Case-технологии проектирования информационных систем. Структурный подход к проектированию ИС CASE средствами. Версии продукта Rational Rose

Гайфуллов Руслан, студент 2 курса, специальность прикладная информатика ФГБОУ ВПО Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МГТУ имени Носова»

Аннотация

В данной статье дается определение базы данных. Дальше рассматриваются типы данных в базах данных, и их использование при проектировании баз данных. Потом дается определение Case технологий. А в конце, рассказывается о Case технологиях в проектирования баз данных

CASE technologies in database design

Gayfullov Ruslan, 2nd year student, specialty Applied Informatics, FSBEI HPE “MSTU of a name Nosov”

Аnnotation

In this article provides a definition database. Further describes the types of data in databases and their use in database design. Then provides a definition database. And in the end, tells about case technologies in database design.

ЧТО ТАКОЕ БАЗЫ ДАННЫХ

Базы данных (БД) – множество связанных друг с другом данных, которые организуются со схемой БД для удобной работы с ними пользователя.

Определение из Википедии: Базы данных – множество документов в объективной форме, систематизированных для поиска и обработки с помощью ЭВМ (это электронная вычислительная машина).

База данных – множество данных, хранящихся согласно схеме данных, манипуляция с которыми происходит по правилам средств манипулирования данных.

База данных – сведения, хранящиеся неким упорядоченным способом.

ПРОЕКТИРОВАНИЕ БАЗ ДАННЫХ

Этап проектирования базы данных - процесс создания проекта баз данных, нужной для поддержки функционирования предприятия и способствующей достижению его целей.

Проектирование баз данных – процесс создания схемы БД, а также определение нужных ограничений целостности.

Основные задачи:

Хранение в БД всей нужной информации.

Возможность получить данные по всем нужным запросам.

Уменьшение избыточности и дублирования данных.

Обеспечение целостности и дублирования данных

ЭТАПЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

Проектирование БД осуществляется в 3 этапа: концептуальное (инфологическое), логическое (даталогическое), физическое.

Концептуальное проектирование – процесс создания конечной (инфологической) модели данных предприятия (абстрактной структуры баз данных) посредством моделирования данных без учета физических условий (оборудование и программное обеспечение).

Концептуальное (инфологическое) проектирование – создание семантической модели предметной области (информационная модель самого высокого уровня абстракции). Эта модель создаётся без ориентации на СУБД и модель данных. Концептуальная модель БД состоит из описания информационных объектов (понятий предметной области) со связями меж ними и описания ограничений целостности, то есть требований к допускаемым значением данных связей меж ними.

Логическое проектирование – перенесение проекта на внутреннюю модель СУБД (это система управления БД).

Логическое (даталогическое) проектирование – это создание схемы БД с помощью реляционной модели данных.

Даталогическая модель – это набор схем отношений с указанием первичных ключей и связей меж отношениями, являющихся внешними ключами.

Физическое проектирование – это создание схемы БД для конкретно для нужной системы управления БД (например, Access).

Есть еще один вариант этапов проектирования БД:

1 этап: постановка задачи

2 этап: Анализ предметной области.

3 этап: Создание модели.

4 этап: Выбор способов представления информации и программного инструментария.

5 этап: Создание компьютерной модели объекта.

6 этап: Работа с созданной базой данных.

ЧТО ТАКОЕ CASE ТЕХНОЛОГИИ

CASE – инструментарий системных аналитиков для проектирования и разработки. Цель CASE средств – отделить процессы проектирование от программирования. CASE технологии (Computer Aided Software Engineering) совокупность методологий анализа, проектирования, разработки, сопровождения сложных систем программного обеспечения(ПО), поддержанные комплексом взаимоувязанных средств автоматизации. CASE – инструменты и методы программной инженерии для проектирования ПО, обеспечивающее создание высококачественных программ, отсутствие ошибок, а также простоту обслуживания программных продуктов. Также CASE является множеством методов и средств проектирования информационных средств при помощи CASE инструментов.

Case технологии – это методология проектирования ИС и набор инструментов, при помощи которых можно в наглядно смоделировать предметную область, а также проанализировать модель на разных этапах разработки и проектирования, а также разработать приложение с учетом потребностей пользователей.

Средства автоматизации разработки программ – это инструменты для автоматизации процессов проектирования и разработки ПО для системного аналитика, а также разработчика программного обеспечения и программиста. Изначально, Case средствами считали только инструменты, с помощью которых упрощались самые трудоемкие процессы анализа и проектирования, но позже Case средствами стали считать еще и как программные средства поддержки жизненных циклов ПО.

Основной целью CASE технологий является разделение процессов проектирования программных продуктов и кодирования и следующих за ним процессов разработки, а также максимальная автоматизация процесса разработки. Поэтому имеются два совершенно разных подхода к проектированию: структурный и объектно-ориентированный.

Структурный подход предлагает декомпозицию (разделение) задачи на функции, требующие автоматизации. Функции в свою очередь делятся на подфункции, задачи и процедуры. А в конце создается иерархия функций в определенном порядке передающая информацию меж функциями

Также подход использует общепринятые методологии, моделируя разные информационные системы, а именно

SADT (Structured Analysis and Design Technique), DFD (Data Flow Diagrams), а также ERD (Entity Relationship Diagrams).

Есть три основные модели в этом подходе:

функциональные, информационные и динамические

Этот подход реализуют Bpwin, Erwin, Business Studio, IBM WebSphere business modeler и Sybase Power Designer.

В объектно-ориентированном подходе основной инструмент – это язык UML – унифицированный язык моделирования, который может визуализировать и документировать объектно-ориентированные системы, ориентированные на разработку ПО. UML имеет систему разных диаграмм для построения представления о проектируемой системе.

Этот подход реализуют Rational Rose и ARIS.

Case умеет анализировать и программировать программные средства, проектировать интерфейс, документировать, а также производить структурный код на каком-нибудь языке программирования.

Case инструменты делятся на типы и категории:

Типы (здесь отражается функциональная ориентация на разные процессы жизненного цикла разработки ПО и совпадает с составом компонент крупных интегрированных Case систем):

средства анализа, созданные для создания и анализа модели предметной области(Bpwin (logical works).

средства для анализа и проектирования, которые поддерживают самые известные методологии проектирования, создавая с их помощью проектные спецификации. В качестве выхода здесь спецификации компонентов и интерфейсов системы, архитектура систем, алгоритмы м структуры данных.

средства проектирования БД, моделирующие данные и генерирующие схемы БД (на SQL) для систем управления базами данных. Это Erwin (Logic works) и DataBase Designer (Oracle) и Designer/2000.

средства разработки приложений (Developer/2000), Delphi).

средства реинжиниринга, анализирующие программные коды и схемы БД, а также формирование с их помощью разных моделей и проектных спецификаций. Средства анализа схем БД и формирование ERD имеют Designer/2000, Erwin. При анализе программных кодов самыми известными являются объектно-ориентированные Case средства, помогающие проводить реинжиниринг программ на языке С++ (Rational Rose).

Вспомогательные типы

средства планирования и управления проектом (Microsoft Project).

средства конфигурационного управления (PVCS (Intersolv)).

средства тестирования (Quality Works (Segue Software)).

средства документирования (SoDA (Rational Software)).

CASE ТЕХНОЛОГИИ В ПРОЕКТИРОВАНИИ БАЗ ДАННЫХ

В качестве Case технологии я рассмотрю Erwin

На всех стадиях разработки БД, Erwin показывает структуру и основные элементы создаваемой базы данных. Это инструмент разработки, в автоматическом режиме создающий таблицы, а также генерирующий тысячи строк текста хранимых процедур и триггеров для систем управления базами данных. Erwin ускоряет создание приложений для обработки данных.

С Erwin проектирование БД легче. Для этого надо создается графическую E-R модель (объект-отношение), которая удовлетворяет требованиям к данным, а также вводятся бизнес-правила, создавая логическую модель, отображающую элементы, атрибуты, отношения и группировки. Erwin может манипулировать атрибутами при помощи их буксировки, вносить изменения, а также нормализовать во время создания БД. Можно редактировать прямо на диаграммах. Это означает внесение изменений в модель, не открывая специальных диалоговых окон. При помощи отчетов, которые формируются системой, проверяется правильность созданной БД.

Erwin не только инструмент для «рисования», но и автоматизирует проектирование. Ссылочная целостность БД обеспечивается автоматическим переносом ключей. Создающиеся в Erwine модели данных могут редактироваться, просматриваться и распечатываться разными способами. А при помощи RPTwin (имеющей графический интерфейс и умеющей формировать отчеты) и средства для просмотра настраиваемыми режимами, обеспечивающими контроль отображения содержимого отчетов, можно реализовать одинаковые стандарты проектирования и отображения настроек для всех моделей.

Erwin средство для быстрого создания БД. Erwin оптимизирует модель для соответствия физическим характеристикам нужной БД. Так же Erwin самостоятельно согласует логическую и физическую схемы и преобразовывает логические конструкции (например, многие ко многим) в их реализацию на физическом уровне. Реализация и прямого и обратного инжиниринга в Erwin достигается при помощи естественной динамической связи между моделью и базой данных. При помощью этой связи Erwin самостоятельно создает таблицы, представления, индексы, правила поддержания целостности ссылок (первичных и внешних ключей), устанавливает значения по умолчанию, а также ограничения для доменов/столбцов. В Erwine целостность ссылок обеспечивают множество оптимизированных шаблонов триггеров, а также мощный макроязык, при помощи которого создаются свои триггеры и хранимые процедуры. Для точной оценки и характера роста базы данных или хранилища имеются средства расчёта объема, облегчающие эффективное распределение ресурсов системы и планирование мощности.

Количество просмотров публикации: -

2.2 Разработка концептуальной модели информационной системы.

Концептуальная модель представляет объекты и их взаимосвязи без указывания способов их физического хранения. Таким образом, концептуальная модель является, по существу, моделью предметной области. При проектировании концептуальной модели должна происходить структуризация данных и выявление взаимосвязей между ними без рассмотрения особенностей реализации и вопросов эффективности

обработки. Проектирование концептуальной модели основано на анализе задач, стоящих перед рекламным агентством. Концептуальная модель включает описания объектов и их взаимосвязей, представляющих интерес в рассматриваемой предметной области и выявляемых в результате анализа данных.

Чтобы построить необходимую нам модель, мы привели все имеющиеся данные к третьей нормальной форме, в результате чего получили следующие сущности:

· Виды блюд.

· Персонал.

· Должности.

· Постоянные клиенты.

· Заказы.

Модель строим на логическом уровне (см. рис. 2). Из рисунка 2 видно, что в модели проставлены связи. Рассмотрим их подробнее:

Таблица «Виды блюд» и таблица «Блюда» - установлена связь «один-ко-многим» при помощи первичного ключа «Код вида»;

Таблица «Должности» и таблица «Персонал» - установлена связь «один-ко-многим» при помощи первичного ключа «Код должности»;

Таблица «Блюда» и таблица «Заказы» - установлена связь «один-ко-многим» при помощи первичного ключа «Код блюда»;

Таблица «Персонал» и таблица «Заказы» - установлена связь «один-ко-многим» при помощи первичного ключа «Код работника»;

Таблица «Постоянные клиенты» и таблица «Заказы» - установлена связь «один-ко-многим» при помощи первичного ключа «Код клиента».



Рис. 2. Концептуальная модель данных


2.3 Разработка логической модели информационной системы

Базы данных и программные средства их создания и ведения (СУБД) имеют многоуровневую архитектуру, представление о которой можно получить из рисунка 1.

Схема 1 - Многоуровневое представление данных БД под

управлением СУБД

Различают концептуальный, внутренний и внешний уровни представления этих баз данных, которым соответствуют модели аналогичного назначения.

Концептуальный уровень соответствует логическому аспекту представления данных предметной области в интегрированном виде. Концептуальная модель состоит из множества экземпляров различных типов данных, структурированных в соответствии с требованиями СУБД к логической структуре базы данных.

Внутренний уровень отображает требуемую организацию данных в среде хранения и соответствует физическому аспекту представления данных. Внутренняя модель состоит из отдельных экземпляров записей, физически хранимых во внешних носителях.

Внешний уровень поддерживает частные представления данных, требуемые конкретным пользователям. Внешняя модель является подмножеством концептуальной модели. Возможно пересечение внешних моделей по данным. Частная логическая структура данных для отдельного приложения (задачи) или пользователя соответствует внешней модели или подсхеме БД. С помощью внешних моделей поддерживается санкционированный доступ к данным БД приложений (ограничен состав и структура данных концептуальной модели БД, доступных в приложении, а так же заданы допустимые режимы обработки этих данных: ввод, редактирование, удаление, поиск).

Проектирование базы данных состоит в построении комплекса взаимосвязанных данных. На рисунке 2 условно отображены этапы процесса проектирования базы данных.

Схема 2 - Этапы процесса проектирования базы данных

Важнейшим этапом проектирования базы данных является разработка информационно-логической (инфологической) модели предметной области, не ориентированной СУБД. В инфологической модели средствами структур данных в интегрированном виде отражают состав и структуру данных, а также информационные потребности.

Информационно-логическая (инфологическая) модель предметной области отражает предметную область в виде совокупности информационных объектов и их структурных связей.

При связи один ко многим (1:М) одному экземпляру информации А соответствует 0, 1 или более экземпляров объекта В, но каждый экземпляр объекта В связан не более чем с одним экземпляром объекта А.

Примером связи 1:М служит связь между информационными объектами Фамилия – Оклад:

Фамилия Оклад


В базе данных информация хранится в виде двумерных таблиц. Можно так же импортировать и связывать таблицы из других СУБД или систем управления электронными таблицами. Одновременно могут быть открыты 1024 таблицы.

При определении необходимых таблиц базы данных необходимо обеспечить первые три нормальные формы, т.е. провести нормализацию.

Одни и те же данные могут группироваться в таблицы (отношения) различными способами, т.е. возможна организация различных наборов отношений взаимосвязанных информационных объектов. Группировка атрибутов в отношениях должна быть рациональной, т.е. минимизирующей дублирование данных и упрощающей процедуры их обработки и обновления.

Определённый набор отношений обладает лучшими свойствами при включении, модификации, удалении данных, чем все остальные возможные наборы отношений, если он отвечает требованиям нормализации отношений.

Нормализация отношений – формальный аппарат ограничений на формирование отношений (таблиц), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных.

Е.Коддом выделены три нормальные формы отношений и предложен механизм, позволяющий любое отношение преобразовать к третьей (самой совершенной) нормальной форме.

Первая нормальная форма. Отношение называется нормализованным или приведённым к первой нормальной форме, если все его атрибуты простые (далее неделимы). Преобразование отношения к первой нормальной форме может привести к увеличению количества реквизитов (полей) отношения и изменению ключа.

Вторая нормальная форма. Чтобы рассмотреть вопрос приведения отношений ко второй нормальной форме, необходимо дать пояснения к таким понятиям, как функциональная зависимость и полная функциональная зависимость.

Описательные реквизиты информационного объекта логически связаны с общим для них ключом, эта связь носит характер функциональной зависимости реквизитов.

Функциональная зависимость реквизитов – зависимость, при которой в экземпляре информационного объекта определённому значению ключевого реквизита соответствует только одно значение описательного реквизита.

Такое определение функциональной зависимости позволяет при анализе всех взаимосвязей реквизитов предметной области выделить самостоятельные информационные объекты. В качестве примера рассмотрим графическое изображение функциональных зависимостей реквизитов работников, приведенное на рисунке 5, на котором ключевой реквизит указан звёздочкой.

Рисунок 1 - Графическое изображение функциональной зависимости реквизитов

В случае составного ключа вводится понятие функционально полной зависимости.

Функционально полная зависимость не ключевых атрибутов заключается в том, что каждый не ключевой атрибут функционально зависит от ключа, но не находится в функциональной зависимости ни от какой части составного ключа.

Отношение будет находиться во второй нормальной форме, если оно находится в первой нормальной форме, и каждый не ключевой атрибут функционально полно зависит от составного ключа.

Третья нормальная форма. Понятие третьей нормальной формы основывается на понятии не транзитивной зависимости.

Транзитивная зависимость наблюдается в том случае, если один из двух описательных реквизитов зависит от ключа, а другой описательный реквизит зависит от первого описательного реквизита.

Отношение будет находиться в третьей нормальной форме, если оно находится во второй нормальной форме, и каждый не ключевой атрибут не транзитивно зависит от первичного ключа.

Для устранения транзитивной зависимости описательных реквизитов необходимо провести “расщепление” исходного информационного объекта. В результате расщепления часть реквизитов удаляется из исходного информационного объекта и включается в состав других (возможно, вновь созданных) информационных объектов.

Создаваемая база данных должна выполнять функции в интересах автоматизации выдачи данных об организации. Она должна иметь простой и наглядный пользовательский интерфейс, иметь минимальные системные требования.

Целью работы является создание базы данных, обеспечивающей:

быстрый ввод новых данных;

хранения и поиск уже введённых данных;

печать необходимого количества персональных отчётов.

Данными являются:

Фамилия, имя, отчество;

Дата рождения;

Занимаемая должность;

Должностной оклад;

Количество фактических дней отработанных за месяц.

Рассмотрев определенные выше задачи можно спроектировать основные таблицы базы данных.

Для этого будем пользоваться средствами Database Desktop

В этой среде создадим все необходимые таблицы для разрабатываемой базы данных. Атрибутами в этой таблице будет:

Фамилия, Имя, Отчество, Дата принятия, Адрес, Телефон, Смены, Не выходы на работу, Ставка, зарплата.

12 и 13 октября прошел форум РИФ-Воронеж 2018. За два дня на мероприятии зарегистрировалось 4600 человек. Еще 3700 человек посмотрели онлайн-трансляцию. Перед аудиторией выступили более ста спикеров, актуальные темы сферы информационных технологий обсудили в формате презентаций и дискуссий. В первый день форума подвели итоги региональной интернет-премии. А завершилась деловая программа финалом первого студенческого IT-чемпионата по решению кейсов в области digital-технологий, проектирования и онлайн-коммуникации в Центральном Черноземье. Победителем стала команда ВГТУ. Чемпионат организован совместно с проектом Стажировка.ру.

В отборочном туре чемпионата IT-Generation приняли участие 30 команд из Воронежа, Курска, Липецка, Орла, Брянска, Санкт-Петербурга, Москвы, Самары, Алматы. Самый младший участник чемпионата - ученик 8 класса школы (он вошел в состав студенческой команды). В финале свои работы защищали 10 команд. Ребята решали реальные задачи, с которыми программисты сталкиваются в своей работе.

Для каждого кейса компании определили лучшее решение:

· Кейс компании DSR (разработка корпоративного мобильного приложения) - команда ВГТУ (Воронеж)

· Кейс компании Atos (доработка корпоративной информационной системы) - команда БГИТУ (Брянск)

· Кейс компании Dr.Web (поиск скрытого майнера в корпоративной сети) - команда ВГУ (Воронеж)

Также же эксперты выбрали победителя всего чемпионата, им стала команда ВГТУ! Победителей пригласили на стажировку в компании.



Итоги форума

Организаторам еще предстоит подвести итоги форума. Но уже сегодня ясно, что он стал более посещаемым, чем в прошлом году. Спикеры форума отмечали, что аудитория была хорошо подготовлена, задавала сложные профессиональные вопросы и включалась в диалог. И все участники РИФ-Воронеж говорили об отличной организации мероприятия.

Новое развитие получила на форуме тема digital-коммуникаций, доклады спикеров о тенденциях, контенте и продвижении в соцстеях, видеомаркетинге, личном брендинге прошли при полных залах. Максимально широко была представлена тема web-дизайна. Впервые в Воронеже прошла мини-конференция с участием спикеров Baltic Digital Days, эксперты говорили о поисковом продвижении сайтов и управлении репутацией в сети интернет.


На форуме было большое количество специализированных тем, понятных профессионалам определенных направлений: разработка и тестирование, SAP, машинное обучение, цифровая трансформация производства.

В формате круглого стола обсудили вопросы регулирования интернета, развития цифровой экономики, digital-трансформации города.


Экспертами РИФ-Воронеж в 2018 году стали представители топовых IT-компаний: Mozilla Foundation, ВКонтакте, Яндекс, Mail.Ru Group, Rambler&Co, T-Systems, Ingate, Seopult, «НЛМК-Информационные технологии», «Северсталь-инфоком» и других.

Как всегда, все мероприятия ежегодного форума были бесплатными. Организаторы форума: Агентство инноваций и развития экономических и социальных проектов, Департамент экономического развития Воронежской области, Рекомендательный проект «LikenGo!», при поддержке Российской ассоциации электронных коммуникаций. Генеральным партнером форума стала авиакомпания Turkish Airlines.


О форуме:

Региональный интернет-форум (РИФ) проходит в Воронеже с 2009 года. В 2013 году мероприятие получило поддержку областного казенного учреждения «Агентство инноваций и развития экономических и социальных проектов» и департамента экономического развития Воронежской области, подтвердив статус значимого для региона события. В рамках «РИФ-Воронеж» также проходит интернет-премия, основные задачи которой - содействие развитию интернет-технологий на территории региона и демонстрация ярких проектов рынка.

Организаторы РИФ в 2018 году:

Областное казенное учреждение «Агентство инноваций и развития экономических и социальных проектов» www.innoros.ru

Департамент экономического развития Воронежской области www.econom.govvrn.ru

При поддержке:

Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации, www.minsvyaz.ru
Российской ассоциации электронных коммуникаций,

За последнее десятилетие сформировалось новое направление в программотехнике - CASE (Computer-Aided Software/System Engineering) - в дословном переводе - разработка программного обеспечения информационных систем при поддержке (с помощью) компьютера. В настоящее время не существует общепринятого определения CASE, термин CASE используется в весьма широком смысле. Первоначальное значение термина CASE, ограниченное вопросами автоматизации разработки только лишь программного обес­печения, в настоящее время приобрело новый смысл, охватывающий процесс разработки сложных автоматизированных информационных систем в целом. Теперь под термином CASE-средства понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного программного обеспечения (ПО) (приложений) и баз данных, генерацию кода, тести­рование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

CASE-средства позволяют не только создавать "правильные" продукты, но и обеспечить "правильный" процесс их создания. Основная цель CASE состоит в том, чтобы отделить проектирование ИС от его кодирования и последующих этапов разработки, а также скрыть от разработчиков все детали среды разработки и функционирования ИС. При использовании CASE-технологий изменяются все этапы жизненного цикла программного обеспечения (подробнее об этом будет сказано ниже) информационной системы, при этом наибольшие изменения касаются этапов анализа и проектирования. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих специ­фикации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств. Такие методологии обеспечивают строгое и наглядное описание про­ектируемой системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней. CASE-технологии успешно применяются для построения практически всех типов ИС, однако устойчивое положение они занимают в следующих областях:

    обеспечение разработки деловых и коммерческих ИС, широкое применение CASE-технологий обусловлены массовостью этой прикладной области, в которой CASE применяется не только для разработки ИС, но и для создания моделей систем, помогающих решать задачи стратегического планирования, управления финансами, определения политики фирм, обучения персонала и др. (это направление получило свое собственное на­звание - бизнес-анализ);

    разработка системного и управляющих ИС. Активное применение CASE-технологий связано с большой сложностью данной проблематики и со стремлением повысить эффективность работ.

CASE - не революция в программотехнике, а результат естественного эволюционного развития всей отрасли средств, называемых ранее инструментальными или технологическими. С самого начала CASE-технологии развивались с целью преодоления ограничений при использовании структурных методологий проектирования 60-70-х гг. XX в. (сложности понимания, большой трудоемкости и стоимости использова­ния, трудности внесения изменений в проектные спецификации и т. д.) за счет их автоматизации и интеграции поддержи­вающих средств. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями, они только развивают структурные методологии и делают более эффективным их применение за счет автоматизации.

Помимо автоматизации структурных методологий и, как следствие, возможности применения современных методов системной и программной инженерии, CASE-средства обладают следующими основными достоинствами:

    улучшают качество создаваемых ИС за счет средств автоматического контроля (прежде всего контроля проекта);

    позволяют за короткое время создавать прототип будущей системы, что позволяет на ранних этапах оценить ожидаемый результат;

    ускоряют процесс проектирования и разработки;

    освобождают разработчика от рутинной работы, позволяя ему целиком сосредоточиться на творческой части разработки;

    поддерживают развитие и сопровождение разработки;

    поддерживают технологии повторного использования компонента разработки.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т. д. В 70-80-х гг. стала на практике применять­ся структурная методология, предоставляющая в распоря­жение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Она основана на наглядной графической технике: для описания раз­личного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений. Однако широкое применение этой методологии и следование ее рекомендациям при разработке контактных ИС встречалось достаточно редко, поскольку при неавтоматизированной (ручной) разработке это практически невозможно. Это и способствовало появлению программно-технических средств особого класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС.

Необходимо понимать, что успешное применение CASE-средств невозможно без понимания базовой технологии, на которой эти средства основаны. Сами по себе программные CASE-средства являются средствами автоматизации процес­сов проектирования и сопровождения информационных систем. Без понимания методологии проектирования ИС невозможно применение CASE-средств.

Что такое CASE-СРЕДСТВАCASE-средства (от англ.Computer-Aided Software
Engineering) -– это инструментальные средства
автоматизации проектирования ИС.
CASE-СРЕДСТВА это методы программной инженерии для
проектирования программного обеспечения, которые
позволяют обеспечить высокое качество программ,
отсутствие ошибок и простоту в обслуживании
программных продуктов.
Также под CASE понимают совокупность средств
проектирования информационных систем с
использованием CASE-инструментов.

Case средства

К Case средствам относят любое ПО, которое
автоматизирует различные этапы Жизненного цикла
ПО и обладает следующими характеристиками:
1. Имеется мощное графическое средство для
описания ИС, которое обеспечивает удобство работы
пользователя,
2. Присутствует интеграция отдельных компонентов
Case- средства,
3. Используется централизованное хранилище
проектных данных Репозиторий.

Функции проектирования, которые наиболее часто автоматизируемые в рамках CASE-средств:

-
анализ и формулировка требований к ИС;
проектирование баз данных и приложений;
генерация программного кода;
тестирование;
обеспечение качества ПО;
управление конфигурацией ИС;
управление проектом и др.

Результат применения CASE-средств:

оптимизация структуры ИС;
снижение расходов на разработку;
повышение эффективности ИС;
снижение вероятности ошибок при
проектировании ИС.

Архитектура типового Case-средства

Репозиторий

Ядром любой системы проектирования ПО является репозиторий.
Репозиторий представляет собой специализированную БД,
которая используется для отображения состояния системы в любой момент
времени и содержит информацию о всех объектах проектной ИС:
Имена проектировщиков и их права доступа,
Организованные структуры,
Компоненты диаграмм и диаграммы в целом,
Структуры данных,
Взаимосвязи между диаграммами,
Программные модули, процедуры и библиотеки модулей.

Классификация Современных Case средств:

1. Классификация Case средств по
поддерживаемым методологиям:
-
функциональные или структурно-ориентированные;
-
объектно-ориентированные;
-
комплексно-ориентированные.

2. Классификация Современных Case средств по типам:

Отражает функциональную ориентацию средств на
процессы жизненного цикла разработки программного
обеспечения:
средства анализа - предназначены для построения и
анализа модели предметной области;
средства проектирования баз данных;
средства разработки приложений;
Средства реинжиниринга процессов;
средства планирования и управления проектом;
средства тестирования;
средства документирования.

Примеры Case-средств различных типов:

Средства анализа (Design, BpWin);
Средства анализа и проектирования (Designer - Oracle);
Средства проектирования БД (ErWin, Designer - Oracle);
Средства разработки приложений (Developer – Oracle,
Delphi);
Средства реинженеринга (ErWin, Rational Rose).

3. Классификация Современных Case средств по категориям:

Определяет выполняемые инструментами функции и включает:
отдельные локальные средства, решающие небольшие автономные
задачи, набор частично интегрированных средств, охватывающих
большинство этапов жизненного цикла и полностью интегрированные
средства, охватывающие весь жизненный цикл информационной
системы и связанные общим репозиторием.
Типичными CASE-инструментами являются:
инструменты управления конфигурацией;
инструменты моделирования данных;
инструменты анализа и проектирования;
инструменты преобразования моделей;
инструменты редактирования программного кода;
генераторы кода;
инструменты для построения UML-диаграмм.

Другие виды классификации Case-средств:

4.
Классификация Case-средств по поддерживаем
графическим нотациям;
5.
Классификация Case-средств по степени
интегрированности отдельных инструментов;
6.
Классификация Case-средств по типу и архитектуре
используемой вычислительной техники;
7.
Классификация Case-средств по типу коллективной
разработки;
8.
Классификация Case-средств по типу используемой
операционной среды.

При выборе Case средств необходимо учитывать следующие аспекты:

Наличие БД, архива или словаря;
Наличие интерфейсов с другими Case системами;
Возможности экспорта и импорта информации;
Открытая архитектура;
Наличие необходимых методологий;
Наличие графических средств поддержки проекта;
Возможность автоматической генерации кода программ;
Возможность планирование и управление проектом.

Case-средство Универсальный язык моделирования UML

Создание языка UML преследовало следующие цели:
предоставить разработчикам единый язык визуального
моделирования;
предусмотреть механизмы расширения и специализации языка;
обеспечить независимость языка от языков программирования и
процессов разработки.

Взаимосвязь диаграмм UML

Диаграмма вариантов
использования
Диаграмма
последовательности
Диаграмма
классов
Диаграмма
кооперации
Диаграмма
компонентов
Диаграмма
состояний
Диаграмма
развертывания
Диаграмма
видов деятельности

Case-средство IBM Rational Rose

Rational Rose - современное и мощное средство анализа,
моделирования и разработки программных систем,
охватывающее весь Жизненный цикл ПО
от анализа бизнес-процессов до кодогенерации на
заданном языке программирования.
Такой арсенал позволяет не только проектировать новую
информационную систему, но и доработать старую,
произведя процесс обратного проектирования.

Основные возможности пакета Rational Rose:

прямое и обратное проектирование на языках: ADA,
Java, С, C++, Basic;
поддержка технологий COM, DDL, XML;
возможность генерации схем БД Oracle и SQL.

Версии продукта Rational Rose:

Версия Rational Rose Modeler позволяет проводить анализ бизнес-процессов и
проектировать систему. Но не поддерживает кодогенерацию.
Версия Rational Rose Professional В зависимости от выбранного языка программирования
позволяет выполнять прямое и обратное проектирование. Заказывается только в
определенной конфигурации (например, Rose Professional С++ или Rose Professional С++
DataModeler). Не создает 100 % исполняемого кода. На выходе разработчик получает
каркасный код информационной системы на определенном (заказанном) языке
программирования, который впоследствии нужно еще дорабатывать.
Версия Rational Rose RealTime создана специально для получения 100 % исполняемого
кода в реальном масштабе времени, позволяет проводить прямое и обратное
проектирование на языках С или С++. На выходе модель автоматически компилируется
и собирается в исполняемый файл.
Версия Rational Rose Enterprise эта версия продукта покрывает весь спектр задач по
проектированию, анализу и кодогенерации. Поддерживаются все функции других
редакций, за исключением возможности 100 % кодогенерации.
Версия Rational Rose DataModeler вариант продукта по проектированию баз данных.
Функции DataModeler входят в состав Rose Enterprise или Professional.
В пакет MS Visual Studio 6.0 встроен Visual Modeler - усеченный вариант Rational Rose 98.

Дополнительная информация по пакету Rational Rose:

Бесплатной версии продукта Rational Rose не
существует;
для образовательных учреждений все программное
обеспечение IBM доступно бесплатно;
бесплатное использованиея в учебных целях возможно
в рамках программы IBM Academic Initiative.
Понравилась статья? Поделиться с друзьями: