Амплитудная модуляция. Сравнение амплитудной, частотной и фазовой модуляций. Цифровые частотная и фазовая модуляции

Как сравнить различные методы модуляции с точки зрения производительности и применений? Давайте посмотрим.

Важно понимать основные характеристики трех типов радиочастотной модуляции. Но эта информация не существует изолировано - цель заключается в разработке реальных систем, которые эффективно отвечают требованиям производительности. Таким образом, мы должны иметь общее представление о том, какой метод модуляции подходит для конкретного приложения.

Амплитудная модуляция

Амплитудная модуляция проста в плане реализации и анализа. Кроме того, AM сигналы довольно легко демодулировать. В целом, тогда AM можно рассматривать как простую, недорогую схему модуляции. Однако, как обычно, простота и низкая стоимость сопровождаются компромиссами в производительности - мы никогда не ожидаем, что более простое и дешевое решение будет самым лучшим.

Возможно, я буду неточным, если опишу AM системы как «редкие», поскольку AM приемники присутствуют на бесчисленных транспортных средствах. Однако применения аналоговой амплитудной модуляции в настоящее время весьма ограничены, поскольку AM имеет два существенных недостатка.

Амплитудный шум

Шум - это постоянная проблема в беспроводных системах связи. В определенном смысле качество радиочастотного проекта можно суммировать по отношению сигнал/шум демодулированного сигнала: меньше шума в принятом сигнале означает более высокое качество (для аналоговых систем) или меньшее количество битовых ошибок (для цифровых систем). Шум присутствует всегда, и мы всегда должны признавать в нем основную угрозу для производительности системы.

Шум - случайный электрический шум, помехи, электрические и механические переходные процессы - воздействует на уровень сигнала. Другими словами, шум может создавать амплитудную модуляцию. И это является проблемой, поскольку случайную амплитудную модуляцию, возникающую из-за шума, нельзя отличить от преднамеренной амплитудной модуляции, выполняемой передатчиком. Шум является проблемой для любого радиосигнала, но AM системы особенно восприимчивы.

Линейность усилителя

Одной из основных проблем в разработке радиочастотных усилителей мощности является линейность (более конкретно, трудно добиться и высокой эффективности, и высокой линейности одновременно). Линейный усилитель применяет к входному сигналу определенный фиксированный коэффициент усиления; графически это выглядит так: передаточная функция линейного усилителя представляет собой просто прямую линию с наклоном, соответствующим коэффициенту усиления.


Прямая линия представляет собой отклик идеального линейного усилителя: выходное напряжение всегда равно входному напряжению, умноженному на фиксированный коэффициент усиления

У реальных усилителей всегда есть некоторая степень нелинейности, что означает, что на усиление, применяемое к входному сигналу, влияют характеристики входного сигнала. Результатом нелинейного усиления являются искажения, т.е. создание энергии на частотах гармоник.

Любая схема модуляции, которая включает в себя изменения амплитуды, более восприимчива к влиянию нелинейности. Это включает в себя как обычную аналоговую амплитудную модуляцию, так и широко используемые цифровые схемы, известные в совокупности как квадратурная амплитудная модуляция (QAM).

Угловая модуляция

Частотная и фазовая модуляции кодируют информацию во временны́х характеристиках передаваемого сигнала и, следовательно, устойчивы к амплитудному шуму и нелинейности усилителя. Частота сигнала не может быть изменена шумом или искажением. Могут быть добавлены дополнительные частотные составляющие, но исходная частота всё равно будет присутствовать. Разумеется, шум оказывает негативное влияние на FM и PM системы, но шум напрямую не искажает характеристики сигнала, которые использовались для кодирования низкочастотных данных.

Как упоминалось выше, разработка усилителя мощности включает в себя компромисс между эффективностью и линейностью. Угловая модуляция совместима с низколинейными усилителями, и эти низколинейные усилители более эффективны с точки зрения энергопотребления. Таким образом, угловая модуляция является хорошим выбором для маломощных радиочастотных систем.

Ширина полосы частот

Эффекты в частотной области от амплитудной модуляции более просты, чем от частотной и фазовой модуляций. Это можно считать преимуществом AM: важно иметь возможность прогнозировать ширину полосы частот, занимаемую модулированным сигналом.

Однако сложность прогнозирования спектральных характеристик FM и PM актуальна больше для теоретической части проектирования. Если мы сосредоточимся на практических соображениях, угловая модуляция может считаться выгодной, поскольку она может преобразовывать заданную ширину полосы частот низкочастотного сигнала в несколько меньшую (по сравнению с AM) ширину полосы частот передаваемого сигнала.

Частота против фазы

Частотная и фазовая модуляции тесно связаны; тем не менее, есть ситуации, когда одна из них лучше другой. Различия между ними более выражены при цифровой модуляции.

Аналоговые частотная и фазовая модуляции

Как мы видели в статье про фазовую модуляцию , когда низкочастотный модулирующий сигнал является синусоидой, PM сигнал представляет собой просто сдвинутую версию соответствующего FM сигнала. Поэтому неудивительно, что ни у FM, ни у PM нет никаких серьезных плюсов или минусов, связанных со спектральными характеристиками или восприимчивостью к помехам.

Однако аналоговая частотная модуляция гораздо более распространена, чем аналоговая фазовая модуляция, и причина в том, что схемотехника FM модуляции и демодуляции более проста. Например, частотная модуляция может быть реализована чем-то простым, таким как генератор, построенный с использованием катушки индуктивности и конденсатора, управляемого напряжением (т.е. конденсатора, который изменяет свою емкость в зависимости от напряжения низкочастотного модулирующего сигнала).

Цифровые частотная и фазовая модуляции

Различия между PM и FM становятся весьма значительными, когда мы входим в область цифровой модуляции. При первом рассмотрении - это частота битовых ошибок. Очевидно, что частота битовых ошибок любой системы будет зависеть от разных факторов, но если мы математически сравниваем двоичную PSK систему с эквивалентной двоичной FSK системой, мы обнаружим, что для двоичной FSK требуется передавать значительно больше энергии для достижения той же частоты битовых ошибок. Это является преимуществом цифровой фазовой модуляции.

Но обычная цифровая фазовая модуляция также имеет два существенных недостатка:

  • Как обсуждалось в статье про цифровую фазовую модуляцию , обычная (то есть недифференциальная) PSK несовместима с некогерентными приемниками. FSK, напротив, не требует когерентного детектирования.
  • Обычные схемы PSK, особенно QPSK, включают в себя резкие изменения фазы, которые приводят к резким изменениям амплитуды модулированного сигнала, а участки с высоким наклоном формы сигнала уменьшаются по амплитуде, когда сигнал обрабатывается фильтром нижних частот. Эти изменения амплитуды в сочетании с нелинейным усилением приводят к проблеме, называемой внеполосным излучением. Чтобы уменьшить внеполосное излучение, мы можем использовать более линейный (и, следовательно, менее эффективный) усилитель мощности или реализовать специализированную версию PSK. Или мы можем перейти на FSK, которая не требует резких изменений фазы.

Резюме

  • Амплитудная модуляция проста, но она очень чувствительна к шуму и требует высоколинейного усилителя мощности.
  • Частотная модуляция менее восприимчива к амплитудному шуму и может использоваться с более высокоэффективными усилителями с более низкой линейностью.
  • Цифровая фазовая модуляция обеспечивает лучшую теоретическую производительность с точки зрения частоты битовых ошибок, чем цифровая частотная модуляция, но цифровая FM более выгодна в маломощных системах, поскольку не требует усилителя с высокой линейностью.

Лекция 11

Амплитудная модуляция

Модуляция (лат. modulatio - мерность, размерность ) - процесс изменения одного или нескольких параметров высокочастотного модулируемого колебания по закону информационного низкочастотного сообщения. То есть процесс модуляции означает процесс, при котором высокочастотная волна используется для переноса низкочастотной волны

В результате спектруправляющего сигнала переносится в область высоких частот, ведь для эффективного вещания в пространство необходимо чтобы все приёмо-передающие устройства работали на разных частотах и «не мешали» друг другу. Это процесс «посадки» информационного колебания на априорно известную несущую.

Передаваемая информация заложена в управляющем сигнале. Роль переносчика информации выполняет высокочастотное колебание, называемое несущим. В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяютсягармонические колебания.

В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная,частотная,фазоваяи др.). Модуляция дискретным сигналом называется цифровой модуляцией илиманипуляцией.

Виды модуляций

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (электромагнитного колебания) f(t,a,в,...) в соответствии с передаваемым сообщением. Так, если в качестве переносчика выбрано гармоническое колебание f(t) - U cos(ω 0 t + φ) , то можно образовать три вида модуляции: амплитудную (AM), частотную (ЧМ) и фазовую (ФМ).

Применение радиоимпульсов позволяет получить ещё два вида модуляции: по частоте и по фазе высокочастотного заполнения.

В ряде случаев каналы связи обладают более широкой полосой пропускания, чем это требуется для передачи одного сообщения. Так спектр телефонного сигнала согласно нормам Международного консультативного комитета по телеграфии и телефонии (МККТТ) ограничивается полосой частот от 300 до 3400 Гц. Оказывается, что в этом диапазоне частот можно одновременно передавать несколько телеграфных сообщений. Реализация подобной возможности обеспечивается при различной модуляции сигналов (амплитудной, частотной, импульсно-кодовой), находящих широкое применение в средствах диспетчерской связи.

Наиболее простым, а потому самым распространенным, является способ амплитудной модуляции (АМ). Сущность его состоит в том, что амплитуда напряжения (или тока), вырабатываемого специальным генератором, подвергается изменению по закону модулирующего сигнала (рис 1.26). Для простоты модулирующий сигнал представлен суммой постоянной составляющей и первой гармоники с круговой частотой и амплитудой

(t)=+cost (1.26)

б)

Временные диаграммы а – модулирующий сигнал; б – колебания с АМ

Постоянной составляющей сигнала нулевой гармоники соответствует неизменное по амплитуде напряжение несущей частоты:

(t)=cost (1.27)

Когда к постоянной составляющей добавляется еще гармоническое колебание (1.26), то амплитуда несущей частоты начинает изменяться соответственно этому закону:

(t)=+cost (1.28)

Колебания несущей частоты с амплитудой, определяемой выражением (1.28), представляют собой сигнал с АМ:

(t)cost=(+cost)(1.29)

Отношение амплитуд модулирующего сигнала и несущей частоты называется коэффициентом модуляции:

m= (1.30)

В результате раскрытия скобок и тригонометрического преобразования косинусов выражение (1.29) с учетом формулы (1.30) приводится к виду:

u(t)=cost+

Сигнал с АМ состоит из трех разных частот: несущей и двух боковых , Спектр нормированных амплитуд такого сигнала иллюстрирует тот факт, что амплитудная модуляция сигналами, занимающими полосу частот от нуля доприводит к получению таких же полос, зеркально расположенных относительно несущей частоты. Таким образом, наряду с расширением полосы частот при АМ происходит еще смещение спектра сигнала в область несущей частоты.

В системах с амплитудной модуляцией (АМ) модулирующая волна изменяет амплитуду высокочастотной несущей волны. Анализ частот на выходе показывает присутствие не только входных частот Fc и Fm, но также их сумму и разность: Fc + Fm и Fc - Fm. Если модулирующая волна является комплексной, как например сигнал речи, который состоит из множества частот, то суммы и разности различных частот займут две полосы, одна ниже, другая выше несущей частоты. Их называют верхней и нижней боковыми. Верхняя полоса является копией изначального разговорного сигнала, только сдвинутого на частоту Fc. Нижняя полоса это инвертированная копия изначального сигнала, т.е. верхние частоты в оригинале являются нижними частотами в нижней боковой. Нижняя боковая это зеркальное отображение верхней боковой по отношению к частоте несущей Fc. Система с АМ, которая передает обе боковых и несущую, известна, как двухполосная система (DSB - double sidebaud). Несущая не несет никакой полезной информации и может быть убрана, но с несущей или без, полоса сигнала DSB вдвое больше полосы изначального сигнала. Для сужения полосы возможно вытеснение не только несущей, но и одной из боковых, так как они несут одну информацию. Этот вид работы известен, как однополосная модуляция с подавленной несущей (SSB-SC - Single SideBand Suppressed Carrier). Демодуляция сигнала АМ достигается путем смешивания модулированного сигнала с несущей той же самой частоты, что и на модуляторе. Изначальный сигнал затем получают, как отдельную частоту (или полосу частот) и его можно отфильтровать от других сигналов. При использовании SSB-SC несущая для демодуляции генерируется на месте и она может не совпадать каким либо образом с частотой несущей на модуляторе. Небольшая разница между двумя частотами является причиной несовпадения частот, что присуще телефонным цепям.

Спектр сигнала с АМ

Амплитудная модуляция (w м <

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
Аудиосигнал может модулировать амплитуду (AM) или частоту (ЧМ) несущей. Пусть S(t) — информационный сигнал, |S(t)|<1, U_c(t) — несущее колебание. Тогда амплитудно-модулированный сигнал U_\text{am}(t) может быть записан следующим образом: U_\text{am}(t)=U_c(t).\qquad\qquad(1) Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U_c(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия: |S(t)|<1,\quad 0Пример Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой \omega_c имеет вид (начальную фазу положим равной нулю U_c(t)=C\sin(\omega_c t). Выражение для модулирующего синусоидального сигнала с частотой \omega_s имеет вид U_s(t)=U_0\sin(\omega_s t+\varphi), где \varphi — начальная фаза. Тогда U_\mathrm{am}(t)=C\sin(\omega_c t). Приведённая выше формула для y(t) может быть записана в следующем виде: U_\mathrm{am}(t)=C\sin(\omega_c t)+\frac{mCU_0}{2}(\cos((\omega_c-\omega_s)t-\varphi)-\cos((\omega_c+\omega_s)t+\varphi)). Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту, отличную от \omega_c. Для синусоидального сигнала, использованного здесь, частоты равны \omega_c+\omega_s и \omega_c-\omega_s. Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

Для передачи на расстояние без проводов речи, музыки, изображения используется переменное напряжение высокой частоты (свыше 100 кГц), излучаемое в пространстве антенной радиопередатчика. Чтобы осуществить радиотелефонную передачу сигнала, амплитуда высокой частоты передатчика или его частота должна меняться по закону низкой (звуковой) частоты Амплитудная модуляция характеризуется коэффициентом глубины модуляции (m), который выражает отношение приращения амплитуды высокой частоты (dUm) к ее среднему значению (Um):m= dUm/Um * 100%В процессе радиопередачи он может меняться от 0 до 80 процентов - более увеличивать нецелесообразно, так как могут появляться нелинейные искажения сигнала низкой частоты. Если модуляцию высокой частоты произвести сигналом одной какой-либо низкой частоты (Fн), то промодулированный сигнал будет представлять совокупность трех частот: несущей, верхней боковой и нижней боковой. Если же модуляцию произвести целым спектром частот, то получится спектр высоких частот с верхней и нижней боковыми полосами. Поэтому один вещательный радиопередатчик занимает в высокочастотном диапазоне полосу шириной не менее 10 кГц.

Как известно, АМ - вид модуляции, при которой амплитуда несущего сигнала изменяется по закону модулирующего (информационного) сигнала. Существует немало источников с теоретическим и практическим описанием АМ. Описание даётся, прежде всего, для того, чтобы показать частотный состав АМ сигнала. В качестве модулирующего сигнала обычно рассматривают однотональный сигнал. Данный сигнал задаётся простой функцией синуса. У меня всегда спрашивали, да и я задавался вопросом, как описать АМ на случай, если в качестве модулирующего сигнала будет произвольный сигнал. Именно произвольный сигнал, частотный спектр которого состоит из множества компонент, представляет интерес, так как АМ применяется в радиовещании для передачи звука.

Попробуем описать АМ для вышесказанного случая, принимая во внимание, что модулирующий сигнал можно представить, как непрерывную сумму простых однотональных сигналов разных частот с различными амплитудами и фазами. Не вдаваясь в тонкости математического анализа, данный сигнал можно записать как непрерывную сумму (интеграл) Фурье:

Где – верхний предел частоты сигнала (полоса модулирующего сигнала), - переменная интегрирования, отвечающая за частоту, причём . Функции и - амплитуда и фаза компоненты сигнала на частоте .

Подынтегральное выражение данной формулы представляет собой т.н. тригонометрическую свёртку в амплитудно-фазовый вид слагаемого ряда Фурье, в который можно разложить сигнал. Интеграл в (1) можно назвать интегралом Фурье, так как, фактически, это непрерывная сумма, т.е. непрерывный ряд Фурье, в который раскладывается исходный сигнал. Разложение сигнала в подобный ряд даёт представление о частотном составе этого сигнала. Таким образом, исходный модулирующий сигнал представлен в виде непрерывной суммы синусоид (в данном случае для удобства - ) различных частот от до , каждая из них имеет свою амплитуду фазовый сдвиг . Функция представляет собой частотный спектр исходного сигнала .

Стоит отметить, что сигнал рассматривается на ограниченном промежутке времени . Вообще говоря, если речь идёт о звуковом сигнале, то, как правило, частотный спектр имеет практический смысл рассматривать для очень коротких фрагментов сигнала. Очевидно, чем больше по времени продолжительность сигнала, тем больше низкочастотных (приближающихся к нулю) компонент будут фигурировать в спектральном составе, что нельзя сопоставить со звуковыми частотами в слышимом диапазоне.

Кроме модулирующего сигнала имеется тональный сигнал, представляющий собой несущее колебание с частотой , амплитудой и нулевой начальной фазой:

Причём . Действительно, в радиовещании частота несущей во много раз больше полосы передаваемого сигнала.

Теперь перейдём непосредственно к процессу амплитудной модуляции.

Известно, что АМ сигнал есть результат перемножения сигнала несущей и модулирующего сигнала, предварительно смещённого и «проиндексированного» индексом модуляции , т.е.

Во избежание так называемой перемодуляции .

Подставим исходные данные (1) и (2) в выражение (3), раскроем скобки, внесём под интеграл независящие от переменной интегрирования некоторые множители:

Применим известную школьную тригонометрическую формулу преобразования произведения для подынтегральных функций:

Данная формула носит ключевой характер при АМ и подчёркивает эти самые «две боковые» в спектральном составе АМ сигнала.

Продолжив равенство, разобьём интеграл получившейся суммы на сумму двух интегралов, раскроем скобки и вынесем за скобку нужные множители в аргументах функций:

Три получившихся слагаемых соответственно представляют собой, как видно из равенства, сигнал несущей, сигналы «нижней» и «верхней» боковой. Прежде чем дать конкретное пояснение, продолжим равенство, применив метод замены переменной в следующей конфигурации:

Воспользуемся этой самой заменой:

Поменяв в первом интеграле пределы интегрирования местами (в результате чего изменится знак перед интегралом на противоположный), можно два интеграла объединить в один. Более того, туда же можно внести и первое слагаемое, описывающее сигнал несущей. При этом, естественно, подынтегральные функции амплитуды и фазы необходимо обобщить. Это всё делается условно и для более детальной наглядности, не вдаваясь в тонкости математического анализа. Таким образом, получится:

Таким образом, были введены новые кусочнозаданные функции (4) и (5), описывающие изменение амплитуды и фазы в зависимости от частоты. Глядя на компоненты функции (4), можно заметить, что третья компонента получена путём параллельного переноса функции на , а первая - ещё и с предварительным зеркальным разворотом. Множители-константы перед функциями, уменьшающие амплитуду, я не беру во внимание. То есть, в спектре АМ сигнала имеются три компоненты: несущая, верхняя боковая и нижняя боковая, что и было отражено в (4).

В заключение стоит отметить, что АМ можно описать, применяя более сложный подход, основанный на комплексных сигналах и комплексных числах. Обычный сигнал, о котором шла речь в этой статье, не имеет мнимой компоненты. Принимая во внимание представление с помощью векторных диаграмм на комплексной плоскости, сигнал без мнимой компоненты складывается из двух комплексных сигналов с обоими компонентами. Это очевидно, если представлять однотональный сигнал в виде суммы двух векторов, которые вращаются в противоположные стороны симметрично относительно оси x (Re). Скорость вращения данных векторов эквивалентна частоте сигнала, а направление - знаку частоты (положительная или отрицательная). Из этого следует, что частотный спектр сигнала без мнимой компоненты имеет не только положительную, но и отрицательную составляющую. И, конечно же, он симметричен относительно нуля. Именно при таком представлении можно утвердить, что в процессе амплитудной модуляции спектр модулирующего сигнала переносится по шкале частот вправо от нуля на частоту несущей (и влево тоже). При этом «нижняя боковая» не возникает, она в исходном модулирующем сигнале уже существует, правда располагается в отрицательной области частот. Звучит на первый взгляд странно, так как в природе, казалось бы, не существует отрицательных частот. Но математика преподносит немало сюрпризов.

Теги: Добавить метки

ВВЕДЕНИЕ

Курсовая работа выполняется с целью закрепления пройденного материала по амплитудной модуляции сигналов, а также для углубления знаний по данной проблеме. В работе необходимо дать определение амплитудной модуляции, раскрыть её сущность, описать основные формы. После этого преступить к рассмотрению алгоритмов задания данного вида модуляции. Затем написать программу, демонстрирующую наглядное представление амплитудной модуляции сигналов. Полученные сигналы необходимо оцифровать и вывести результаты на экран. Программирование будет выполняться в Microsoft Visual Studio 2010 в Win Forms на языке C#. В конце работы сформулировать выводы.

Амплитудная модуляция

Понятие и сущность амплитудной модуляции

Амплитудная модуляция - вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.

Определение

Информационный сигнал,

Несущее колебание.

Тогда амплитудно-модулированный сигнал может быть записан следующим образом:

Здесь -- некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал, модулированный по амплитуде сигналом с коэффициентом модуляции. Предполагается также, что выполнены условия:

Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.

Амплитудно-модулированные колебания и их спектры

Пусть гармоническое колебание используется в качестве несущего, а модулирующий сигнал является гармоническим (однотональным) колебанием и выполняется условие. Тогда AM-колебание называется однотональным. При имеем:

где - коэффициент амплитудной модуляции.

Спектральный состав сигнала можно получить, представляя произведение функций (1) в виду суммы гармонических колебаний. Тогда

Спектр однотонального AM колебания линейчатый эквидистантный. Он состоит из трех гармонических колебаний с близкими частотами.


Рисунок 1 - Спектр однотонального AM колебания

Амплитудная модуляция гармонического колебания произвольным сигналом, обладающим сплошным спектром в области низких частот, сопровождается формированием в окрестности несущего колебания двух групп боковых колебаний (Рисунок 1). Верхняя группа колебаний (от () до ()) является точной копией спектра модулирующего сигнала, сдвинутой в область радиочастот, а нижняя группа колебаний представляется зеркальное отражение спектра модулирующего сигнала относительно, а также смещенное в область радиочастот. Колебания с комбинационными частотами () и () располагаются попарно-симметрично относительно частоты несущего колебания. Полная ширина спектра AM-процесса равняется удвоенной ширине спектра модулирующего сигнала.

Частным случаем многотонального AM-сигнала является высокочастотное колебание, промодулированное по амплитуде последовательностью прямоугольных импульсов.

Амплитудная модуляция как нелинейный процесс

При амплитудной модуляции сигналов происходит перемножение двух функций: высокочастотного колебания с частотой и модулирующего гармонического или полигармонического сигнала. Эту процедуру можно осуществить в нелинейной системе при задании на вход суммы несущего и модулирующего сигналов и выделении на выходе их произведения. Спектр выходного сигнала содержит составляющие с частотами, отсутствовавшими у исходных колебаний. Количество и частоты новых составляющих зависят от вида нелинейного элемента и его вольт-амперной характеристики (ВАХ).

ВАХ нелинейных элементов (НЭ), получаемые экспериментально и представляемые в виде графиков или таблиц, неудобно использовать в расчетах, и для теоритического анализа их аппроксимируют аналитическими функциями. Наибольшее распространение в радиоэлектронике получили аппроксимации степенным многочленом и ломаной линией.

Понравилась статья? Поделиться с друзьями: