Применение катушек индуктивности. Самодельная катушка для импульсного металлоискателя

В статье мы рассмотрим понятие индуктивности, что такое катушка индуктивности, подробно разберем закон Неймана или по-другому «взаимная индуктивность», покажем все на примере с формулами.

Взаимная индуктивность, формула Неймана

Предположим, что у нас есть две проводящие петли, петля номер один, взаимодействующая с ней, и петля номер два, вызывающая в ней магнитный поток, используя равенство индукции магнитного поля и определение индукции магнитного поля через векторный потенциал магнитного поля и изменив в этом потоке интеграл на поверхности, ограниченный замкнутым контуром, на интеграл по контуру, затем:

Из магнитостатики векторный магнитный потенциал магнитного поля из первой петли определяется как:

(2)

Если подставить формулу для векторного магнитного потенциала (2) в формулу для магнитного потока, ограниченного каким-либо произвольным контуром (1) , то:

(3)

Очевидно, что формула (3) после перестановки круговых интегралов в одно место, эквивалентна:

(4)

Здесь R — расстояние друг от друга: dl(1) от dl(2)

Формула (4) может быть сохранена в виде разделения константы M 12 , тогда:

(6)

Формула для размера взаимной индукции (6) является симметричной из-за регулировки dl(1) от dl(2), то есть взаимная индукция после этого изменения не меняется, она симметрична. Очевидно, что она не зависит от времени. Значение M_12 в формуле (6) это формула Неймана . Если подставить формулу (5) в интегральную формулу Фарадея для первого цикла, аналогично и для второго цикла, то тогда закономерность взаимной индукции второй петли относительно первой петли для электродвижущей силы для двух петель выражаются в формулах:

(7)

(8)

Мы видим, что закономерности для электромагнитной силы одинаковы, но они зависят от изменений длительности электрического тока во втором контуре (формула (7) ) или в первом контуре (формула (8) ).

Собственная индуктивность

Здесь мы будем иметь дело только с одним контуром, который магнитно взаимодействует с самим собой.

Закон Фарадея и собственная индукция

Мы должны иметь дело с индуктивностью, когда одна и та же цепь взаимодействует с одной и той же цепью магнетизмом, то есть это особый случай взаимной индуктивности. Мы записываем формулу для этой ситуации:

Ф = L*I (9)

Тогда формула для электромагнитной силы возникает после подстановки формулы (9) в :

Формула для L такая же, как формула Неймана (6) , используется только двойное интегрирование по одному и тому же периметру, то есть геометрия применяется только к одной цепи.

Собственная энергия магнитной системы

Сила, создаваемая против ЭДС в индуктивности собственной цепи, зависит от электродвижущей силы, вызванной самоиндукцией, если ток течет в ней, и от того, что ее работа выполняется против электромагнитной силы ЭДС в единицу времени, равна:

Используя определение электродвижущей силы, обусловленной собственной индуктивностью (10) , которая вытекает из закона индуктивности Фарадея , мы спрашиваем себя, что работа выполнялась системой, когда ток в системе с индуктивностью L от I равен нулю до некоторой ненулевой величины, поэтому мы приходим к выводу:

Работа, выполненная против ЭДС в системе индуктивности L, после переписывания окончательного применения (12) , выражается:

Это не зависит от того, как долго протекает ток, а зависит только от геометрии системы и тока, протекающего в нашей цепи, которая взаимодействует сама с собой в результате действия магнитного поля.

Катушка индуктивности (дроссель)

Определение и теория катушек индуктивности

Катушка индуктивности (дроссель) - катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении, способная накапливать электромагнитную энергию в собственном магнитном поле. Обозначается – L . Внешний вид может быть различным, но если вы её мотаете самостоятельно, то будет выглядеть как-то так:

Величина индуктивности измеряется в Генри [Гн] .

1 Генри – очень большая величина, поэтому применяемые в технике катушки индуктивности имеют величины: микрогенри – 10 -6 (мкГн) и миллигенри – 10 -3 (мГн).

Процессы, происходящие в катушке индуктивности (далее — индуктивности) на временном графике при подключении индуктивности к источнику прямоугольного однополярного сигнала, показаны на рисунке.

Из рисунка сбоку видно, реакция индуктивности на воздействие электрического тока абсолютно противоположно реакции конденсатора (ёмкости). В момент подачи прямоугольного импульса источника тока (красный), ток индуктивности (фиолетовый) сначала равен нулю и с изменением времени увеличивается по экспоненте – индуктивность накапливает энергию, в начальный момент её внутреннее сопротивление максимально. Напряжение на выводах индуктивности (зелёный) наоборот сначала максимально, но потом по мере накопления энергии уменьшается по экспоненте до нуля. При пропадании входного импульса, так как индуктивность — элемент инерционный, напряжение на выводах индуктивности резко изменив полярность сначала максимально, а ток продолжает течь в том же направлении, уменьшаясь при этом по экспоненте – запасённая в индуктивности энергия иссякает. Напряжение из отрицательной области так же по экспоненте стремится к нулю. Скорость изменения напряжения и тока зависит от значения индуктивности. Чем больше индуктивность, тем медленнее они изменяются (экспонента более вытянута по времени). Напряжение и ток на нагрузочном резисторе ведут себя одинаково, и изображены на временном графике оранжевым цветом. Если сравнить с конденсатором — полная противоположность. Взаимосвязь тока и напряжения в индуктивности так же описывается законом Ома, с учётом реактивного сопротивления индуктивности.

Фактически, мы рассмотрели «четырёхполюсник» состоящий из катушки индуктивности и резистора, который называют интегрирующей цепочкой.

Интегрирующая цепочка чаще всего применяется для формирования пилообразных импульсов в любой радио аппаратуре и временной (ударение на «о») задержки прямоугольных импульсов. Чтобы, Вам было понятнее, интегрирующая цепочка и получение пилообразного импульса изображены на следующем рисунке. Для получения последнего, используется наиболее прямолинейный участок интегрированного импульса — его начало, и «обрезается» по времени или по амплитуде (порогу).

Для задержки импульсов используют пороговое устройство. По достижении амплитуды сигнала прошедшего через интегрирующую цепочку определённого значения (порога), пороговое устройство пропускает входной сигнал на выход. После чего, сигнал усиливается усилителем до необходимой величины. В целях уменьшения размеров (исключения громоздкости), схемы формирования пилообразных импульсов, и схемы задержки импульсов эффективнее делать на интегрирующей цепочке состоящей из резистора и конденсатора.

Кроме функции преобразования прямоугольных импульсов, интегрирующая цепочка может применяться в качестве фильтра низких частот (ФНЧ) . Индуктивность – инертный элемент. Если к дросселю с большим значением индуктивности приложить переменное напряжение высокой частоты, в силу своей инертности, индуктивность будет не способной пропустить через себя ток, ведь индуктивности сначала надо будет запастись энергией в собственном сердечнике, а потом отдавать эту энергию. Свойство индуктивности сопротивляться переменному электрическому току называют реактивным сопротивлением индуктивности , которое используется при конструировании частотных фильтров и колебательных контуров. Реактивное сопротивление индуктивности обозначается X L или Z L и измеряется в Омах. Реактивное сопротивление индуктивности связано с частотой тока выражением:

Из формулы видно, что реактивное сопротивление индуктивности прямо пропорционально частоте. Другими словами, чем выше частота, тем больше реактивное сопротивление индуктивности .

Теперь представьте, что интегрирующая цепь, это – описанный на сайте делитель напряжения, где вместо первого резистора выступает индуктивность. А мы из формулы теперь знаем, что индуктивность легко пропускает низкие частоты – его сопротивление минимально и плохо пропускает высокие частоты – его сопротивление максимально. Не изменяя текста повторюсь: В радиоэлектронике, когда рассчитывают частотные фильтры, то считают характеристикой фильтра – частоту среза, которая определяется как значение частоты сигнала, на котором амплитуда выходного сигнала уменьшается (затухает) до значения 0,7 от входного сигнала. Чтобы было понятнее, изображу это на рисунке.

То, что изображено, называется амплитудно-частотной характеристикой , или сокращённо — АЧХ . Для фильтра высоких частот соответствует АЧХ фиолетового цвета, и частота среза равная значению f 2 .

Способ измерения индуктивности

Наверняка прочитав данную статью, грамотный читатель подумает: «Хм, теория это конечно хорошо, но как измерить руками значение индуктивности на практике?». Однажды этим вопросом задался и я, и собрал простую схему для проверки индуктивностей.

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквойL ” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять - шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор . Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм. на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор . Тогда защита от бросков сетевого напряжения будет практически полной. В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам. Широко известный выпрямительный диодный мост , у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки. Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX . На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1.1 ; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

Индукционная катушка (рисунок 1) представляет собой частный случай трансформатора. Она состоит из сердечника 1 (набранного из нарезанных кусков стальной проволоки), на который намотано несколько витков толстой изолированной проволоки 2 . Эти витки являются первичной обмоткой индукционной катушки. Поверх первичной обмотки наматывается другая обмотка 3 из тонкой изолированной проволоки с большим числом витков (от 16 000 до 1 000 000 и более). Это - вторичная обмотка индукционной катушки.

Рисунок 1. Схема устройства индукционной катушки

Принцип работы индукционной катушки состоит в следующем. Первичная обмотка через механический прерыватель 4 присоединяется к источнику постоянного напряжения 5 (батарее элементов, аккумуляторов и так далее).

При замыкании выключателя 6 ток батареи проходит по первичной обмотке катушки и намагничивает ее сердечник. Намагнитившийся сердечник притягивает к себе якорек прерывателя, чем разрывается цепь первичной обмотки. В следующее мгновение размагнитившийся сердечник отпускает якорек прерывателя. Последний под действием пружины возвращается на прежнее место, замыкает цепь первичной обмотки, и далее процесс повторяется вновь.

В результате непрерывных замыканий и размыканий цепи в первичной обмотке катушки протекает прерывистый ток. Изменяющееся магнитное поле первичной обмотки, пересекая витки вторичной обмотки, индуктирует в ней электродвижущую силу (ЭДС). При замыкании первичной цепи ЭДС во вторичной обмотке имеет одно направление, при размыкании - другое. Большое число витков дает возможность получать на концах вторичной обмотки напряжение в несколько тысяч, а иногда и сотен тысяч вольт. Слой воздуха между выводами вторичной обмотки пробивается и проскакивает искра, длина которой в больших индукционных катушках достигает 1 метра.

Для получения большой ЭДС во вторичной обмотке необходимо, чтобы ток в первичной цепи изменялся как можно быстрее. Однако искра в механическом прерывателе, появляющаяся при размыкании его контактов, не дает возможности току прекращаться сразу. Для быстрейшего исчезновения искры параллельно месту разрыва включают конденсатор 7 .

Первичную обмотку индукционной катушки можно питать также переменным током. Тогда надобность в прерывателе отпадает.

При помощи индукционной катушки было сделано много важнейших физических открытий. Индукционные катушки широко применяются для зажигания рабочей смеси в автомобильных и авиационных двигателях и так далее.

Рисунок 2. Внешний вид автомобильной индукционной катушки и механического прерывателя используемых для подачи искры в камеру сгорания двигателя (слева катушка, справа прерыватель)

Видео 1. Катушка Румкорфа

Сварка с применением давления, при которой соединение осуществляется в результате соударения свариваемых частей, вызнанного воздействием импульсного магнитного поля. [ГОСТ 2601 84] [Терминологический словарь по строительству на 12 языках (ВНИИИС… … Справочник технического переводчика

Магнитно-импульсная сварка - 46. Магнитно импульсная сварка Сварка с применением давления, при которой соединение осуществляется в результате соударения свариваемых частей, вызнанного воздействием импульсного магнитного поля Источник: ГОСТ 2601 84: Сварка металлов. Термины и …

ГОСТ 20938-75: Трансформаторы малой мощности. Термины и определения - Терминология ГОСТ 20938 75: Трансформаторы малой мощности. Термины и определения оригинал документа: 73. Асимметрия обмоток трансформатора малой мощности Асимметрия обмоток D. Wicklungsunsymmetrie des Kleintransformators E. Winding asymmetry F.… … Словарь-справочник терминов нормативно-технической документации

Трансформатор Тесла - Разряды с провода на терминале Трансформатор Тесла, также катушка Тесла (англ. … Википедия

ГОСТ Р 52002-2003: Электротехника. Термины и определения основных понятий - Терминология ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа: 128 (идеальный электрический) ключ Элемент электрической цепи, электрическое сопротивление которого принимает нулевое либо бесконечно… … Словарь-справочник терминов нормативно-технической документации

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС - (ЯМР), избирательное поглощение эл. магн. энергии в вом, обусловленное ядерным парамагнетизмом. ЯМР один из методов радиоспектроскопии, наблюдается, когда на исследуемый образец действуют взаимно перпендикулярные магн. поля: сильное постоянное Н0 … Физическая энциклопедия

ГОСТ Р ИСО 857-1-2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения - Терминология ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения оригинал документа: 6.4 автоматическая сварка: Сварка, при которой все операции механизированы (см. таблицу 1).… … Словарь-справочник терминов нормативно-технической документации

Словарь метротерминов - Эта страница глоссарий. Приведены основные понятия, термины и аббревиатуры, встречающиеся в литературе о метрополитене и железной дороге. Подавляющее большинство сокращений пришли в метрополитен с железной дороги напрямую или образованы по… … Википедия

Искусственная линия - электрическая, электрическая цепь, составленная из нескольких последовательно включенных звеньев, содержащих катушки индуктивности и конденсаторы. И. л. применяются в электротехнических и радиотехнических устройствах, главным образом… … Большая советская энциклопедия

Импульсный стабилизатор напряжения - Импульсный стабилизатор напряжения это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… … Википедия

ГОСТ 13699-91: Запись и воспроизведение информации. Термины и определения - Терминология ГОСТ 13699 91: Запись и воспроизведение информации. Термины и определения оригинал документа: 241 (воспроизводящая) игла: Игла, следующая по канавке записи механической сигналограммы с целью воспроизведения информации Определения… … Словарь-справочник терминов нормативно-технической документации

Катушка индуктивности – элемент электрических цепей, способствующий накоплению энергии магнитного поля. С использованием изделий изготавливаются колебательные резонансные контуры. Катушка называется потому, что вокруг бобины-сердечника обматывается нить проволоки. Часто в радиотехнике элементы именуют индуктивностями. Подходит случаю, конструкции иной раз мало напоминают катушку.

История создания катушки индуктивности

Катушки индуктивности наматываются фиксированным числом проводов. Этот факт скрывают на уроках физики, избегая забивать ученикам мозги. Потом догадываются бедняги, пытаясь уловить смысл термина бифилярная обмотка двигателя. Нитей бывает больше, выделяют катушки индуктивности:

  • трифилярные;
  • тетрафилярные;
  • пентафилярные.

Обычные катушки индуктивности называют унифилярными – нить проволоки одна. Сразу возникает справедливый вопрос – зачем конструкции? Изобретатель катушку индуктивности неизвестен. Ответы дают, виноват Тесла… Далеко от истины.

Дроссель

Один знаток Майл.ру – не исключено, админ ресурса – ответил: отцом катушек индуктивности является Майкл Фарадей, якобы, открыл магнитную индукцию (согласно англоязычной страничке Википедии). Напрашивается вывод, историковед не владеет вопросом. Главная причина критики «Ответов» Майл — некомпетентность. Фарадей открыл индукцию, применив тороидальный трансформатор с двумя изолированными обмотками. Намного сложнее конструкция, нежели катушка, явление заключалось сопровождалось выходом скачка тока при изменении магнитного поля сердечника.

Произошло описанное в 1831 году, первый электромагнит сконструирован малоизвестным в России Уильямом Стердженом. Знаете, как выглядел прибор? Правильно – катушка индуктивности из 18 витков оголенной медной проволоки с хорошим лакированным ферромагнитным сердечником формы лошадиной подковы. При пропускании по обмотке тока железо в округе притягивалось устройством. Годом выхода первого электромагнита в свет историки считают 1824. Раньше, нежели Фарадей начал эксперименты.

Наставник Хампфри Дэви счел работу плагиатом. Ученик не решался продолжить, конфликтовать открыто. Получилось, в 1829 году безвременно Хампфри Дэви ушел из жизни, благодаря чему Майкл Фарадей возобновил работу. Не потому считаем неверными скудные сведения рунета по рассматриваемому вопросу. Вторая причина кроется в гальванометрах: первый сконструирован 16 сентября 1820 года Иоганном Швейггером. Годом позже великий Ампер усовершенствовал прибор, угадайте, что входило в состав новинки? Правильно – катушка индуктивности, составленная несколькими витками проволоки.

В 1826 году Феликс Савари разряжал лейденскую банку через несколько витков проволоки, обмотанной вокруг стальной иглы. Наблюдая остаточную намагниченность металла. Фактически Савари создал первый колебательный контур, правильно сделав выводы о происходящих процессах.

Майкл Фарадей бессилен стать изобретателем индуктивности. Скорее ученый работал в этом направлении, вел некоторые исследования, получил новый закон касательно электромагнетизма. В результате вопрос об изобретателе катушки индуктивности оставляем открытым. Рискнем предположить, у субъекта темы два отца:

  1. Лаплас на основе доклада Эрстеда высказал предположение: действие тока на магнитную стрелку можно усилить, изогнув провод.
  2. Швейггер реализовал услышанное на практике, создав первый в мире гальванометр, использовав доклады Ампера о зависимости угла отклонения стрелки от силы тока.

Конструкция катушки индуктивности

Вокруг прямолинейного проводника с постоянным током создается круговое магнитное поле. Линии напряженности напоминают спираль. Некто догадался свернуть провод кольцом, чтобы вклад элементарных сегментов сложился в центре. В результате внутри конструкции магнитное поле намного выше, нежели снаружи. Линии визуально наблюдаем на железных опилках. На Ютуб множество роликов, где через индуктивность пропускают ток, демонстрируя упорядоченную ориентацию металлической пыли в момент замыкания контактов. Конструкция способна запасать впрок магнитное поле подобно конденсатору, накапливающему заряд. Катушками называют только индуктивности, содержащие намотку лакированного провода. В микрополосковой технологии напыляемые для запасания магнитного поля элементы логично именовать индуктивностями.

Если в катушке, совсем как в той, что используют швеи, несколько витков провода расположить один за другим бок о бок так, чтобы ось была общей, линии напряженности магнитного поля суммируются. Простейшая индуктивность, способная накапливать энергию магнитного поля. При резком пропадании напряжения образуется явление обратной-ЭДС широко известное технике. Выступает причиной искрения коллекторных двигателей. Используется лакированный (с лаковой изоляцией) медный провод нужного сечения. Количество витков, форма сердечника определяются предварительно расчетами или по имеющемуся образцу.

Бифилярные катушки сегодня широко используются. Что касается обратной ЭДС, служит причиной розжига разрядных ламп (дневного света). Вернемся к конструкции. В первом электромагните проволока оголенная, современные катушки индуктивности наматываются лакированным. Тонкая изоляция при необходимости может быть легко снята (например, токсичной муравьиной кислотой), в исходном состоянии надежно защищает конструкцию против короткого замыкания.

Внутри катушки находится сердечник из ферромагнитного материала. Форма не важна, сечение лучше брать круглым. На высоких частотах магнитный поток (см. ) выходит на поверхность сердечника, смысл применения ферромагнитных сплавов пропадает, иногда используется латунь (даже композитные материалы, диэлектрики). Снижает индуктивность, на высоких частотах запасаемая за период мощность невелика. Трюк проходит. У многих возникает вопрос – зачем нужен сердечник?

Сердечник катушки индуктивности выступает опорой, долговечным каркасом, усиливая магнитное поле. Индукция связана с напряженностью поля через постоянную магнитной проницаемости среды. У ферромагнитных материалов параметр поистине велик. В тысячи раз больше, нежели воздуха, большинства металлов. С ростом частоты необходимость в сердечнике снижается, возникают некоторые негативные эффекты, два из которых особенно важны:

Линии магнитного поля, сформированные опилками

  1. Переменное магнитное поле наводит вихревые токи, посредством которых функционируют индукционные плитки. Результат представите сами: какой нагрев сердечника вызовет. Сердечники силовых трансформаторов собираются из специальной электротехнической стали с высоким сопротивлением, разбиваются тонкими листами, изолированными взаимно слоем лака. Шихтование позволит сильно снизить влияние вихревых токов.
  2. Второй эффект называется перемагничиванием. Отнимает энергию поля, вызывает нагрев материала. Явление характерно для ферромагнитных материалов, устраняется использованием латуни.

В микрополосковой технологии предусмотрено исполнение индуктивностей в виде плоских спиралей: проводящий материал через трафарет напыляется на подложку (возможный метод). Напоминает конструкцию Николы Тесла. Номинал катушка индуктивности имеет весьма малый, иного не надо на частотах СВЧ. Расчет ведется по специальным справочникам, хотя пользуются преимущественно инженеры-конструкторы.

Для намотки индуктивности изготавливают специальные приспособления, напоминающие катушку спиннинга. На ось одевается сердечник с ограничителем по бокам, вращая ручку, мастер внимательно считает количество оборотов, отмеряет нужную длину. Медленно, по способу челнока рука двигается влево-вправо, витки ровно ложатся последовательно.

Зачем нужны бифилярные катушки индуктивности

Иногда катушка наматывается в две и более проволочных нитей. Тесла конструкцию применял для увеличения емкостных качеств. В результате становилось возможным экономить материалы – говорили выше. Что касается состояния на современном этапе развития технологий, причиной создания бифилярных катушек может быть следующее:

Параметры катушек индуктивности

Главной характеристикой катушек называют индуктивность. Физическая величина, в СИ измеряемая Гн (генри), характеризующая величину мнимой составляющей сопротивления конструкции. Параметр показывает, как много магнитного поля запасет катушка. Для простоты энергию за период считают пропорциональной произведению LI2, где L — индуктивность, I – протекающий в системе ток.

Формула расчета индуктивности

Теоретический расчет главного параметра катушек сильно определен конструкцией. Выпускаются специальные методические пособия, формула (см. рисунок: S – площадь сечения намотки, l – длина катушки, N – количество витков проволоки, в формуле — магнитная постоянная и магнитная проницаемость сердечника), приведенная на картинке, частный вариант. Когда индуктивность напоминает катушку. Имеются специальные программы для персонального компьютера, упрощающие процесс.

К вторичным параметрам катушек индуктивности относят:

  • Добротность. Характеризует потери на активном сопротивлении.
  • Собственная индуктивность (см. выше).
  • Температурная стабильность параметров.
Понравилась статья? Поделиться с друзьями: