Поиск неисправных элементов без схем. Определение неисправностей в схемах компараторов. Основные концепции поиска неисправностей

Первым шагом при определении неисправностей в схемах компараторов является проверка соответствия изменения выходного напряжения требуемому по

Детектор пересечения нуля для преобразования синусоидального сигнала в прямоугольный

техническим условиям изменению входного напряжения. При отсутствии такого соответствия необходимо настроить рабочие параметры схемы согласно ее описанию.

Если проблема не решается при помощи подстроечных процедур (либо они не предусмотрены в данной схеме), нужно с помощью измерительного прибора или осциллографа проследить прохождение сигнала от входа (обычно задается определенный уровень напряжения) до выхода (наблюдаются, как правило, либо скачкообразные изменения уровня выходного напряжения, либо сигнал в виде меандра или импульса прямоугольной формы). Произведите измерения напряжений и/или сопротивЛений в каждой точке исследуемой схемы.

Если в схеме на рис. 6.37 состояние выхода не изменяется при периодическом освещении фотодиода Dl и его затемнении, необходимо проверить наличие изменений напряжения на выводе 2 ИС LM111. Хотя они будут незначительными (фототок Dl равен примерно 1 мкА), их все же можно зафиксировать. При отсутствии изменений напряжения на выводе 2 ИС LM111 причина неисправности зак- тючается в фотодиоде Dl. Если же изменения зафиксированы на выводе 2, но отсутствуют на выводе 7, несправна микросхема LM111.

В схемах на рис. 6.39 и 6.40 необходимо проверить наличие скачкообразного изменения выходного напряжения от нулевого уровня до приблизительно 15 В при изменении входного напряжения от 5 до 10 В. Схемы срабатывают при противоположных направлениях изменения входного напряжения (схема на рис. 6.39 – инвертирующая, а на рис. 6.40 – неинвертирующая), что и показано стрелками на петлях гистерезиса. Если на выходе ИС не наблюдается изменений при заданных изменениях входного сигнала, проблема связана с ИС LM139 (естественно, если не считать случая, когда схема подключена неверно и поэтому не дает ожидаемого результата).

Если в схеме на рис. 6.41 лампа L1 остается постоянно включенной или выключенной при значениях входного напряжения U BX выше и ниже пороговых уровней U A и Ug, необходимо проверить наличие изменений на базе транзистора Q1. Если они наблюдаются, но состояние лампы не меняется, неисправность, скорее всего, связана с транзистором Q1.

Например, при снижении напряжения на базе Q1 до нуля лампа должна погаснуть, и наоборот. Если же она постоянно выключена, проблема может быть связана с исправностью самой лампы (хотя это первое, что необходимо проверить). Следует помнить, что значение напряжения, при котором происходит включение лампы, задается резисторами Rl, R2 и R3. При условии, что V cc равно 10 В, а сопротивления Rl, R2 и R3 равны между собой, лампа L1 выключится, если U BX будет выше 6,6 В или ниже 3,3 В. Она остается включенной, когда U BX больше 3,3 В, но меньше 6,6 В.

В схеме на рис. 6.42 в случае отсутствия на выходе меандра при синусоидальном входном сигнале следует предположить неисправность ИС LMl39 (при условии правильного подключения ИС и правильном выборе значений сопротивлений). Еще одной причиной может стать большой ток утечки (пробой) диода Dl, при котором входной сигнал не поступает на LM139. Уровень напряжения порядка 700 мВ в точке соединения резисторов Rl и R2 указывает на то, что, скорее всего, диод Dl исправен.

Надо помнить, что нулевой уровень срабатывания устанавливается значениями сопротивлений R4 и R5. При Rl + R2 = R5 напряжение VI = V2 в том случае, когда U BX = 0. Выходной сигнал будет скачкообразно переключаться из одного состояния в другое в те моменты, когда входной синусоидальный сигнал пересекает нулевой уровень. Для указанных на схеме номиналов резисторов напряжение на обоих входах LM139 при отсутствии входного сигнала равно примерно 1,5 В.

Практические методы поиска и устранения неисправностей в РЭА, приведены без привязки к конкретному оборудованию. Под причинами неработоспособности подразумеваются ошибки разработчиков, монтажников и т.д. Методы являются взаимосвязанными между собой и почти всегда необходимо их комплексное применение. Порой поиск очень тесно связан с устранением.

Основные концепции поиска неисправностей.

1. Действие не должно наносить вреда исследуемому устройству.

2. Действие должно приводить к прогнозируемому результату:

Выдвижение гипотезы о исправности или неисправности блока, элемента.

Подтверждение или опровержение выдвинутой гипотезы и как следствие локализации неисправности;

3. Необходимо различать вероятную неисправность и подтвержденную (обнаруженную неисправность). Выдвинутую гипотезу и подтвержденную гипотезу.

4. Необходимо адекватно оценивать ремонтопригодность изделия. Например, платы с элементами в корпусе BGA имеют очень низкую ремонтопригодность, вследствие невозможности или ограниченной возможности применения основных методов диагностики.

Схема описания методов: суть метода возможности метода, достоинства метода, недостатки метода, применение метода

1. Выяснения истории появления неисправности. Суть метода:

История появления неисправности много может рассказать о локализации неисправности, о том какой модуль является источником неработоспособности системы, а какие модули вышли из строя в следствие первоначальной неисправности, о типе неисправного элемента. Также знание истории появления неисправности позволяет сильно сократить время тестирование устройства, повысить качество ремонта, надежность исправленного оборудования. Выяснение истории позволяет выяснить не является ли неисправность результатом внешнего воздействия, как то климатические факторы (температура, влажность, запыленность и пр.), механические воздействия, загрязнение различными веществами и пр.

Примеры: если неисправность сначала проявлялась редко, а затем стала проявляться чаще в течение недели или нескольких лет), то скорее всего неисправен электролитические конденсатор, электронная лампа или силовой полупроводниковый элемент чрезмерный разогрев которого приводит к ухудшению характеристик.

Если неисправность появилась в результате механического воздействия, то вполне вероятно ее удастся выявить внешним осмотром блока.

Если неисправность появляется при незначительном механическом воздействии, то ее локализацию следует начать с использования механических воздействий на отдельные элементы.

Возможности метода: Метод позволяет очень оперативно выдвинуть гипотезу о локализации неисправности.


Достоинства метода: нет необходимости знать тонкости работы изделия; оперативность; не требуется наличие документации.

Недостатки метода: необходимость получить информацию о событиях растянутых во времени, при которых вы не присутствовали, неточность и недостоверность предоставляемой информации; в некоторых случаях велика вероятность ошибки, и неточность локализации; требует подтверждения и уточнения другими методами.

2.Внешний осмотр. Суть метода:

Внешним осмотром зачастую пренебрегают, но именно внешний осмотр позволяет локализовать порядка 50% неисправностей. Особенно в условиях мелкосерийного производства. Внешний осмотр в условиях производства и ремонта имеет свою специфику. В условиях производства особое внимание необходимо уделять качеству монтажа. Качество монтажа включает в себя: правильность размещение элементов на плате, качество паянных соединений, целостность печатных проводников, отсутствие инородных включений в материал платы, отсутствие замыканий (порой замыкания видны только под микроскопом или под определенным углом), целостность изоляции на проводах, надежное крепление контактов в разъемах. Иногда неудачный конструктив провоцирует замыкания или обрывы.

В условиях ремонта следует выяснить работало ли устройство когда-нибудь правильно. Если не работало (случай заводского дефекта), то следует проверить качество монтажа. Если же устройство работало нормально, но вышло из строя (случай собственно ремонта), то следует обратить внимание на следы тепловых повреждений электронных элементов, печатных проводников, проводов, разъемов и пр. Также при осмотре необходимо проверить целостность изоляции на проводах, трещины от времени, трещины в результате механического воздействие, особенно в местах где проводники работают на перегиб (например слайдеры и флипы мобильных телефонов). Особое внимание следует обратить на наличие загрязнений, пыли, вытекания электролита и запах. Наличие загрязнений может являться причиной не работоспособности РЭА или индикатором причины неисправности (например вытекание электролита).

Во всех случаях следует обратить внимание на любые механические повреждения корпуса, электронных элементов, плат, проводников, экранов и пр. пр.

Возможности метода:

Метод позволяет оперативно выявить неисправность и локализовать ее с точностью до элемента.

Достоинства метода: оперативность; точная локализация; требуется минимум оборудования; не требуется наличие документации (или наличие в минимальном количестве).

Недостатки метода: позволяет выявлять только неисправности имеющие проявление во внешнем виде элементов и деталей изделия; как правило требует разборки изделия, его частей и блоков.

2. Прозвонка. Суть метода:

Хотя данная методика имеет определенные недостатки она очень широко применяется в условиях мелкосерийного производства, в связи со своей простотой и эффективностью. Суть метода в том что при помощи омметра, в том или ином варианте, проверяется наличие необходимых связей и отсутствие лишних соединений (замыканий). На практике как правило достаточно проверить наличие необходимых связей и отсутствие замыканий по цепям питания. Отсутствие лишних связей также обеспечивается технологическими методами: маркировка и нумерация проводов в жгуте. Проверку на наличие лишних связей проводят в случае, когда есть подозрение на конкретные проводники, или подозрение на конструкторскую ошибку. Проводить проверку на наличие лишних связей чрезвычайно трудоемко. В связи с этим ее проводят как один из заключительных этапов, когда возможная область замыкания (например, нет сигнала в контрольной точке) локализована другими методами. Очень точно локализовать замыкание можно при помощи миллиомметра, с точностью до нескольких сантиметров.

Прозванивать лучше по таблице прозвонки, составленной на основании схемы электрической принципиальной. В этом случае исправляются возможные ошибки конструкторской документации и обеспечивается отсутствие ошибок в самой прозвонке.

Возможности метода: предупреждение неисправностей при производстве, контроль качества монтажа; проверка гипотезы о наличии неисправности в конкретной цепи.

Достоинства метода: простота; не требуется высокая квалификация исполнителя; высокая надежность; точная локализация неисправности.

Недостатки метода: высокая трудоемкость; ограничения при проверке плат со смонтированными элементами и подключенных жгутов, элементов в составе схемы; необходимость получить прямой доступ к контактам и элементам.

4. Снятие внешних рабочих характеристик. Суть метода.

При применении метода изделие включается в рабочих условиях или в условиях имитирующих рабочие. Проверяют характеристики сравнивая их с необходимыми, характеристиками исправного изделия или теоретически рассчитанными.

Возможности метода: позволяет достаточно оперативно диагностировать изделие; позволяет примерно оценить расположение неисправности, выявить функциональный блок работающий не правильно, в случае если изделие работает не правильно.

Достоинства метода: достаточная высокая оперативность; точность, адекватность; оценка изделия в целом.

Недостатки метода: необходимость специализированного оборудования или, как минимум, необходимость собрать схему подключения; необходимость стандартного оборудования; необходимость достаточно высокой квалификации исполнителя.

Применение метода:

Например: В телевизоре наличие изображения и его параметры, наличие звука и его параметры, энергопотребление, тепловыделение. В мобильном телефоне на тестере проверяют параметре RF тракта и по отклонению тех или иных параметров судят о исправности функциональных блоков. и т.д.

5. Наблюдение прохождения сигналов по каскадам.

Данный метод достаточно эффективен. К недостаткам следует отнести трудоемкость и неоднозначность результата.

Суть метода в том, что при помощи измерительной аппаратуры (осциллограф, тестер, анализатор спектра и др.) наблюдают правильность распространение сигналов по каскадам и цепям устройства. В цепях с обратными связями очень тяжело получить однозначные результаты, в схемах с последовательным расположением каскадов, пропадание правильного сигнала в одной из контрольных точек, говорит о возможной неисправности либо выхода, либо замыкания по входу, либо о неисправности связи.

В начале вычленяют встроенные источники сигналов (тактовые генераторы, датчики, модули питания и пр.) и последовательно находят узел в котором сигнал не соответствует правильному, описанному в документации или определенному при помощи моделирования. После проверки правильности функционирования встроенных источников сигналов на вход (или входы) подают испытательные сигналы и вновь контролируют правильность их распространения и преобразования. В ряде случаев для более эффективного применения метода требуется временная модификация схемы, т.е. если необходимо и возможно разрыв цепей обратной связи, разрыв цепей связи входа и выхода подозреваемых каскадов.

Возможности метода: оценка работоспособности изделия в целом; оценка работоспособности по каскадам и функциональным блоком.

Достоинства метода: высокая точность локализации неисправности; адекватность оценки состояния изделия в целом и по каскадам.

Недостатки метода: большая затрудненность оценки цепей с обратной связью; необходимость высокой квалификации исполнителя.

6. Сравнение с исправным блоком.

Сравнение с исправным блоком очень эффективный метод, потому что документированы не все характеристики изделия и сигналы не во всех узлах схемы. Суть метода заключается в том, что сравниваются различные характеристики заведомо исправного изделия и не исправного. Необходимо начать сравнение со сравнения внешнего вида, расположения элементов и конфигурации проводников на плате, отличие в монтаже говорит о том, что конструктив изделия был изменен и вполне вероятно допущена ошибка.

Возможности метода: оперативная диагностика в комбинации с другими методами.

Достоинства метода – оперативный поиск неисправностей, нет необходимости использовать документацию.

Недостатки метода: необходимость в наличии исправного изделия, необходимость в комбинации с другими методами

7. Моделирование.

Суть метода в том, что моделируется поведение исправного и неисправного устройства и на основе моделирования выдвигается гипотеза о возможной неисправности и затем гипотеза проверяется измерениями.

Метод применяется в комплексе с другими методами для повышения их эффективности.

При устранении периодический проявляющейся неисправности необходимо применять моделирование для выяснения мог ли заменяемый элемент провоцировать данную неисправность. Для моделирования необходимо представлять принципы работы оборудования и порой знать даже тонкости работы.

Возможности метода: оперативное и адекватное выдвижение гипотезы о локализации неисправности.

Достоинства метода: возможность работать с исчезающими неисправностями, адекватность оценки.

Недостатки метода: необходим высокая квалификация исполнителя, необходима комбинация с другими методами.

8. Разбиение на функциональные блоки.

Для предварительной локализации неисправности весьма эффективно разбить устройство на функциональные блоки. Надо учитывать, что зачастую конструкторское разбиение на блоки не является эффективным с точки зрения диагностики так как один конструктивный блок может содержать несколько функциональных блоков или один функциональный блок может быть конструктивно выполнен в виде нескольких модулей.

Возможности метода: позволяет оптимизировать применение других методов.

Достоинства метода: ускоряет процесс поиска неисправности

Недостатки метода: необходимо глубокое знание схемотехники изделия

9. Временная модификация схемы.

Частичное отключение цепей применяется в следующих случаях:

Когда цепи оказывают взаимное влияние и не ясно какая из них является причиной неисправности,

Когда неисправный блок может вывести из строя другие блоки,

Когда есть предположение, что не правильная/неисправная цепь блокирует работу системы

Следует с особой осторожностью отключать цепи защиты и цепи отрицательной обратной связи, т.к. их отключение может привести к значительному повреждению изделия. Отключение цепей обратной связи может приводить к полному нарушению режима работы каскадов и в результате не дать желаемого результата. Размыкание цепе ПОС в генераторах естественно приводит к срыву генерации но может позволить снять характеристики каскадов.

Возможности метода: локализация неисправности в цепях с ОС, точная локализация неисправности.

Достоинства метода - позволяет более точно локализовать неисправность.

Недостатки метода: необходимость модифицировать систему, необходимость знания тонкостей работы устройства.

10. Включение функционального блока вне системы, в условиях моделирующих систему. По сути метод является комбинацией методов: разбиение на функциональные блоки и снятие внешних рабочих характеристик.

При обнаружении неисправностей «подозреваемый» блок проверяется вне системы, что позволяет либо сузить круг поиска, если блок исправен, либо локализовать неисправность в пределах блока, если блок неисправен. При применении данного метода необходимо следить за корректностью создаваемых условий и применяемых тестов. Блоки могут быть плохо согласованный между собой на стадии разработки.

Возможности метода: проверка гипотезы о работоспособности той или иной части системы.

Достоинства метода: возможность испытания и ремонта функционального блока без наличия системы.

Недостатки метода: необходимость собирать схему проверки

11. Предварительная проверка функциональных блоков.

Очень широко применяется для профилактики неисправностей системы в условиях производства новых изделий. Функциональный блок предварительно проверяется вне системы, на специально изготовленном стенде (рабочем месте).

При ремонте, метод имеет смысл если для блока требуется не слишком много входных сигналов или иначе говоря не слишком трудно имитировать систему. Например, этот метод имеет смысл применять при ремонте блоков питания.

12. Метод замены.

Подозреваемый блок/компонент заменяется на заведомо исправный. И проверяется функционирование системый. По результатам проверки судят о правильности гипотезы в отношении неисправности. Возможны несколько случаев:

Когда поведение системы не изменилось, это означает что гипотеза не верна

Когда все неисправности в системе устранены, значит неисправность действительно локализована в замененном блоке

Когда исчезла часть дефектов, это может означать что устранена только вторичная неисправность и исправный блок вновь сгорит под воздействием первичного дефекта системы. В этом случае возможно лучшим решением будет вновь поставить замененный блок (если это возможно и целесообразно) и продолжить поиск неисправностей с тем чтобы устранить именно первопричину.

Например, неисправность блока питания может привести к неудовлетворительной работе нескольких блоков, один из которых выйдет из строй в результате перенапряжения.

13. Проверка режима работы элемента.

Суть метода в том, что проверяют соответствие токов и напряжений в схеме предположительно правильным, отраженным в документации, рассчитанным при моделировании, полученным при исследовании исправного блока. На основании этого делают заключение о исправности элемента.

Правильность логических уровней цифровых схем (соответствие стандартам, а также сравнивают с обычными, типичными уровнями), проверяют падения напряжений на диодах, резисторах (сравнивают с расчетным или со значениями в исправном блоке).

14. Провоцирующие воздействие.

Повышение или понижение температуры, влажности механическое воздействие. Подобные воздействия очень эффективно для обнаружения пропадающих неисправностей.

15. Проверка температуры элемента.

Суть метода проста, любым измерительным прибором (или пальцем) нужно оценить температуру элемента или сделать вывод о температуре элемента по косвенным признакам (цвета побежалости, запах горелого и пр.). На основании этих данных делают вывод о возможной неисправности элемента.

16. Выполнение тестовых программ.

Суть метода заключается в том, что на работающей системе выполняется тестовая программа которая взаимодействует с различными компонентами системы и предоставляет информацию о их отклике, либо система под управлением тестовой программы управляет периферийными устройствами и оператор наблюдает отклик периферийных устройств, либо тестовая программа позволяет наблюдать отклик периферийных устройств на тестовое воздействие (нажатие клавиши, реакция датчика температуры на изменение температуры и пр.).

Метод применим только для заключительного тестирования и устранения очень мелких недоработок.

Метод имеет существенные недостатки т.к. для исполнения тестовой программы ядро системы должно находиться в исправном состоянии, не правильный отклик не позволяет точно локализовать неисправность (может быть неисправна как периферия так и ядро системы, так и тест-программа).

К достоинствам метода следует отнести очень быструю оценку по критерию работает - не работает.

17. Пошаговое исполнение команд.

Этот метод можно классифицировать как одну из разновидностей «метода исполнения тестовых программ», но применение метода возможно на почти не работоспособной системе. Метод очень эффективен для отладки микропроцессорных систем на стадии разработки.

К недостаткам метода следует отнести очень большую трудоемкость. К достоинствам очень низкую стоимость необходимого оборудования.

18. Тестовые сигнатуры.

19.«Выход на вход».

Если изделие/система имеет выход (множество выходов) и имеет вход (множество входов) и вход/выход могут работать в дуплексном режиме, то возможна проверка системы в которой сигнал с выхода, через внешние связи подается на вход. Анализируется наличие/отсутствие сигнала, его качество и по результатам дается оценка о работоспособности соответствующих цепей.

20. Типовые неисправности.

21. Анализ влияния неисправности.

В нынешней вычислительной технике, в частности, в много-разрядных интерфейсных приборах чрезвычайно трудно отыскать линию, где нет прохождения необходимого электрического сигнала. Известно, что в цифровых конструкциях зачастую ломаются именно элементы канальных приемо-передатчиков или так их еще называют, буферные схемы.

Описание способа поиска неисправности в электрических схемах

Данный дозволяет без включения питания исследуемой электросхемы быстро установить обрыв, короткое замыкание, либо утечку входных/выходных каскадов цифровой схемы, а это свою очередь дозволяет исключить трудоемкую «прозвонку» связей цифровых систем.

Базой прибора служит характериограф. С помощью него возможно несложно установить наглядно на экране осциллографе неисправный компонент приемника/передатчика в составе цифровых система. Принципиальная электрическая схема прибора изображена на рис. 10.1.1.

Допустимые типы сигналов на экране осциллографа - на рис. 10.1.2.

Поиск радиоэлементов начинается способом сравнения: допустим на разрядах данных входах/выходах приемо-передатчиков 0-6 конфигурация изображения одна, а на разряде данных 7 она может быть иной.

Следует сделать предположение, что приемо-передатчик разряда 7 обладает утечкой или коротким замыканием, по входу/выходу. Хорошие результаты данный способ дал при локализации сломанных радиоэлементов конструкций ввода-вывода АОНов, персональных компьютеров (специализированные платы с шинами ISA, VESA, PCI, интерфейсы LPT,). В роли трансформатора Т1 возможно использовать произвольной унифицированный марки ТН или ТАН.

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Сервис мануал

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных , после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме - это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR .

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо , правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото - вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по , нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод . У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. , полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.


Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте , шокирует - им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы - AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Название: Поиск неисправностей в электрических схемах
Бенда Дитмар
Год: 2010 (во быстрые...)
Страниц: 250
Формат: DjVu
Размер: 7.18 Mб
Язык: русский (перевод с немецкого)
В книге обобщен многолетний опыт практической работы и приведены проверенные методики поиска неисправностей для различных электронных устройств. На большом количестве примеров аналоговых и цифровых блоков, программируемых контроллеров и компьютерной техники показан системный подход и специфика поиска неисправностей в электрических схемах. Рассмотрены основные правила проведения технического обслуживания, фазы поиска неисправностей, диагностика устройств, тестирование электронных компонентов.

Оглавление
Предисловие
Глава 1 . Основные правила успешного технического обслуживания
1.1. Системный подход, логика и опыт гарантируют успех
1.2. Общение с клиентом
Глава 2. Получение информации об устройствах и системах
2.1. Системный сбор информации о знакомом и неизвестном
2.2. Собирайте информацию целенаправленно
2.3. Устанавливайте характерные черты структуры
Глава 3. Систематизированный поиск неисправностей в автоматизированных устройствах
3.1. Предпосылки и последовательность успешного поиска неисправностей
3.2. Оценка фактического состояния устройства
3.3. Локализация области неисправности
3.4. Мероприятия по ремонту и вводу в эксплуатацию
Глава 4. Определение полярности и напряжения в электронных блоках и схемах
4.1. Измерение напряжения
4.2. Неисправности в электрической цепи
4.3. Точка, взятая в качестве опорного потенциала, определяет полярность и значение напряжений
4.4. Примеры определения полярности и напряжений
4.5. Упражнения для закрепления полученных знаний
Глава 5 . Системный поиск неисправностей в аналоговых схемах
5.1. Определение напряжений в схемах
5.2. Последствия возможных коротких замыканий и обрывов при различных видах связи
Соединительные связи
Отрицательные обратные связи
Положительные обратные связи
5.3. Систематизированный поиск неисправностей в аналоговых схемах
5.4. Поиск неисправностей в схемах управления и регулировки
Электропривод трехфазного тока
Стабилизатор напряжения
5.5. Поиск неисправностей в колебательных схемах
LC-генератор синусоидальных колебаний
Мостовой RC-генератор
Функциональный преобразователь
5.6. Поиск неисправностей в операционных усилителях
Поиск неисправностей в предусилителях
Оконечный усилитель
5.7. Упражнения для закрепления полученных знаний
Глава 6. Системный поиск неисправностей в импульсных и цифровых схемах
6.1. Напряжения в цифровых схемах
6.2. Воздействия возможных коротких замыканий и внутренних обрывов
6.3. Систематизированный поиск ошибок в цифровой схеме
6.4. Ошибки в цифровых интегральных схемах
6.5. Упражнения для закрепления полученных знаний
Глава 7. Поиск неисправностей в системе с компьютерными схемами
7.1. Диагностика неисправностей в схемах с тремя состояниями
7.2. Проверка статических функциональных параметров
7.3. Проверка динамических функциональных параметров
7.4. Систематизированный поиск неисправностей в компьютерной схеме
7.5. Поиск неисправностей в схемах интерфейсов
7.6. Упражнения для закрепления полученных знаний
Глава 8. Поиск неисправностей в системах на программируемых контроллерах
8.1. Проверка статических и динамических функциональных параметров
8.2. Техническое обслуживание путем диагностики с помощью устройства визуального отображения
8.3. Систематизированный поиск неисправностей в схеме программируемого контроллера
8.4. Упражнения для закрепления полученных знаний
Глава 9 . Поиск неисправностей в системе с сетевым напряжением питания
9.1. Сетевые помехи и их воздействия
9.2. Поиск неисправностей в схемах выпрямителей
9.3. Поиск неисправностей в источниках питания
9.4. Упражнения для закрепления полученных знаний
Глава 10. Поиск ошибок в системах тестирования при обслуживании и производстве
10.1. Внутрисхемное тестирование
10.2. Поиск неисправностей с помощью контактной системы тестирования
10.3. Подготовка электронных блоков к тестированию
10.4. Локализация коротких замыканий
10.5. Упражнения для закрепления полученных знаний
Приложение. Ответы к упражнениям
Предметный указатель

Понравилась статья? Поделиться с друзьями: