Что такое глубина модуляции. Цифровые частотная и фазовая модуляции. Схема и режимы работы амплитудного модулятора

Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У - амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра .
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой

В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция

Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией .
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:

Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже

Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция
В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция
В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
Аудиосигнал может модулировать амплитуду (AM) или частоту (ЧМ) несущей. Пусть S(t) — информационный сигнал, |S(t)|<1, U_c(t) — несущее колебание. Тогда амплитудно-модулированный сигнал U_\text{am}(t) может быть записан следующим образом: U_\text{am}(t)=U_c(t).\qquad\qquad(1) Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U_c(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия: |S(t)|<1,\quad 0Пример Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой \omega_c имеет вид (начальную фазу положим равной нулю U_c(t)=C\sin(\omega_c t). Выражение для модулирующего синусоидального сигнала с частотой \omega_s имеет вид U_s(t)=U_0\sin(\omega_s t+\varphi), где \varphi — начальная фаза. Тогда U_\mathrm{am}(t)=C\sin(\omega_c t). Приведённая выше формула для y(t) может быть записана в следующем виде: U_\mathrm{am}(t)=C\sin(\omega_c t)+\frac{mCU_0}{2}(\cos((\omega_c-\omega_s)t-\varphi)-\cos((\omega_c+\omega_s)t+\varphi)). Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту, отличную от \omega_c. Для синусоидального сигнала, использованного здесь, частоты равны \omega_c+\omega_s и \omega_c-\omega_s. Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

Для передачи на расстояние без проводов речи, музыки, изображения используется переменное напряжение высокой частоты (свыше 100 кГц), излучаемое в пространстве антенной радиопередатчика. Чтобы осуществить радиотелефонную передачу сигнала, амплитуда высокой частоты передатчика или его частота должна меняться по закону низкой (звуковой) частоты Амплитудная модуляция характеризуется коэффициентом глубины модуляции (m), который выражает отношение приращения амплитуды высокой частоты (dUm) к ее среднему значению (Um):m= dUm/Um * 100%В процессе радиопередачи он может меняться от 0 до 80 процентов - более увеличивать нецелесообразно, так как могут появляться нелинейные искажения сигнала низкой частоты. Если модуляцию высокой частоты произвести сигналом одной какой-либо низкой частоты (Fн), то промодулированный сигнал будет представлять совокупность трех частот: несущей, верхней боковой и нижней боковой. Если же модуляцию произвести целым спектром частот, то получится спектр высоких частот с верхней и нижней боковыми полосами. Поэтому один вещательный радиопередатчик занимает в высокочастотном диапазоне полосу шириной не менее 10 кГц.

Лекция 11

Амплитудная модуляция

Модуляция (лат. modulatio - мерность, размерность ) - процесс изменения одного или нескольких параметров высокочастотного модулируемого колебания по закону информационного низкочастотного сообщения. То есть процесс модуляции означает процесс, при котором высокочастотная волна используется для переноса низкочастотной волны

В результате спектруправляющего сигнала переносится в область высоких частот, ведь для эффективного вещания в пространство необходимо чтобы все приёмо-передающие устройства работали на разных частотах и «не мешали» друг другу. Это процесс «посадки» информационного колебания на априорно известную несущую.

Передаваемая информация заложена в управляющем сигнале. Роль переносчика информации выполняет высокочастотное колебание, называемое несущим. В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяютсягармонические колебания.

В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная,частотная,фазоваяи др.). Модуляция дискретным сигналом называется цифровой модуляцией илиманипуляцией.

Виды модуляций

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (электромагнитного колебания) f(t,a,в,...) в соответствии с передаваемым сообщением. Так, если в качестве переносчика выбрано гармоническое колебание f(t) - U cos(ω 0 t + φ) , то можно образовать три вида модуляции: амплитудную (AM), частотную (ЧМ) и фазовую (ФМ).

Применение радиоимпульсов позволяет получить ещё два вида модуляции: по частоте и по фазе высокочастотного заполнения.

В ряде случаев каналы связи обладают более широкой полосой пропускания, чем это требуется для передачи одного сообщения. Так спектр телефонного сигнала согласно нормам Международного консультативного комитета по телеграфии и телефонии (МККТТ) ограничивается полосой частот от 300 до 3400 Гц. Оказывается, что в этом диапазоне частот можно одновременно передавать несколько телеграфных сообщений. Реализация подобной возможности обеспечивается при различной модуляции сигналов (амплитудной, частотной, импульсно-кодовой), находящих широкое применение в средствах диспетчерской связи.

Наиболее простым, а потому самым распространенным, является способ амплитудной модуляции (АМ). Сущность его состоит в том, что амплитуда напряжения (или тока), вырабатываемого специальным генератором, подвергается изменению по закону модулирующего сигнала (рис 1.26). Для простоты модулирующий сигнал представлен суммой постоянной составляющей и первой гармоники с круговой частотой и амплитудой

(t)=+cost (1.26)

б)

Временные диаграммы а – модулирующий сигнал; б – колебания с АМ

Постоянной составляющей сигнала нулевой гармоники соответствует неизменное по амплитуде напряжение несущей частоты:

(t)=cost (1.27)

Когда к постоянной составляющей добавляется еще гармоническое колебание (1.26), то амплитуда несущей частоты начинает изменяться соответственно этому закону:

(t)=+cost (1.28)

Колебания несущей частоты с амплитудой, определяемой выражением (1.28), представляют собой сигнал с АМ:

(t)cost=(+cost)(1.29)

Отношение амплитуд модулирующего сигнала и несущей частоты называется коэффициентом модуляции:

m= (1.30)

В результате раскрытия скобок и тригонометрического преобразования косинусов выражение (1.29) с учетом формулы (1.30) приводится к виду:

u(t)=cost+

Сигнал с АМ состоит из трех разных частот: несущей и двух боковых , Спектр нормированных амплитуд такого сигнала иллюстрирует тот факт, что амплитудная модуляция сигналами, занимающими полосу частот от нуля доприводит к получению таких же полос, зеркально расположенных относительно несущей частоты. Таким образом, наряду с расширением полосы частот при АМ происходит еще смещение спектра сигнала в область несущей частоты.

В системах с амплитудной модуляцией (АМ) модулирующая волна изменяет амплитуду высокочастотной несущей волны. Анализ частот на выходе показывает присутствие не только входных частот Fc и Fm, но также их сумму и разность: Fc + Fm и Fc - Fm. Если модулирующая волна является комплексной, как например сигнал речи, который состоит из множества частот, то суммы и разности различных частот займут две полосы, одна ниже, другая выше несущей частоты. Их называют верхней и нижней боковыми. Верхняя полоса является копией изначального разговорного сигнала, только сдвинутого на частоту Fc. Нижняя полоса это инвертированная копия изначального сигнала, т.е. верхние частоты в оригинале являются нижними частотами в нижней боковой. Нижняя боковая это зеркальное отображение верхней боковой по отношению к частоте несущей Fc. Система с АМ, которая передает обе боковых и несущую, известна, как двухполосная система (DSB - double sidebaud). Несущая не несет никакой полезной информации и может быть убрана, но с несущей или без, полоса сигнала DSB вдвое больше полосы изначального сигнала. Для сужения полосы возможно вытеснение не только несущей, но и одной из боковых, так как они несут одну информацию. Этот вид работы известен, как однополосная модуляция с подавленной несущей (SSB-SC - Single SideBand Suppressed Carrier). Демодуляция сигнала АМ достигается путем смешивания модулированного сигнала с несущей той же самой частоты, что и на модуляторе. Изначальный сигнал затем получают, как отдельную частоту (или полосу частот) и его можно отфильтровать от других сигналов. При использовании SSB-SC несущая для демодуляции генерируется на месте и она может не совпадать каким либо образом с частотой несущей на модуляторе. Небольшая разница между двумя частотами является причиной несовпадения частот, что присуще телефонным цепям.

Спектр сигнала с АМ

Амплитудная модуляция (w м <

На панели любого современного радиоприемника есть переключатель AM-FM. Как правило, обычный потребитель не задумывается о том, что означают эти буквы, ему достаточно запомнить, что на FM есть его любимая УКВ-радиостанция, транслирующая сигнал в стереозвучании и с прекрасным качеством, а на АМ можно поймать «Маяк». Если же вникнуть в технические подробности хотя бы на уровне пользовательской инструкции, то выяснится, что АМ - это амплитудная модуляция, а FM - частотная. Чем же они отличаются?

Для того чтобы из громкоговорителя радиоприемника зазвучала музыка, должен претерпеть определенные изменения. В первую очередь его следует сделать пригодным для радиотрансляции. Амплитудная модуляция стала первым способом, которым инженеры-связисты научились передавать речевые и музыкальные программы в эфире. Американец Фессенден в 1906 году с помощью механического генератора получил колебания в 50 килогерц, ставшие первой в истории несущей частотой. Далее он решил техническую проблему самым простым способом, установив микрофон на выходе обмотки. При воздействии на угольный порошок внутри мембранной коробки менялось его сопротивление, и величина сигнала, поступающего от генератора на передающую антенну, уменьшалась или увеличивалась в зависимости от них. Так была изобретена амплитудная модуляция, то есть изменение размаха несущего сигнала таким образом, чтобы форма огибающей линии соответствовала форме передаваемого сигнала. В двадцатые годы механические генераторы были вытеснены электронно-ламповыми. Это значительно уменьшило габариты и вес передатчиков.

Отличается от амплитудной тем, что размах несущей волны остается неизменным, меняется ее частота. По мере развития электронной базы и схемотехники появились другие способы, с помощью которых информационный сигнал «садился» на частоту радиодиапазона. Изменение фазы и широты импульса дали название фазовой и широтно-импульсной модуляциям. Казалось, что амплитудная модуляция как способ радиотрансляции устарела. Но вышло иначе, она сохранила свои позиции, хотя и в несколько измененном виде.

Растущие требования к информационной насыщенности частот побуждали инженеров искать способы увеличить количество каналов, передаваемых на одной волне. Возможности многоканальной трансляции определяются и барьером Найквиста, однако, помимо квантования сигнала, появилась возможность увеличить информационную нагрузку на посредством изменения фазы. Квадратурно-амплитудная модуляция - это такой способ передачи, при котором на одной частоте передаются разные сигналы, сдвинутые по фазе относительно друг друга на 90 градусов. Четырехфазность образует квадратуру или комбинацию двух составляющих, описываемых тригонометрическими функциями sin и cos, отсюда и название.

Квадратурная амплитудная модуляция получила широкое распространение в цифровой связи. По своей сути она представляет собой сочетание фазной и амплитудной модуляции.


Введение

В данной статье речь пойдет о разновидностях аналоговой амплитудной модуляции. Предполагается, что читатель понимает смысл комплексной огибающей полосового радиосигнала , а также понятия аналитического сигнала и преобразования Гильберта .

Как было отмечено ранее, процесс модуляции заключается в формировании низкочастотной комплексной огибающей

(1)
после чего производится перенос этой комплексной огибающей на несущую частоту умножением на
(2)
Также было отмечено, что все виды модуляции различаются только способом формирования комплексной огибающей на основе модулирующего сигнала

Формирование сигналов с амплитудной модуляцией

Рассмотрим как производится формирование комплексной огибающей в случае с амплитудной модуляцией (АМ).

При АМ производится изменение только амплитуды несущего колебания при постоянной начальной фазе:

(3)
где - закон изменения амплитуды, а - постоянная начальная фаза несущего колебания. Потребуем, чтобы модулирующий сигнал имел нулевую постоянную составляющую и Тогда где носит название глубины АМ и радиосигнал с АМ имеет вид:
(4)
Поясним смысл глубины АМ, для этого возьмем частный случай модулирующего сигнала где В этом случае получим так называемую однотональную АМ. При амплитуда несущего колебания не меняется. На рисунках 1 - 4 приведены графики АМ сигнала при различной глубине модуляции: от 0 до 1,5. Синим показана амплитуда При глубине модуляции от 0 до 1 амплитуда несущего колебания совпадает с , однако при наблюдается перемодуляция, так как пересекает ось абсцисс.

Если глубина АМ выбрана так, что перемодуляции не наблюдается, то измерить глубину АМ можно по осциллограмме радиосигнала. Для этого необходимо померить максимальную и минимальную амплитуду несущего колебания как это показано на рисунке 5, и по ним рассчитать глубину АМ по формуле: Таким образом, комплексная огибающая равна , тогда квадратурные составляющие комплексной огибающей равны: Таким образом, квадратурная составляющая не учитывается, и радиосигнал формируется простым умножением несущего колебания на как это показано на рисунке 7.

Рисунок 7: Упрощенная схема АМ

Спектр сигналов с амплитудной модуляцией

Рассмотрим теперь спектр однотональной АМ. Для этого представим АМ сигнал в виде:
(9)
Таким образом, можно сделать вывод о том, что спектр однотональной АМ имеет три гармоники. Амплитудный и фазовый спектры сигнала с АМ представлены на рисунке 8.


Рисунок 8: Амплитудный и фазовый спектр сигнала с АМ

Центральная гармоника не несет никакой информации, однако ее амплитуда максимальна и не зависит от глубины АМ. Информация заключена в боковых гармониках, при этом их уровень зависит от глубины АМ, чем она выше, тем уровень боковых гармоник больше. Максимальное значение глубины АМ при котором не наблюдается перемодуляции , это означает, что максимальный уровень боковых гармоник в 2 раза ниже уровня несущей частоты. При этом как нетрудно заметить при суммарная мощность информационных гармоник будет в 2 раза ниже мощности несущей частоты, другими словами передатчик бОльшую часть энергии тратит на излучение неинформационной несущей, то есть просто обогревает космос. Также необходимо сделать замечание: спектр АМ сигнала всегда симметричен относительно центральной частоты, если модулирующий сигнал чисто вещественный.

Сигналы с балансной АМ (DSB) и их спектр

Давайте теперь допустим, что у нас есть перемодуляция, т.е. . Тогда при уровень информационных гармоник сравняется с уровнем несущей и при дальнейшем росте глубины модуляции уровень информационных гармоник уже начнет превосходить уровень несущей. Если позволить глубине модуляции расти неограниченно, то можно сделать предельный переход:
(10)
В выражении (10) множитель введен для того, чтобы зафиксировать уровень боковых информационных гармоник (это легко понять рассмотрев выражение ). В результате при увеличении будет наблюдаться падение уровня несущей при фиксированном уровне информационных гармоник, так как все гармоники делятся на Такой предельный переход приводит к балансной АМ с подавлением несущей (DSB). Действительно, уровень несущей будет: Таким образом, спектр однотональной балансной АМ с подавлением несущей содержит всего две гармоники как это представлено на рисунке 9.


Рисунок 9: Спектр однотональной балансной АМ с подавлением несущей

Комплексная огибающая балансной АМ имеет вид где

Cигнал с балансной АМ (10) имеет вид, представленный на рисунке 10. При этом можно заметить, что на осциллограмме видна несущая частота, которая отсутствует в спектре. Однако при пересечении модулирующим сигналом оси абсцисс, несущее колебание меняет знак (фаза сдвигается на ), это видно из рисунка 11 и в результате при излучении несущее колебание скомпенсируется, хотя на осциллограмме его можно увидеть.

При этом при АМ вектор всегда направлен в одну сторону и амплитуда меняется в зависимости от глубины АМ от до согласно (5), а при балансной АМ вектор меняется по амплитуде в пределах , причем в зависимости от модулирующего сигнала, вектор комплексной огибающей меняет знак на противоположный, что означает что фаза меняется на радиан (смотри рисунок 12 б).

Главное преимущество балансной АМ — полное подавление несущей частоты. Вся мощность передатчика идет на излучение информационных составляющих. Как и в случае с АМ, спектр радиосигнала с балансной АМ симметричен относительно несущей частоты. Ширина спектра радиосигнала с балансной АМ равна удвоенной верхней частоте модулирующего сигнала, или в случае однотональной модуляции ширина спектра равна

Выводы

Таким образом, мы рассмотрели формирование АМ радиосигнала. Можно сделать выводы:

АМ сигнал формируется путем управления амплитудой несущего колебания по закону модулирующего сигнала.

Введено понятие глубины АМ, показано, что при слишком больших значениях глубины АМ может возникнуть перемодуляция, искажающая модулирующий сигнал.

При отсутствии перемодуляции на излучение информации приходится не более 33% мощности сигнала, остальное — излучение несущей, а при балансной АМ несущая подавлена и вся мощность расходуется на излучение информации.

Показано, что спектр АМ всегда симметричен относительно несущей при вещественном модулирующем сигнале и имеет ширину равную удвоенной верхней частоте модулирующего сигнала.

Понравилась статья? Поделиться с друзьями: