Критерий Пирсона. Проверка гипотезы о нормальном распределении. Как рассчитать коэффициент корреляции в Excel

Лабораторная работа №6. Проверка гипотезы о нормальном распределении выборки по критерию Пирсона.

Лабораторная работа выполняется в Excel 2007.

Цель работы – дать навыки первичной обработки данных, построении гистограмм, подборе подходящего закона распределения и вычислении его параметров, проверка согласия между эмпирическим и гипотетическим законом распределения по критерию хи-квадрат Пирсона средствами Excel.

1. Формирование выборки нормально распределенных случайных чисел с заданными значениями математического ожидания и среднего квадратического отклонения.

Данные → Анализ данных → Генерация случайных чисел → ОК .

Рис. 1. Диалоговое окно Анализ данных

В появившемся окне Генерация случайных чисел ввести:

Число переменных: 1 ;

Число случайных чисел: 100 ;

Распределение: Нормальное .

Параметры:

Среднее = 15 (математическое ожидание);

Стандартное отклонение = 2 (среднее квадратическое отклонение);

Случайное рассеивание: не заполнять (или заполнить по указанию преподавателя );

Выходной интервал: адрес первой ячейки столбца массива случайных чисел - $ A $1 . ОК .

Рис. 2. Диалоговое окно Генерация случайных чисел с заполненными полями ввода

В результате выполнения операции Генерация случайных чисел появится столбец $ A $1: $A$100 , содержащий 100 случайных чисел.

Рис. 3. Фрагмент листа Excel первых нескольких случайных чисел $A$1: $A$100.

2. Определение параметров выборки, описательные статистики

В главном меню Excel выбрать: Данные → Анализ данных → Описательная статистика → ОК .

В появившемся окне Описательная статистика ввести:

Входной интервал – 100 случайных чисел в ячейках $ A $1: $ A $100 ;

Группирование - по столбцам;

Выходной интервал – адрес ячейки, с которой начинается таблица Описательная статистика - $ C $1 ;

Итоговая статистика – поставить галочку. ОК.

Рис. 4. Диалоговое окно Описательная статистика с заполненными полями ввода.

На листе Excel появится таблица – Столбец 1

Рис. 5. Таблица Столбец 1 с данными процедуры Описательная статистика .

Таблица содержит описательные статистики, в частности:

Среднее – оценка математического ожидания;

Стандартное отклонение – оценка среднего квадратического отклонения;

Эксцесс и Асимметричность – оценки эксцесса и асимметрии.

Приблизительное равенство нулю оценок эксцесса и асимметрии, и приблизительное равенство оценки среднего оценке медианы дает предварительное основание выбрать в качестве основной гипотезы H 0 распределения элементов генеральной совокупности - нормальный закон.

Интервал – размах выборки;

Минимум – минимальное значение случайной величины в выборке;

Максимум максимальное значение случайной величины в выборке.

В ячейке F 15 - длина частичного интервала h , вычисленная следующим образом:

Число интервалов группировки k в Excel вычисляется автоматически по формуле

где, скобки означают – округление до целой части числа в меньшую сторону.

В рассматриваемом варианте n = 100 , следовательно, k = 11 . Действительно:

Эта формула занесена в ячейку F 15: =($D$13-$D$12)/10

Результаты процедуры Описательная статистика потребуются в дальнейшем при построении теоретического закона распределения.

ЛАБОРАТОРНАЯ РАБОТА

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В EXCEL

1.1 Корреляционный анализ в MS Excel

Корреляционный анализ состоит в определении степени связи между двумя слу­чайными величинами X и Y. В качестве меры такой связи используется коэффи­циент корреляции. Коэффициент корреляции оценивается по выборке объема п связанных пар наблюдений (x i , y i) из совместной генеральной совокупности X и Y. Для оценки степени взаимосвязи величин X и Y, измеренных в количественных шкалах, используетсякоэффи­циент линейной корреляции (коэффициент Пирсона), предполагающий, что выборки X и Y распределены по нормальному закону.

Коэффициент корреляции изменяется от -1 (строгая обратная линейная зависимость) до 1 (строгая прямая пропорцио­нальная зависимость). При значении 0 линейной зависимости между двумя вы­борками нет.

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

Существует несколько типов коэффициентов корреляции, что зависит от переменных Х иY, которые могут быть измерены в разных шкалах. Именно этот факт и определяет выбор соответствующего коэффициента корреляции (см. табл. 13):

В MS Excel для вычисления парных коэффициентов линейной корреляции используется специальная функция КОРРЕЛ (массив1; массив2),

испытуемых

где массив1 – ссылка на диапазон ячеек первой выборки (X);

Пример 1: 10 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли вза­имосвязь между временем решения этих задач? Переменная X - обозначает среднее время реше­ния наглядно-образных, а переменная Y- сред­нее время решения вербальных заданий тестов.

Решение: Для выявления степени взаимосвязи, прежде всего, необходимо ввести данные в таблицу MS Excel (см. табл., рис. 1). Затем вычисляется значение коэффициента корреляции. Для этого курсор установите в ячейку C1. На панели инструментов нажмите кнопку Вставка функции (fx).

В появившемся диалоговом окне Мастер функций выберите ка­тегорию Статистические и функциюКОРРЕЛ , после чего нажмите кнопку ОК. Указателем мыши введите диапазон дан­ных выборки Х в поле массив1 (А1:А10). В поле массив2 введите диапазон данных выборки У (В1:В10). Нажмите кнопку ОК. В ячейке С1 появится значение коэффициента кор­реляции - 0,54119. Далее необходимо посмотреть на абсолютное число коэффициента корреляции и определить тип связи (тесная, слабая, средняя и т.д.)

Рис. 1. Результаты вычисления коэффициента корреляции

Таким образом, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.

Задание 1. Имеются данные по 20 сельскохозяйственным хозяйствам. Найтикоэффициент корреляции между величинами урожайности зерновых культур и качеством земли и оценить его значимость. Данные приведены в таблице.

Таблица 2. Зависимость урожайности зерновых культур от качества земли

Номер хозяйства

Качество земли, балл

Урожайность, ц/га


Задание 2. Определите, имеется ли связь между временем работы спортивного тренажера для фитнеса (тыс. часов) и стоимость его ремонта (тыс. руб.):

Время работа тренажера (тыс. часов)

Стоимость ремонта (тыс. руб.)

1.2 Множественная корреляция в MS Excel

При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять для нескольких выборок, для удобства полу­чаемые коэффициенты сводят в таблицы, называемые корреляционными матрицами .

Корреляционная матрица - это квадратная таблица, в кото­рой на пересечении соответствующих строк и столбцов находятся коэффициент корреляции между соответствующими параметрами.

В MS Excel для вычисления корреляционных матриц используется процедура Кор­реляция из пакета Анализ данных. Процедура позволяет получить корреляционную матрицу, содержащую коэффициенты корреляции между различными параметрами.

Для реализации процедуры необходимо:

1. выполнить команду Сервис - Анализ данных ;

2. в появившемся списке Инструменты анализа выбрать строку Корреляция и нажать кнопку ОК ;

3. в появившемся диалоговом окне указать Входной интервал , то есть ввести ссыл­ку на ячейки, содержащие анализируемые данные. Входной интервал должен содержать не менее двух столбцов.

4. в разделе Группировка переключатель установить в соответствии с введенными данными (по столбцам или по строкам);

5. указать выходной интервал , то есть ввести ссылку на ячейку, начиная с которой будут показаны результаты анализа. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные. Нажать кнопку ОК .

В выходной диапазон будет выведена корреляционная мат­рица, в которой на пересечении каждых строки и столбца находится коэффи­циент корреляции между соответствующими параметрами. Ячейки выходного диапазона, имеющие совпадающие координаты строк и столбцов, содержат зна­чение 1, так как каждый столбец во входном диапазоне полностью коррелирует сам с собой

Пример 2. Имеются ежемесячные данные наблюдений за состоянием погоды и посещаемостью музеев и парков (см. табл. 3). Необходимо определить, существует ли взаимосвязь между состоянием погоды и посещаемостью музеев и парков.

Таблица 3. Результаты наблюдений

Число ясных дней

Количество посетителей музея

Количество посетителей парка

Решение . Для выполнения корреляционного анализа введите в диапазон A1:G3 исходные данные (рис. 2). Затем в меню Сервис выберите пункт Анализ данных и далее укажите строку Корреляция . В появившемся диалоговом окне укажите Входной интервал (А2:С7). Укажите, что данные рассматриваются по столбцам. Укажите выходной диапазон (Е1) и нажмите кнопку ОК .

На рис. 33 видно, что корреляция между со­стоянием погоды и посещаемостью музея равна -0,92, а между состоянием по­годы и посещаемостью парка - 0,97, между посещаемостью парка и музея - 0,92.

Таким образом, в результате анализа выявлены зависимости: сильная степень об­ратной линейной взаимосвязи между посещаемостью музея и количеством сол­нечных дней и практически линейная (очень сильная прямая) связь между посещаемостью парка и состоянием погоды. Между посещаемостью музея и парка имеется сильная обратная взаимосвязь.

Рис. 2. Результаты вычисления корреляционной матрицы из примера 2

Задание 3 . 10 менеджеров оценивались по методике экспертных оценок психологических характеристик личности руководителя. 15 экспертов производили оценку каждой психологической характеристики по пятибальной системе (см. табл. 4). Психолога интересует вопрос, в какой взаимосвязи находятся эти характеристики руководителя между собой.

Таблица 4. Результаты исследования

Испытуемые п/п

тактичность

требовательность

критичность

Рассмотрим применение в MS EXCEL критерия хи-квадрат Пирсона для проверки простых гипотез.

После получения экспериментальных данных (т.е. когда имеется некая выборка ) обычно производится выбор закона распределения, наиболее хорошо описывающего случайную величину, представленную данной выборкой . Проверка того, насколько хорошо экспериментальные данные описываются выбранным теоретическим законом распределения, осуществляется с использованием критериев согласия . Нулевой гипотезой , обычно выступает гипотеза о равенстве распределения случайной величины некоторому теоретическому закону.

Сначала рассмотрим применение критерия согласия Пирсона Х 2 (хи-квадрат) в отношении простых гипотез (параметры теоретического распределения считаются известными). Затем - , когда задается только форма распределения, а параметры этого распределения и значение статистики Х 2 оцениваются/рассчитываются на основании одной и той же выборки .

Примечание : В англоязычной литературе процедура применения критерия согласия Пирсона Х 2 имеет название The chi-square goodness of fit test .

Напомним процедуру проверки гипотез:

  • на основе выборки вычисляется значение статистики , которая соответствует типу проверяемой гипотезы. Например, для используется t -статистика (если не известно);
  • при условии истинности нулевой гипотезы , распределение этой статистики известно и может быть использовано для вычисления вероятностей (например, для t -статистики это );
  • вычисленное на основе выборки значение статистики сравнивается с критическим для заданного значением ();
  • нулевую гипотезу отвергают, если значение статистики больше критического (или если вероятность получить это значение статистики () меньше уровня значимости , что является эквивалентным подходом).

Проведем проверку гипотез для различных распределений.

Дискретный случай

Предположим, что два человека играют в кости. У каждого игрока свой набор костей. Игроки по очереди кидают сразу по 3 кубика. Каждый раунд выигрывает тот, кто выкинет за раз больше шестерок. Результаты записываются. У одного из игроков после 100 раундов возникло подозрение, что кости его соперника – несимметричные, т.к. тот часто выигрывает (часто выбрасывает шестерки). Он решил проанализировать насколько вероятно такое количество исходов противника.

Примечание : Т.к. кубиков 3, то за раз можно выкинуть 0; 1; 2 или 3 шестерки, т.е. случайная величина может принимать 4 значения.

Из теории вероятности нам известно, что если кубики симметричные, то вероятность выпадения шестерок подчиняется . Поэтому, после 100 раундов частоты выпадения шестерок могут быть вычислены с помощью формулы
=БИНОМ.РАСП(A7;3;1/6;ЛОЖЬ)*100

В формуле предполагается, что в ячейке А7 содержится соответствующее количество выпавших шестерок в одном раунде.

Примечание : Расчеты приведены в файле примера на листе Дискретное .

Для сравнения наблюденных (Observed) и теоретических частот (Expected) удобно пользоваться .

При значительном отклонении наблюденных частот от теоретического распределения, нулевая гипотеза о распределении случайной величины по теоретическому закону, должна быть отклонена. Т.е., если игральные кости соперника несимметричны, то наблюденные частоты будут «существенно отличаться» от биномиального распределения .

В нашем случае на первый взгляд частоты достаточно близки и без вычислений сложно сделать однозначный вывод. Применим критерий согласия Пирсона Х 2 , чтобы вместо субъективного высказывания «существенно отличаться», которое можно сделать на основании сравнения гистограмм , использовать математически корректное утверждение.

Используем тот факт, что в силу закона больших чисел наблюденная частота (Observed) с ростом объема выборки n стремится к вероятности, соответствующей теоретическому закону (в нашем случае, биномиальному закону ). В нашем случае объем выборки n равен 100.

Введем тестовую статистику , которую обозначим Х 2:

где O l – это наблюденная частота событий, что случайная величина приняла определенные допустимые значения, E l – это соответствующая теоретическая частота (Expected). L – это количество значений, которые может принимать случайная величина (в нашем случае равна 4).

Как видно из формулы, эта статистика является мерой близости наблюденных частот к теоретическим, т.е. с помощью нее можно оценить «расстояния» между этими частотами. Если сумма этих «расстояний» «слишком велика», то эти частоты «существенно отличаются». Понятно, что если наш кубик симметричный (т.е. применим биномиальный закон ), то вероятность того, что сумма «расстояний» будет «слишком велика» будет малой. Чтобы вычислить эту вероятность нам необходимо знать распределение статистики Х 2 (статистика Х 2 вычислена на основе случайной выборки , поэтому она является случайной величиной и, следовательно, имеет свое распределение вероятностей ).

Из многомерного аналога интегральной теоремы Муавра-Лапласа известно, что при n->∞ наша случайная величина Х 2 асимптотически с L - 1 степенями свободы.

Итак, если вычисленное значение статистики Х 2 (сумма «расстояний» между частотами) будет больше чем некое предельное значение, то у нас будет основание отвергнуть нулевую гипотезу . Как и при проверке параметрических гипотез , предельное значение задается через уровень значимости . Если вероятность того, что статистика Х 2 примет значение меньше или равное вычисленному (p -значение ), будет меньше уровня значимости , то нулевую гипотезу можно отвергнуть.

В нашем случае, значение статистики равно 22,757. Вероятность, что статистика Х 2 примет значение больше или равное 22,757 очень мала (0,000045) и может быть вычислена по формулам
=ХИ2.РАСП.ПХ(22,757;4-1) или
=ХИ2.ТЕСТ(Observed; Expected)

Примечание : Функция ХИ2.ТЕСТ() специально создана для проверки связи между двумя категориальными переменными (см. ).

Вероятность 0,000045 существенно меньше обычного уровня значимости 0,05. Так что, у игрока есть все основания подозревать своего противника в нечестности (нулевая гипотеза о его честности отвергается).

При применении критерия Х 2 необходимо следить за тем, чтобы объем выборки n был достаточно большой, иначе будет неправомочна аппроксимация распределения статистики Х 2 . Обычно считается, что для этого достаточно, чтобы наблюденные частоты (Observed) были больше 5. Если это не так, то малые частоты объединяются в одно или присоединяются к другим частотам, причем объединенному значению приписывается суммарная вероятность и, соответственно, уменьшается число степеней свободы Х 2 -распределения .

Для того чтобы улучшить качество применения критерия Х 2 (), необходимо уменьшать интервалы разбиения (увеличивать L и, соответственно, увеличивать количество степеней свободы ), однако этому препятствует ограничение на количество попавших в каждый интервал наблюдений (д.б.>5).

Непрерывный случай

Критерий согласия Пирсона Х 2 можно применить так же в случае .

Рассмотрим некую выборку , состоящую из 200 значений. Нулевая гипотеза утверждает, что выборка сделана из .

Примечание : Cлучайные величины в файле примера на листе Непрерывное сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) . Поэтому, новые значения выборки генерируются при каждом пересчете листа.

Соответствует ли имеющийся набор данных можно визуально оценить .

Как видно из диаграммы, значения выборки довольно хорошо укладываются вдоль прямой. Однако, как и в для проверки гипотезы применим Критерий согласия Пирсона Х 2 .

Для этого разобьем диапазон изменения случайной величины на интервалы с шагом 0,5 . Вычислим наблюденные и теоретические частоты. Наблюденные частоты вычислим с помощью функции ЧАСТОТА() , а теоретические – с помощью функции НОРМ.СТ.РАСП() .

Примечание : Как и для дискретного случая , необходимо следить, чтобы выборка была достаточно большая, а в интервал попадало >5 значений.

Вычислим статистику Х 2 и сравним ее с критическим значением для заданного уровня значимости (0,05). Т.к. мы разбили диапазон изменения случайной величины на 10 интервалов, то число степеней свободы равно 9. Критическое значение можно вычислить по формуле
=ХИ2.ОБР.ПХ(0,05;9) или
=ХИ2.ОБР(1-0,05;9)

На диаграмме выше видно, что значение статистики равно 8,19, что существенно выше критического значения нулевая гипотеза не отвергается.

Ниже приведена , на которой выборка приняла маловероятное значение и на основании критерия согласия Пирсона Х 2 нулевая гипотеза была отклонена (не смотря на то, что случайные значения были сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) , обеспечивающей выборку из стандартного нормального распределения ).

Нулевая гипотеза отклонена, хотя визуально данные располагаются довольно близко к прямой линии.

В качестве примера также возьмем выборку из U(-3; 3). В этом случае, даже из графика очевидно, что нулевая гипотеза должна быть отклонена.

Критерий согласия Пирсона Х 2 также подтверждает, что нулевая гипотеза должна быть отклонена.

Функция ПИРСОН (вводить следует PEARSON на английском) предназначена для вычисления коэффициента корреляции Пирсона r . Данную функцию используют в работе в том случае, когда необходимо отразить степень линейной зависимости между двумя массивами данных. В Excel имеется несколько функций с помощью которых можно получить такой же результат, однако универсальность и простота функции Пирсон делают выбор в ее пользу.

Как работает функция ПИРСОН в Excel?

Рассмотрим пример расчета корреляции Пирсона между двумя массивами данных при помощи функции PEARSON в MS EXCEL. Первый массив представляет собой значения температур, второй давление в определенный летний период. Пример заполненной таблицы изображен на рисунке:

Задача следующая: необходимо определить взаимосвязь между температурой и давлением за июнь месяц.

Пример решения с функцией ПИРСОН при анализе в Excel


Данный показатель -0,14 по Пирсону, который вернула функция, говорит об неблагоприятной зависимости температуры и давления в раннее время суток.



Функция ПИРСОН пошаговая инструкция

Коэффициент корреляции является самым удобным показателем сопряженности количественных признаков.

Задача: Определить линейный коэффициент корреляции Пирсона.

Пример решения:

Таким образом, по результату вычисления статистическим выводом эксперимента выявлена отрицательная зависимость между возрастом и количеством выкуренных сигарет в день.

Корреляционный анализ по Пирсону в Excel

Задача: школьникам были даны тесты на наглядное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Психолога интересует вопрос: существует ли взаимосвязь между временем решения этих задач?

Пример решения: представим исходные данные в виде таблицы:


Интерпретация результата вычисления по Пирсону

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 – являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 – следовательно, произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости.

Оценка соответствия нормальному распределению

Этот метод используется для проверки согласия опытного и теоретического распределения, если число испытаний больше 100.

Суть метода заключается в определении критерия Пирсона (c 2 ) с последующим сравнением полученного значения с теоретическим.

Порядок определения критерия Пирсона:

Определяют среднее значение и среднее квадратическое отклонение. Для расчета критерия Пирсона составляют таблицу (таблице 11).

2. Определяют отношение

3. С помощью специальной таблицы (таблица 12) определяют частоту распределения Y 0 .


Таблица 11


Таблица 12

t 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 0,3989 0,2420 0,0544 0,0044

4. Рассчитывают теоретическое значение частот

(40)

где n - общее число испытаний;

k - классовый интервал;

S - среднее квадратическое отклонение.

5. Определяют разность между фактической и теоретической частотой распределения

y i – U т (41)

рассчитывают

6. Находят критерий Пирсона

(43)

7. Определяют число степеней свободы

С = m-3 (44)

где C - число степеней свободы;

m - число классов или строк.

8. Задаваясь доверительной вероятностью q , определяют теоретическое значение критерия Пирсона.

9. Сравнивают c ф 2 с c т 2. Если c 2 ф < c 2 т , то для принятой доверительной вероятности гипотеза о согласии опытного и теоретического распределения принимается, в противном случае отвергается.

В программе Excel проверка осуществляется с помощью функции ХИ2ТЕСТ (рис. 22). ХИ2ТЕСТ возвращает значение для распределения χ 2 Критерий используется для определения того, подтверждается ли гипотеза экспериментом.

Рис. 22. Функция ХИ2ТЕСТ

ХИ2ТЕСТ (фактический_интервал ;ожидаемый_интервал )

Фактический_интервал - это интервал данных, которые содержат наблюдения, подлежащие сравнению с ожидаемыми значениями.

Ожидаемый_интервал - это интервал данных, который содержит отношение произведений итогов по строкам и столбцам к общему итогу.

Если фактический_интервал и ожидаемый_интервал имеют различное количество точек данных, то функция ХИ2ТЕСТ возвращает значение ошибки #Н/Д.

Критерий χ 2 сначала вычисляет χ 2 статистику, используя формулу:

(45)

где A ij - фактическая частота в i -ой строке, j -ом столбце

E ij - ожидаемая частота в i-ой строке, j-ом столбце

r - число строк

c - число столбцов

Значение критерия χ 2 является индикатором независимости. Как видно из формулы, критерий χ 2 всегда положительный или равен 0, а последнее возможно только, если A ij = E ij при любых значениях i,j .

ХИ2ТЕСТ возвращает вероятность того, что при условии независимости может быть получено значение χ 2 статистики по крайней мере такое же высокое, как полученное из приведенной выше формулы. Чтобы вычислить эту вероятность, ХИ2ТЕСТ использует распределение χ 2 с соответствующим числом степеней свободы (df ). Если r > 1, а c > 1, то df = (r - 1)(c - 1). Если r = 1, а c > 1, то df = c - 1 или если r > 1, а c = 1, то df = r - 1. Равенство, где r = c= 1, не позволительно, поэтому появится сообщение об ошибке #Н/Д.

Функцию ХИ2ТЕСТ можно использовать в тех случаях, когда гипотетическое распределение задано полностью, то есть заданы не только вид гипотетического закона распределения, но и все параметры этого закона. Только в этом случае функция правильно выдает число степеней свободы.

ХИ2РАСП (x;степени_свободы) (рис. 23) возвращает одностороннюю вероятность распределения хи-квадрат. Распределение χ 2 связано с критерием χ 2 . Критерий χ 2 используется для сравнения предполагаемых и наблюдаемых значений. Например, в генетическом эксперименте выдвигается гипотеза, что следующее поколение растений будет обладать определенной окраской. Сравнивая наблюдаемые результаты с предполагаемыми, можно определить, была ли верна исходная гипотеза.

х – значение, для которого требуется вычислить распределение.

Степени_свободы – число степеней свободы.

Рис. 23. Функция ХИ2РАСП

Если какой-либо из аргументов не является числом, функция ХИ2РАСП возвращает значение ошибки #ЗНАЧ!.

Если x отрицательное значение, функция ХИ2РАСП

Если степени_свободы < 1 или степени_свободы > 10^10, функция ХИ2РАСП возвращает значение ошибки #ЧИСЛО!.

ХИ2РАСП вычисляется как ХИ2РАСП = P(X> x), где x - χ 2 случайная величина.

ХИ2ОБР (вероятность;степени_свободы) (рис. 24) возвращает значение, обратное односторонней вероятности распределения хи-квадрат. Если вероятность = ХИ2РАСП (x;...), то ХИ2ОБР (вероятность;...) = x. Данная функция позволяет сравнить наблюдаемые результаты с ожидаемыми, чтобы определить, была ли верна исходная гипотеза.

Вероятность - вероятность, связанная с распределением c2 (хи-квадрат).

Степени_свободы - число степеней свободы.

Если какой-либо из аргументов не является числом, функция ХИ2ОБР возвращает значение ошибки #ЗНАЧ!

Рис. 24. Функция ХИ2ОБР

Если вероятность < 0 или вероятность > 1, функция ХИ2ОБР возвращает значение ошибки #ЧИСЛО!

Если значение аргумента «степени_свободы» не является целым числом, оно усекается.

Если степени_свободы < 1 или степени_свободы ≥ 10^10, ХИ2ОБР возвращает значение ошибки #ЧИСЛО!

Если задано значение вероятности, то функция ХИ2ОБР ищет значение x, для которого функция ХИ2РАСП (x; степень_свободы) = вероятность. Однако точность функции ХИ2ОБР зависит от точности ХИ2РАСП . В функции ХИ2ОБР для поиска применяется метод итераций. Если поиск не закончился после 100 итераций, функция возвращает сообщение об ошибке #Н/Д.

Понравилась статья? Поделиться с друзьями: