопротивления устройства соответствует кабелю RG6 – 75 Ом;
  • устройство потребляет порядка 12-14 мА.

Обратим внимание на способ подачи питания, оно осуществляется непосредственно по кабелю.

Данный усилитель может работать с самыми простыми конструкциями, сделанными из подручных средств.

Комнатная антенна из пивных банок

Несмотря на необычность конструкции, она вполне работоспособна, поскольку представляет собой классический диполь, тем более, что размеры стандартной банки отлично подходят для плеч вибратора дециметрового диапазона. Если устройство установлено в комнате, то в этом случае даже не обязательно согласование с кабелем, при условии, что он не будет длиннее двух метров.


Обозначения:

  • А – две банки объемом 500 мг (если взять жестяные, а не алюминиевые, то можно припаять кабель, а не использовать саморезы).
  • B – места крепления экранирующей оплетки кабеля.
  • С – центральная жила.
  • D – место крепления центральной жилы
  • E – кабель, идущий от телевизора.

Плечи этого экзотического диполя необходимо закрепить на держателе, сделанного из любого изоляционного материала. В качестве такового можно использовать подручные вещи, например, пластиковую вешалку для одежды, перекладину швабры или кусок деревянного бруса соответствующих размеров. Расстояние между плечами от 1 до 8 см (подбирается эмпирическим путем).

Основные преимущества конструкции – быстрое изготовление (10 – 20 минут) и вполне приемлемое качество «картинки», при условии достаточной мощности сигнала.

Делаем антенну из медной проволоки

Существует конструкция, значительно проще предыдущего варианта, для которой потребуется только кусок медной проволоки. Речь идет о рамочной петлевой антенне узкого диапазона. Такое решение имеет несомненные преимущества, поскольку помимо своего основного назначения, устройство играет роль селективного фильтра, снижающего помехи, что позволяет уверенно принимать сигнал.


Рис.4. Простая рамочная ДМВ антенна петлевого типа для приема цифрового ТВ

Для данной конструкции необходимо рассчитать длину петли, чтобы сделать это, нужно узнать частоту «цифры» для вашего региона. Например, в Санкт-Петербурге она транслируется на 586 и 666 МГц. Формула расчета будет следующей: L R = 300/f, где L R – это длина петли (результат представлен в метрах), а f – усредненный частотный диапазон, для Питера это значение будет равно 626 (сумма 586 и 666, деленная на 2). Теперь рассчитываем L R , 300/626 = 0,48, значит, длина петли должна быть 48 сантиметров.

Если взять толстый RG-6 кабель, где имеется фольга в оплетке, то его можно использовать вместо медной проволоки для изготовления петли.

Теперь расскажем, как собирается конструкция:

  • Отмеряется и отрезается кусок медной проволоки (или RG6 кабеля) длиной, равной L R .
  • Сворачивается петля подходящего диаметра, после чего к ее концам припаивается кабель, идущий к ресиверу. Если вместо медной проволоки используется RG6, то предварительно снимается изоляция с его концов, примерно на 1-1,5 см (центральную жилу очищать не надо, она в процессе не участвует).
  • Петля устанавливается на подставку.
  • На кабель к ресиверу накручивается F разъем (штекер).

Заметим, несмотря на простоту конструкции, она наиболее эффективна для приема «цифры», при условии, что правильно проведены расчеты.

Комнатная антенна МВ и ДМВ своими руками

Если помимо ДМВ есть желание принимать и МВ, можно собрать простую мультиволновку, ее чертеж с размерами представлен ниже.

Для усиления сигнала в данной конструкции используется готовый блок SWA 9, если возникли проблемы с его приобретением, можно использовать самодельное устройство, схема которого была приведена выше (см. рис. 2).

Важно соблюдать угол между лепестками, выход за пределы указанного диапазона существенно отражается на качестве «картинки».

Несмотря на то, что такое устройство значительно проще логопериодической конструкции с волновым каналом, тем не менее, оно показывает неплохие результаты, если сигнал достаточной мощности.

Антенна восьмерка для цифрового ТВ своими руками

Рассмотрим еще один распространенный вариант конструкции для приема «цифры». В основу положена классическая схема для ДМВ диапазона, из-за своей формы получившей название «Восьмерка» или «Зигзаг».


Рис. 6. Эскиз и реализация цифровой восьмерки

Размеры конструкции:

  • внешние стороны ромба (А) – 140 мм;
  • внутренние стороны (В) – 130 мм;
  • расстояние до рефлектора (С) – от 110 до 130 мм;
  • ширина (D) – 300 мм;
  • шаг между прутьями (Е) – от 8 до 25 мм.

Место подключения кабеля в точках 1 и 2.Требования к материалу такие же, как у конструкции «Ромб», о которой рассказывалось в начале статьи.

Самодельная антенна для DBT T2

Собственно, все перечисленные выше примеры способны принимать DBT T2, но для разнообразия приведем эскиз еще одной конструкции, называемой в народе «Бабочка».


В качестве материала можно использовать пластины из меди, латуни, алюминия или дюрали. Если конструкцию планируется устанавливать на улице, то последние два варианта не подходят.

Итог: на каком варианте остановиться?

Как ни странно, но самый простой вариант наиболее действенный, поэтому «петля» лучше всего подходит для приема «цифры» (рис. 4). Но, если требуется принимать и другие каналы в дециметровом диапазоне, то лучше остановиться на «Зигзаге» (рис. 6).

Антенна для телевизора должна быть направлена в сторону ближайшего активного ретранслятора, чтобы выбрать нужное положение, следует вращать конструкцию, пока мощность сигнала не станет удовлетворительной.

Если, не смотря на наличие усилителя и рефлектора, качество «картинки» оставляет желать лучшего, можно попробовать установить конструкцию на мачту.


В этом случае необходимо обязательно установить молниезащиту, но это уже тема другой статьи.

Распространение сантиметровых, дециметровых и метровых радиоволн

Радиоволны длиной короче 10 м называются ультракороткими. Эти волны охватывают очень широкий диапазон частот. Ширина диапазона частот только сантиметровых волна составляет 27000 МГц, что в тысячу раз превышает ширину диапазона частот декаметровых волн (см. табл. 1.1). Поэтому на УКВ возможна передача намного больших потоков информации, чем на более длинных волнах. Только на УКВ возможно телевидение и высококачественное радиовещание с использованием частотной модуляции (ЧМ).

Земная волна на УКВ обеспечивает связь практически только в пределах прямой видимости (рис.1.7). За ее пределами в естественных условиях УКВ могут устойчиво распространяться только за счет рассеяния в ионосфере и в тропосфере. Однако для обеспечения связи за счет рассеяния требуются очень мощные радиопередатчики с сложные антенные сооружения.

Для увеличения расстояния прямой видимости антенны радиотелевизионных передающих станций и станций звукового ЧМ вещания устанавливают на высоких башнях. Для передачи радиосигналов на большие расстояния в диапазоне УКВ используют наземные радиорелейные линии и ретрансляторы, расположенные на искусственных спутниках Земли.

Предельное расстояние прямой видимости между антеннами получается тогда, когда луч, соединяющий антенны, касается земной поверхности. Эмпирически установлено, что в километрах определяется выражением

где и – соответственно высоты передающей и приемной антенн, м. Напряженность поля при связи в пределах прямой видимости можно определить по формуле акад. Б.А. Введенского:

,

где – действующее (эффективное) значение напряженности поля, мВ/м; - мощность радиопередатчика, кВт; – расстояние между приемной и передающей антеннами, км ( ; – длина волны электромагнитных колебаний, м; – коэффициент направленного действия антенны.

Рис. 1.7. Распространение радиоволн в пределах прямой видимости

Рассмотрим влияние тропосферы на распространение УКВ. Коэффициент преломления воздуха n очень мало отличается от единицы. У поверхности Земли в среднем = 1,003. На практике преломляющие свойства воздуха оценивают индексом преломления

пользоваться которым удобнее, чем . Индекс преломления зависит от влажности, давления и температуры воздуха: с увеличением давления и влажности увеличивается, а при повышении температуры = уменьшается. Параметры воздуха зависят от высоты и от метеорологических условий. Зависимость от высоты оценивают градиентом индекса преломления

Зависимость коэффициента преломления от высоты приводит к искривлению траектории радиоволн в тропосфере, которое называется тропосферной рефракцией. Такое искривление характеризуют радиусом кривизны луча

Радиус привязки положителен, так как . При этом фазовая скорость волны с высотой возрастает, верхняя граница фронта распространяется быстрее нижней и луч искривляется в сторону поверхности Земли. Такая рефракция называется положительной . Тропосферная рефракция изменяет расстояние прямой видимости, оно несколько увеличивается. С учетом рефракции значение постоянного коэффициента в формуле (1.2) должно быть увеличено до значения, равного 4,52.

Если при положительной рефракции радиус кривизны траектории ( - радиус Земли), то возникает критическая рефракция (рис. 1.8, а). При наступает сверхрефракция (рис.1.8,б). В этих случаях электромагнитная волна может распространяться далеко за пределы прямой видимости. Сверхрефракция возникает при выполнении условия 1/м. При этом индекс преломления должен очень быстро уменьшаться с высотой, что бывает в том случае, когда температура воздуха с высотой не падает, как обычно, а возрастает. Такие условия называют температурной инверсией. Область тропосферы, в которой возникает свехрефракция, называют тропосферным волноводом. Наиболее часто тропосферные волноводы возникают в приморских районах, когда существует большая разница температур воздуха над сушей и над морем. В этих случаях ветер может переместить теплый воздух, который расположится над холодным, и возникнет температурная инверсия. Поскольку тропосферные волноводы возникают нерегулярно, их нельзя использовать для построения радиолиний. Возможность возникновения тропосферных волноводов необходимо учитывать при распределении частот на радиолиниях, чтобы избежать взаимных помех.


Рис. 1.8. Траектории распространения радиоволн в тропосфере:

а - при критической рефракции; б - при сверхрефракции

Другим механизмом сверхдальнего распространения УКВ является тропосферное рассеяние. Тропосферные неоднородности, вызывающие рассеяние, представляют собой области, в которых давление, влажность и температура воздуха отличаются от средних значений, наблюдаемых в окружающей среде. Примером неоднородностей являются облака. Неоднородности возникают и при отсутствии облачности за счет завихрений, образующихся при перемещении воздушных масс. Эти вихри присутствуют при любых метеорологических условиях. Наиболее интенсивно неоднородности образуются на высотах 1…2 км. Каждая неоднородность отличается своей диэлектрической проницаемостью от окружающей среды. Это отличие невелико (не более 20%), поэтому радиоволна, падающая на неоднородность, в основном, проходит сквозь нее. Однако часть энергии радиоволны при этом рассеивается в разные стороны. Зеркальное отражение неоднородность не вызывает, так как не имеет четкой границы.

Поле в точке приема образуется за счет сложения (интерференции) множества волн, рассеянных отдельными неоднородностями в некотором объеме тропосферы. Сдвиги фаз между интерферирующими волнами постоянно хаотически изменяются. В результате значение суммарной напряженности изменяется по случайному закону. Эти флуктуации поля называются интерферирующими замираниями. Сдвиги фаз между интерферирующими волнами зависят от частоты. При широком спектре частот сигнала сдвиги фаз для отдельных составляющих спектра оказываются различными: одни составляющие в данный момент могут иметь максимальный уровень, другие - минимальный. Если отдельные участки спектра замирают неодновременно, замирания называют селективными. Селективные замирания не позволяют передавать по тропосферным линиям широкополосные сигналы, например, телевизионные.

Замирания сигнала при тропосферном рассеянии можно разделить на быстрые и медленные Интерференционные замирания являются быстрыми. Период замираний составляем секунды и их десятые доли. Чем короче длина волны, тем сильнее изменяется сдвиг фаз между интерферирующими волнами при движении рассеивающих неоднородностей, тем меньше период замираний. Медленные замирания с периодом в несколько часов связаны с изменениями метеорологических условий, от которых зависят параметры неоднородностей и условия рефракции радиоволн.



Для повышения устойчивости связи на линиях тропосферного рассеяния применяют разнесенный прием. В этом случае формируют несколько сигналов, несущих одно и то же сообщение, но замирающих независимо друг от друга. Используют разнесение по частоте и пространственное разнесение. При этом увеличивают коэффициент направленного действия и площадь антенн. На тропосферных радиолиниях обычно применяют зеркальные антенны, имеющие площадь 400…900 .

Большое ослабление поля при связи за счет тропосферного рассеяния заставляет принять радиопередатчики большой мощности – до нескольких десятков киловатт (на УКВ радиорелейных линиях прямой видимости мощность радиопередатчиков обычно не превышает 10 ВТ). Расстояние между соседними станциями тропосферного рассеяния составляет 300…600 км. Применение радиолиний тропосферного рассеяния целесообразно в малонаселенных районах, где не имеет смысла часто располагать ретрансляционные станции или прокладывать кабель.

Сверхдальнее распространение метровых волн возможно и за счет влияния ионосферы. Это объясняется возникновением на высоте регулярного слоя E спорадического слоя E s с повышенной электронной концентрацией, обусловленного сгоранием метеоров на высотах 80... 120 км. Протяженные области с повышенной электронной концентрацией, способные рассеивать метровые волны, существуют в течение долей секунды, а иногда и в течение минуты. Регулярную связь путем отражений от E s слоя организовать невозможно.

Регулярное сверхдальнее распространение метровых волн происходит за счет рассеяния на неоднородностях электронной кон­центрации, существующих в слое D и в нижних областях слоя Е . Механизм этого распространения подобен тому, который наблюдается при рассеянии в тропосфере. Большая высота области, в которой происходит ионосферное рассеяние, обеспечивает связь одним скачком на расстояниях до 2000 км. Регулярную связь путем отражений от E s слоя организовать невозможно.

Сверхдальнее распространение метровых волн происходит также за счет отражения от ионизированных метеорных следов. В атмосферу Земли ежегодно с космическими скоростями вторгаются десятки миллиардов метеоров, образующих ионизированные столбы воздуха - метеорные следы. Некоторые из этих следов вызывают зеркальное отражение метровых волн, другие обеспечивают их интенсивное рассеяние. Вследствие движения ионизированного газа метеорные следы обычно расплываются в течение нескольких секунд. В среднем сильное отражение радиоволн от метеорного следа длится 0,2...0,4 с и повторяется несколько раз в минуту. Из-за вращения Земли вокруг своей оси условия попадания метеоров в атмосферу зависят от времени суток. Максимальное их число наблюдается утром, минимальное - вечером.

Метеорная связь прерывиста, так как уровень сигнала, достаточный для передачи информации, существует только во время появления на трассе метеорного следа. Для передачи информации по метеорной линии связи информацию на передающем конце накапливают в промежутках между метеорными вспышками, а во время вспышки быстро передают по радиолинии. В среднем передается несколько килобит в секунду при мощности передатчика около 1 кВт. Дальность метеорной связи составляет около 2000 км. Организация связи за счет ионосферного рассеяния и отражения от метеоров целесообразна в полярных районах, где ионосферные бури часто нарушают распространение гектометровых волн, а прокладка проводных линий и организация тропосферной связи из-за малой плотности населения экономически нецелесообразны.

Для мастеров-радиолюбителей большой интерес представляют ТА дециметрового диапазона, которые позволяют значительно расширить возможности лампово-полупроводниковых моделей телевизоров. В данной главе предлагаются для повторения только три типа ТА ДМВ, так как автор подготовил к изданию новую книгу, полностью посвященную ТЛ для приема ДМВ и спутникового телевидения.

В соответствии с принятой классификацией прием телепередач на 21-61-м каналах обеспечивается в диапазоне ДМВ на частотах свыше 300 МГц. В большинстве случаев владельцы телевизоров, оборудованных соответствующими селекторами каналов, применяют комнатные индивидуальные малогабаритные антенны. Но на садово-огородных участках эти антенны не всегда дают положительный результат. Поэтому в большинстве случаев приходится использовать самодельные дециметровые антенны, которые рассматриваются в настоящей главе.

Каждый цветной телеприемник имеет три антенных ввода: два для подключения антенны метровых волн (MB), один из которых обеспечивает ослабление сигнала в 10 раз, и специальный ввод для подключения антенны ДМВ. Все антенные вводы рассчитаны на подключение коаксиального радиочастотного кабеля с волновым сопротивлением 75 Ом.

Подключение антенны к дециметровому вводу специальной конструкции должно обеспечивать такое же высокое качество основных технических характеристик телевизора, как и при приеме в диапазоне MB.

Важнейшей характеристикой, определяющей качество изображения и чистоты звукового сопровождения, является чувствительность. В диапазоне MB чувствительность канала изображения должна быть не хуже 100 мкВ,

а в диапазоне ДМВ - не хуже 500 мкВ. Для современных телевизоров чувствительность звукового сопровождения в диапазоне MB должна быть не хуже 50 мкВ. а в диапазоне ДМВ - не хуже 200 мкВ.

Не менее важным электрическим параметром является избирательность, которая характеризуется способностью ослаблять сигналы помех вне рабочей полосы частот. Избирательность при настройке от несущей частоты изображения принимаемого канала на 1,5 МГц должна быть не хуже 40 дБ (100 раз), на 3,5 МГц - 40 дБ, на +6,5 МГц - 36 дБ, на +8 МГц - 40 дБ,

От качества изготовления антенн зависят также такие параметры, как контрастность и максимальная яркость. Величина контрастности зависит от размеров взаимного удаления темных и светлых элементов изображения. В общем случае контрастность должна быть не хуже 80:1 и выше. Максимальная яркость свечения определяется как яркость наиболее светлых крупных участков телеизображения, она может составлять до 100 кд/м^2.

Диапазон воспроизводимых звуковых частот должен находиться в пределах от 80 до 12 500 Гц.

При проектировании и изготовлении ТА дециметрового диапазона используются известные формулы, в основу которых входят следующие понятия: действующая длина антенны пропорциональна длине волны; коэффициенты усиления и защитного действия антенны ДМВ должны быть выше, чем у антенн метрового диапазона; с увеличением частоты возрастает затухание в коаксиальных кабелях, соединяющих антенну с входом телевизора; внутренние шумы входных цепей телевизоров в диапазоне ДМВ больше, чем в диапазоне MB.

Эти электрические параметры сравнительно легко реализуются в различных типах антенн за счет увеличения числа пассивных элементов. Например, в антеннах типа «волновой канал», логопериодических антеннах и антеннах для дальнего приема телевидения.

В диапазоне ДМВ все элементы антенны имеют малые конструктивные размеры, и при увеличении числа директоров габаритные размеры самой антенны остаются небольшими. (Интересное решение было опубликовано в журнале «Радио», № 2 за 1988 г.).

Зона уверенного приема ДМВ радиопередающей станцией, как правило, оценивается статистическими методами, она непостоянна во времени и зависит от диэлектрической проницаемости воздуха. В диапазоне ДМВ длины

волн короче 0,65 м - для работы в каналах с 21-го и выше. Минимальные потери при распространении ДМВ наблюдаются до тех пор, пока между передающей и приемной антеннами существует прямая видимость, за.пределами которой сигнал существенно уменьшается и уверенный прием становится невозможным.

В теоретических исследованиях распространение ДМВ представляют в виде окружности, радиус которой равен максимальному расстоянию прямой видимости, с тем допуском, что мощность, излучаемая передающей станцией, достаточно велика для приема непосредственно на границе. Известно, что чем выше частота радиосигнала, тем больше требуется напряженность поля в месте приема. Для первых каналов MB в месте установки приемной антенны напряженность поля находится в пределах от 300 до 700 мкВ, а для ДМВ - 3200 мкВ и выше. Напряженность поля по мере удаления от передающей станции уменьшается. Для ДМВ нельзя рассчитывать радиус зоны прямой, видимости по максимальному расстоянию прямой видимости, так как мощность станций недостаточна для приема на максимальном расстоянии прямой видимости. Например, минимальная напряженность поля для 33-го канала - 70 дБ (3200 мкВ).

Радиолюбителями разработано достаточно большое число антенных усилителей несложной конструкции, предназначенных для усиления сигналов в телевизионном диапазоне ДМВ, которые решают почти в полной мере изложенные проблемы и конкретные задачи.

Для приема ДМВ используются широкополосные направленные антенны, работающие без перестройки в широком диапазоне волн и для приема телепередач на расстоянии до 60-70 км от ТЦ.

Для расчета такой антенны необходимо знать крайние волны рабочего диапазона частот lдл.mах и lдл.min. Сначала определяют длину наибольшего вибратора l, которая должна быть равна (с определенным допуском) 0,55 lдл.max. Затем строится равнобедренный треугольник с заданным углом а при вершине, который лежит в пределах от 30 до 45°, и основанием треугольника, равным в масштабе построения длине наибольшего вибратора l. Второй вибратор располагается на расстоянии а1, которое определяется из пределов (0,15...0,18) lдл.max от первого (в масштабе построения).

Длина второго вибратора в этом случае определяется

однозначно, исходя из построения, так как он должен полностью вписываться в треугольник. Далее определяется длина третьего вибритора, который располагается на расстоянии а2=а1 t, где t - коэффициент уменьшения длины вибратора. Затем строится четвертый вибратор на расстоянии а3=а2 t от третьего и т. д. Построение продолжается до тех пор, пока длина очередного вибратора, вписанного в треугольник, не будет равна (ориентировочно) (0,14...0.45.) lдлmin. Этот вибратор и будет последним.

Логопериодические антенны сравнительно просты по конструкции, хорошо согласуются с 75-омным коаксиальным кабелем снижения, имеют КПД от 4 до 7 дБ. Все логопериодические антенны и существующие их разновидности могут быть представлены в виде замкнутой системы вибраторов, расположенных и горизонтальной плоскости.

Схема плоской вибраторной логопериодической антенны (ЛПА) представлена на рис. 5.1. Антенна состоит из двухпроводной распределительной линии длиной А, в которую включены вибраторы различной длины и различного расположения. Наибольший вибратор состоит из двух отрезков, отстоящих друг от друга на расстоянии 2 d, где d - диаметр трубки распределительной линии.

Электрические параметры антенны определяются тремя основными составляющими: периодом структуры t, углом раствора а и длиной антенны L.

Параметры антенны рассчитываются так, чтобы внутри каждого интервала частот элементов антенны (например, f7 - f6) характеристики антенны менялись незначительно.

Первый параметр t характеризует частотную периодичность антенны, при которой каждый вибратор имеет свою резонансную частоту. На самой низкой частоте, в зависимости от выбранного канала, рабочего диапазона f1 = fmin резонирует первый вибратор 1 с длиной плеча l1, на следующей, более высокой, частоте f2 резонирует вибратор 2 с длиной плеча l2 = l1 t и т. д.

Незначительное изменение характеристик антенны при расчете параметров должно быть во всем рабочем диапазоне частот, поэтому антенна, построенная по рассматриваемому принципу, и носит название логарифмически-периодической, или логопериодической.

Длина антенны L рассчитывается по формуле: L = (l1 -


т. е.зависит от угла и принимаемого диапазона

частот, который определяется, в свою очередь, размерами граничных элементов антенны l1 и l9. Здесь необходимо заметить, что количество элементов в антенне не ограничивается девятью элементами и может составлять от шести до двадцати двух.

Логопериодическая антенна может быть изготовлена для приема телепередач во всех диапазонах частот.

Расстояние между двумя соседними вибраторами можно определить также по формуле: а6= l6 (1-t)ctg(а/2). При изготовлении антенны для приема телепередач на первых 12 каналах рекомендуется принять в расчетных формулах t = 0,84; а = 60°; L = 2285 мм; число вибраторов равно 13. Для антенны, предназначенной для приема первых 3 каналов, необходимо взять шесть вибраторов, тогда L = 1515 мм.

Антенну, работающую на первых каналах телевидения в метровом диапазоне волн, рекомендуется изготавливать из трубок с тонкими стенками диаметром 20 мм. Антенну для 6-12-го каналов можно сделать из дюралевых или латунных трубок диаметром 15 мм, а антенну для приема сигналов ДМВ - из трубок диаметром 8 мм, с толщиной стенки до 1 мм.

Второй вариант логопериодической антенны приведен на рис. 5.2, где проводники распределительной линии расположены в вертикальной плоскости, а вибраторы - в горизонтальной плоскости в два ряда. Все вибраторы поочередно направлены в разные стороны. Коаксиальный кабель снижения проложен внутри нижней трубки без верхней полиэтиленовой оболочки. Экран коаксиального кабеля припаян в точках б и г, а центральная жила кабеля припаивается в точке а.

Проводники распределительной линии, как правило, скрепляются между собой крепежными изоляторами в двух точках. Концы трубок распределительной линии в точках виг должны быть накоротко замкнуты металлической перемычкой. К вертикальной штанге логопериодическая антенна прикрепляется с помощью крепежных деталей, расположенных в центре тяжести собранной антенны.

Телевизионная антенна дециметрового диапазона для приема телепрограмм с 21-го по 40-й канал, которая по принятой классификации относится к антеннам типа «волновой канал», показана на рис. 5.3.

Техническая характеристика:

коэффициент усиления............. 2,8-4 (9,2...12 дБ)

КБВ, не менее................... 0,55-0,85

КЗД, не менее................... 14-24 .

входное сопротивление активного

петлевого вибратора............. 292 Ом

волновое сопротивление фидера..... 75 Ом

рабочая частота.................. 470-622 МГц

неравномерность коэффициента

усиления...................... 0,8

кпд, не менее.................... 0,96

количество принимаемых программ

без перестройки................ 20

внешние нагрузки в местностях

с климатом.................... УХЛ, ХЛ, В

диаграмма направленности односторонняя

в горизонтальной плоскости....... узкая, объемная

ширина главного лепестка диаграммы

направленности в горизонтальной

плоскости...................... 32-46

Как следует из рисунка, антенна имеет одиннадцать директоров, петлевой вибратор 3, рефлектор, состоящий

из трех элементов 1 и 2, и несущую стрелу 4, которая изготавливается из металлической трубки диаметром 20- 22 мм.

Для изготовления активного 3 и пассивного вибраторов (директоров) используется дюралюминиевая трубка диаметром не менее 8 мм. Рефлектор можно выполнить из алюминиевой полоски толщиной 5 мм, но можно применить и меньшую толщину - до 2,5 мм. Ширина пассивных элементов рефлектора равна 16-20 мм. Средний элемент рефлектора крепится непосредственно к несущей стреле с помощью специальных шайб и крепежных деталей, а два других элемента рефлектора 1 - с помощью металлической стойки, которая также жестко прикреплена к стреле. Расстояние между этими элементами равно 49 мм при проекции на горизонтальную плоскость.

Петлевой вибратор выполнен из дюралюминиевой трубки диаметром 8-12 мм с толщиной стенки не менее 1 мм. Рекомендуется изготавливать петлевой вибратор из дюралюминиевой полоски толщиной 2.5 мм и шириной до 50 мм. Он может иметь фигурную конструкцию, удобную для крепления и, самое главное, обеспечивающую хорошее согласование во всем диапазоне частот принимаемых телепередач. Размеры основных элементов антенны - пассивных и активных - приведены в табл. 5.1. Длина четвертого элемента антенны рассчитывается, исходя из об-


щего количества вибраторов, и в данном случае равна 1400-1450 мм.

Наилучшие результаты дает подключение коаксиального кабеля снижения к петлевому вибратору через УСС типа «проволочный трансформатор». Изготавливается это УСС на двух ферритовых кольцевых сердечниках марки 100ВЧ размерами 8,4 х 3,5 х 2 мм. на которые виток к витку вплотную наматываются обмотки в два провода марки ПЭЛШО диаметром 0,23 мм. УСС должно обеспечивать КБВ, равный 0.75, в широкой полосе частот (от 470 до 622 МГц) со стороны подключения коаксиального кабеля с волновым сопротивлением 75 Ом.

В данной антенне можно применить другое УСС, изготовленное без ферритовых сердечников,- эквивалент кабельной петли, выполненной из отрезка спиральной полосовой линии, которая наматывается на ферритовый или


стальной стержень из электротехнической стали марки 3311, 3312, 3313. Спираль изготавливается из медной или латунной ленты толщиной до 0,1 мм, шириной до 1 мм, имеет 5,25 витка и укладывается в пазы, сделанные в диэлектрике, выполненном в виде трубки, которая устанавливается на этот стержень. Намотка спирали на стержень показана на рис. 5.4.

Эту антенну можно устанавливать на одной штанге с антенной MB, но расстояние между ними должно быть не менее 1,0-1,2 м.


Понравилась статья? Поделиться с друзьями: