Бытовые коммуникационные устройства. Среды передачи данных. Ремонт компьютеров и коммуникационного оборудования

1. Локальная вычислительная сеть - программно-аппаратный комплекс, включающий в себя несколько активно взаимодействующих компьютеров (обычно от нескольких штук до нескольких сотен), соединенных между собой каналами связи. В локальную сеть включается также коммуникационное оборудование. К нему относятся:

ü концентраторы;

ü коммутаторы;

ü маршрутизаторы.

Основное отличие локальной сети от территориально распределенных сетей заключается в использовании коммуникационного оборудования, не требующего специальных мер коррекции ошибок передачи и сжатия информации.

Сетевая работа пользователя начинается на его рабочем месте, которое чаще всего представляет собой компьютер, включенный в местную (или локальную) сеть. Компьютер, подключенный к удаленной сети через модем, логически по адресации также включен в локальную сеть. В этом случае говорят об использовании протокола TCP/IP поверх последовательной линии. В России преобладают локальные сети Ethernet.

Локальные вычислительные сети (ЛВС) традиционно выделяют из всего многообразия возможных компьютерных сетей.

В настоящее время концепция локальных вычислительных сетей достаточно хорошо проработана. В основе этой концепции лежит принцип организации ЛВС в виде так называемой сети Intranet, то есть внутренней сети, построенной на основе тех же протоколов, программного обеспечения, средств доступа и защиты информации, что и глобальная сеть Internet.

2. Локальные вычислительные сети позволяют объединять в систему большое количество рабочих мест, построенных на основе ЭВМ. При этом персонал таких рабочих мест может совместно использовать оборудование сети, программные средства и информацию. Локальная вычислительная сеть может рассматриваться каждым ее участником как единый программно-аппаратный комплекс. В этом комплексе можно выделить следующие технологические преимущества:

ü разделение аппаратных средств (например, доступ к лазерному принтеру обеспечивается со всех рабочих станций сети);



ü разделение данных (со всех рабочих станций сети обеспечивается доступ к системе управления базой данных - СУБД);

ü разделение программных средств (необходимые программы могут быть запущены с любой рабочей станции);

ü разделение ресурсов процессора файлового сервера (процессор используется в режиме разделения времени. Его особенность заключается в том, что доступ к имеющимся ресурсам осуществляется через специальный диспетчер);

ü мультипрограммный режим (предоставляет возможность даже одному пользователю организовать работу одновременно с несколькими заданиями);

ü электронная почта (с помощью которой происходит интерактивный обмен информацией между пользователями на рабочих станциях сети).

Описанные возможности не являются специфическими для локальных сетей. В той или иной мере они присущи всем сетям. В локальной сети их действенность усиливается, если локальная сеть используется как единый комплекс, например, при коллективной разработке некоторого продукта.

Схема обмена данными в сетях Ethernet называется множественным доступом с контролем несущей и обнаружением конфликтов - CSMA/CD (Carrier Sense Multiply Access with Collision Detection). Множественный доступ означает, что любое подключенное устройство может передавать информацию. Контроль несущей означает, что можно определить, занят канал или нет. Обнаружение конфликтов означает возможность узнать, перебиваете вы кого-нибудь или нет.

Фактическая задержка при обнаружении конфликтов - величина случайная. Это позволяет избежать такого развития событий, когда две машины одновременно передают сообщение по сети, обнаруживают конфликт, ждут некоторое время, а потом возобновляют передачу, переполняя сеть конфликтами. Вычисление задержки происходит с использованием генератора случайных чисел на некотором диапазоне. Количество попыток передачи не бесконечно. После определенного числа попыток сообщение снимается.

3. В качестве рабочих мест в ЛВС применяют автономные компьютерные системы, называемые рабочими станциями, автоматизированными рабочими местами (АРМ), или сетевыми станциями. Обычно включаемые в сеть станции располагают собственным внешним накопителем, но допускается конфигурация без такового со специальными постоянными запоминающими устройствами (ПЗУ) для загрузки сетевого программного обеспечения.

Управление различными службами в ЛВС осуществляется с использованием одного или нескольких серверов. В терминологии сетевых технических средств сервер - это один из включенных в сеть компьютеров, располагающих соответствующими программными и достаточными аппаратными мощностями для выполнения какого-либо обслуживания. Принципиальной разницы между сервером и рабочей станцией, снабженной специальным программным обеспечением, нет.

К серверу могут предъявляться некоторые дополнительные требования, связанные с необходимостью обслуживания им большого числа запросов от многих станций и других серверов. Например, типичным требованием к серверам является требование круглосуточной бесперебойной работы.

Повышенные требования предъявляются к программно-аппаратному обеспечению файловых серверов. Это связано с тем, что от таких серверов зависят временные характеристики по загрузке, передаче и хранению данных в сети.

4. Для подключения ЭВМ к сети требуются устройства сопряжения, называемые сетевыми адаптерами, или сетевыми интерфейсными картами, вставляемыми в гнездо материнской платы компьютера. В настоящее время широкое распространение приобрели адаптеры, которые могут настраиваться на различную скорость передачи данных: 10 Мбит/с (Ethernet) и 100 Мбит/с (Fast Ethernet).

В настоящее время в основном выпускаются адаптеры с автоматической настройкой Plug-and-Play (PNP), которые в случае конфликтов с другими аппаратными средствами допускают и программную перенастройку.

При выпуске каждый сетевой адаптер снабжается микросхемой с уникальным 48-битовым адресом Ethernet. Каждая фирма, имеющая лицензию на выпуск адаптеров, располагает собственным диапазоном аппаратных адресов Ethernet, так что в мире не должно быть двух интерфейсных карт с одинаковыми адресами.

Для взаимного преобразования интернетовских адресов в аппаратные и обратно служат протоколы ARP (Address Resolution Protocol) и RARP (Reverse ARP).

5. Топология локальных сетей Ethernet представляет собой шину с ответвлениями, но без контуров. В каждой логической (в смысле адресации TCP/IP) сети между двумя любыми точками имеется только один путь. Данные, пересылаемые по кабельной системе, передаются всем машинам в широковещательном режиме.

Стандартная спецификация Ethernet предусматривает скорость передачи данных 10 Мбит/с. Аппаратура быстрой Ethernet (Fast Ethernet) рассчитана на скорость 100 Мбит/с.

В топологии Ethernet наиболее распространены три среды передачи данных.

ü коаксиальные кабели с волновым сопротивлением 50 Ом;

ü медный провод "витая пара";

ü оптоволоконный кабель.

При выборе типа кабеля учитываются следующие показатели:

ü стоимость монтажа и обслуживания;

ü ограничение на длину коммуникаций без дополнительных усилителей-повторителей (репитеров);

ü безопасность передачи данных.

6. Пропускная способность локальных сетей сильно зависит от количества включенных в них активно действующих объектов - серверов, рабочих станций, интеллектуальных устройств. В сетях Ethernet при увеличении информационных потоков может резко возрасти время доставки сообщений, а затем наступить полная блокировка: ни одно сообщение не сможет пробиться к адресату.

Для борьбы с этим явлением, прежде всего, должны использоваться специализированные программные средства и совершенствоваться собственно программное обеспечение серверов и станций. Это требует специального анализа и измерения информационных потоков.

В качестве аппаратных мер по предотвращению заторов можно с помощью специального коммуникационного оборудования разделить сеть на части, в которые входят наиболее активно взаимодействующие между собой объекты. Такое деление часто называют сегментацие й. Обычно сегментация возникает естественным образом исходя из расположения сетевых объектов и состава групп специалистов, решающих общие задачи. Но возможно проведение сегментации с целью недопущения блокировок, когда замечено, что время реакции сети существенно возрастает.

В компьютерных сетях наиболее распространенным коммуникационным оборудованием являются:

ü концентраторы;

ü коммутаторы;

ü маршрутизаторы.

Для сегментации с целью избежания перегрузок могут служить только коммутаторы и маршрутизаторы.

Концентратор (Hub) позволяет присоединить к нему несколько рабочих станций, логически (по адресам) входящих в одну и ту же сеть. Концентратор обеспечивает возможность использования в ЛВС кабеля "витая пара".

Коммутатор (Switch) позволяет увеличить полосу пропускания и уменьшить время задержки обработки информации. С его помощью можно сегментировать локальную сеть на каналь­ном уровне иерархической модели протокола TCP/IP, то есть без использования IP-адресации.

Маршрутизатор (router) разбивает логически единую по адресации сеть на подсети. Маршрутизатор служит либо для соединения сетей с различными протоколами, либо для соединения сетей TCP/IP с различным пространством адресов. В последнем случае его часто называют шлюзом (Gateway). Аппаратные маршрутизаторы обычно бывают многопротокольными и очень дороги. В локальных сетях в качестве маршрутизатора можно использовать не очень мощный компьютер с двумя или более сетевыми картами, что является самым дешевым решением для расширения сети.

Маршрутизаторы предоставляют дополнительные средства защиты данных и контроля трафика. Они играют большую роль в управлении сетью и выявлении нештатных ситуаций.

Хотя компьютеры и являются центральными элементами обработки данных в сетях, не менее важную роль играет коммуникационное оборудование. В последнее время коммуникационные устройства из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор.

Только в сети с полносвязной топологией для соединения каждой пары компьютеров имеется отдельная линия связи. Во всех остальных случаях неизбежно возникает вопрос о том, как организовать совместное использование линий связи несколькими компьютерами сети. Как и всегда при разделении ресурсов, главной целью здесь является удешевление сети.

Если топология сети не полносвязная, то обмен данными между произвольной парой конечных узлов (абонентов) должен идти в общем случае через транзитные узлы. Задача соединения конечных узлов через сеть транзитных узлов называется задачей коммутации. Устройство, функциональным назначением которого является выполнение коммутации, называется коммутатором (switch ). Коммутатор производит коммутацию входящих в его порты информационных потоков, направляя их в соответствующие выходные порты. Коммутатором в широком смысле называется устройство любого типа, способное выполнять операции переключения потока данных с одного интерфейса на другой. Операция коммутации может быть выполнена в соответствии с различными правилами и алгоритмами. Некоторые способы коммутации получили специальные названия (например, маршрутизатор ).

Коммутатором может быть как специальное устройство, так и универсальный компьютер со встроенным программным механизмом коммутации. В этом случае коммутатор называется программным. Компьютер может совмещать функции коммутации с выполнением своих обычных функций конечного узла. Эти узлы образуют коммуникационную сеть , к которой подключаются все остальные.



Задачей коммутатора является переброска данных на определённые для них интерфейсы. В связи с этим к функциям коммутатора добавляется задача мультиплексирования , при которой из нескольких отдельных потоков образуется общий агрегированный поток, который можно передавать по одному физическому каналу связи. Затем на выходе физического канала решается противоположная задача демультиплексирования – разделения суммарного агрегированного потока на несколько составляющих потоков. Мультиплексирование является способом обеспечения доступности имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети. Операции мультиплексирования и демультиплексирования потоков при коммутации показаны на рисунке 3.

Рисунок 3

Мультиплексирование Инт. 2

Коммутатор 1

Демультиплексирование

Инт. 3 Инт.4 Инт. 5

Коммутатор, у которого все входящие информационные потоки коммутируются на один выходной интерфейс, называется мультиплексором . Коммутатор, который имеет один входной интерфейс и несколько выходных, называется демультиплексором .

В вычислительных сетях используют как индивидуальные линии связи между компьютерами, так и разделяемые (shared), когда одна линия связи попеременно используется несколькими компьютерами. В случае применения разделяемых линий связи (часто используется также термин разделяемая среда передачи данных – shared media) возникает комплекс проблем, связанных с их совместным использованием, который включает как чисто электрические проблемы обеспечения нужного качества сигналов при подключении к одному и тому же проводу нескольких приёмников и передатчиков, так и логические проблемы разделения во времени доступа к этим линиям.

Классическим примером сети с разделяемыми линиями связи являются сети с топологией «общая шина», в которых один кабель совместно используется всеми компьютерами сети. Ни один из компьютеров сети в принципе не может индивидуально, независимо от всех других компьютеров сети, использовать кабель, так как при одновременной передаче данных сразу несколькими узлами сигналы смешиваются и искажаются. В топологиях «кольцо» или «звезда» индивидуальное использование линий связи, соединяющих компьютеры, принципиально возможно, но эти кабели часто также рассматривают как разделяемые для всех компьютеров сети, так что, например, только один компьютер кольца имеет право в данный момент времени отправлять по кольцу пакеты другим компьютерам.

В локальных сетях разделяемые среды применяются достаточно часто. В глобальных сетях разделяемые между интерфейсами среды практически не используются. Это объясняется тем, что при большой протяжённости каналов связи возникают большие временные задержки распространения сигналов, сокращая до неприемлемого уровня долю полезного использования каналов связи на передачу данных абонентов. В последнее время наметилась тенденция отказа от разделяемых сред и в локальных сетях. Сеть с разделяемой средой при большом количестве узлов всегда будет работать медленнее, чем аналогичная сеть с индивидуальными линиями связи. За удешевление сети приходится расплачиваться снижением производительности.

В сетях с небольшим (10-30) количеством компьютеров чаще всего используется одна из типовых топологий - общая шина, кольцо, звезда или полней связная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры в такой сети имеют одинаковые права в отношении доступа к другим компьютерам (за исключением центрального компьютера при соединении звезда). Такая однородность структуры делает простой процедуру наращивания числа компьютеров, облегчает обслуживание и эксплуатацию сети.

Однако при построении больших сетей однородная структура связей превращается из преимущества в недостаток. В таких сетях использование типовых структур порождает различные ограничения, важнейшими из которых являются:

· ограничения на длину связи между узлами;

· ограничения на количество узлов в сети;

· ограничения на интенсивность трафика, порождаемого узлами сети.

Например, технология Ethernet на тонком коаксиальном кабеле позволяет использовать кабель длиной не более 185 м, к которому можно подключить не более 30 компьютеров. Однако, если компьютеры интенсивно обмениваются и формацией между собой, иногда приходится снижать число подключенных к кабелю компьютеров до 20, а то и до 10, чтобы каждому компьютеру доставалалась приемлемая доля общей пропускной способности сети.

Для снятия ограничений на длину сети и количество её узлов используется физическая структуризация сети с помощью повторителей и концентраторов. Для повышения производительности и безопасности сети используется логическая структуризация сети, состоящая в разбиении сети на сегменты таким образом, что основная часть трафика компьютеров каждого сегмента не выходит за пределы этого сегмента. Средствами логической структуризации служат мосты, коммутаторы, маршрутизаторы и шлюзы.

Как уже упоминалось, различают топологию физических связей (физическую структуру сети) и топологию логических связей (логическую структуру сети). Под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической - конфигурация информационных потоков между компьютерами сети. Во многих случаях физическая и логическая топологии сети совпадают.

Для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети используются такие коммуникационные устройства как повторители и концентраторы. Простейшее из коммуникационных устройств - повторитель (repeator ) передаёт сигналы, приходящие из одного сегмента сети, в другие её сегменты. Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала - восстановления его мощности и амплитуды, улучшения фронтов и т. п.

Повторитель, который имеет несколько портов и соединяет несколько физических сегментов, часто называют концентратором (concentrator ), или хабом (hub ). Эти названия (hub - основа, центр деятельности) отражают тот факт, что в данном устройстве сосредоточиваются все связи между сегментами сети.

Концентраторы характерны практически для всех базовых технологий локальных сетей - Ethernet, ArcNet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN.

Нужно подчеркнуть, что в работе концентраторов любых технологий много общего – они повторяют сигналы, пришедшие с одного из своих портов, на других своих портах. Добавление в сеть концентратора всегда изменяет ее физическую топологию, но при этом оставляет без изменения логическую топологию.

Физическая структуризация сети с помощью концентраторов полезна не только для увеличения расстояния между узлами сети, но и для повышения её надежности. Например, при сбоях в работе сети концентратор автоматически отключает свой порт, если обнаруживает, что присоединенный к нему узел слишком долго монопольно занимает сеть. Концентратор может блокировать некорректно работающий узел и в других случаях, выполняя роль некоторого управляющего узла.

Физическая структуризация сети полезна во многих отношениях, однако в ряде случаев, обычно относящихся к сетям большого и среднего размера, невозможно обойтись без логической структуризации сети. Наиболее важной проблемой, не решаемой путем физической структуризации, остается проблема перераспределения передаваемого трафика между различными физическими сегментами сети. В большой сети естественным образом возникает неоднородность информационных потоков: сеть состоит из множества подсетей рабочих групп, отделов, филиалов предприятия и других административных образований. В одних случаях наиболее интенсивный обмен данными наблюдается между компьютерами, принадлежащими к одной подсети, и только небольшая часть обращений происходит к ресурсам компьютеров, находящихся вне локальных рабочих групп. На других предприятиях, особенно там, где имеются централизованные хранилища корпоративных данных, активно используемые всеми сотрудниками предприятия, наблюдается обратная ситуация: интенсивность внешних обращений выше интенсивности обмена между «соседними» машинами. Но независимо от того, в какой пропорции распределяются внешний и внутренний трафики, для повышения эффективности работы сети неоднородность информационных потоков необходимо учитывать.

Сеть с типовой топологией (шина, кольцо, звезда), в которой все физические сегменты рассматриваются в качестве одной разделяемой среды, оказывается неадекватной структуре информационных потоков в большой сети. Например, в сети с общей шиной взаимодействие любой пары компьютеров занимает её на все время обмена, поэтому при увеличении числа компьютеров в сети шина становится узким местом. Компьютеры одного отдела вынуждены ждать, когда окончит обмен пара компьютеров другого отдела, и это при том, что необходимость в связи между компьютерами двух разных отделов возникает гораздо реже и требует совсем небольшой пропускной способности.

Такая ситуация возникает из-за того, что логическая структура данной сети осталась однородной - она никак не учитывает увеличение интенсивности трафика внутри отдела и предоставляет всем парам компьютеров равные возможности по обмену информацией.

Отдел 1 Концентратор Концентратор Отдел 3

Концентратор Рабочая группа А

Рабочая группа В

Концентратор Концентратор

Физическая структуризация сети с помощью моста

Для повышения производительности и безопасности сети используется логическая структуризация сети , состоящая в разбиении сети на сегменты таким образом, что основная часть трафика компьютеров каждого сегмента не выходит за пределы этого сегмента. Распространение трафика, предназначенного для компьютеров некоторого сегмента сети, только в пределах этого сегмента называется локализацией трафика . Средствами логической структуризации служат такие коммуникационные устройства, как мосты, коммутаторы, маршрутизаторы и шлюзы.

Мост (bridge) – это устройство, соединяющее две одинаковые сети в пределах ограниченного пространства и использующие одинаковые методы передачи данных. Мост может соединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем. Мост делит разделяемую среду передачи сети на части (часто называемые логическими сегментами), передавая информацию из одного сегмента в другой только в том случае, если такая передача действительно необходима, то есть если адрес компьютера назначения принадлежит другой подсети. Тем самым мост изолирует трафик одной подсети от трафика другой, повышая общую производительность передачи данных в сети. Локализация трафика не только экономит пропускную способность, но и уменьшает возможность несанкционированного доступа к данным.

Логическая структуризация сети с помощью моста

Коммутатор (switch ) по принципу обработки данных ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает данные по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы - это мосты нового поколения, которые обрабатывают данные в параллельном режиме.

Сеть сложной конфигурации, представляющая собой соединение нескольких сетей, нуждается в специальном устройстве. Задача этого устройства - отправить сообщение в нужную сеть. Такое устройство называется маршрутизатором или роутером . Маршрутизатор - это устройство, соединяющее сети разного типа, но использующие одну операционную систему. Кроме того, маршрутизатор обеспечивает балансировку нагрузки в сети, перенаправляя потоки сообщений по свободным каналам связи.

Маршрутизаторы более надежно и более эффективно, чем мосты, изолируют трафик отдельных частей сети друг от друга. Маршрутизаторы образуют логические сегменты посредством явной адресации, поскольку используют не плоские аппаратные, а составные числовые адреса. В этих адресах имеется поле номера сети, так что все компьютеры, у которых значение этого поля одинаково, принадлежат к одному сегменту, называемому в данном случае подсетью (subnet ). Важной особенностью маршрутизаторов является их способность связывать в единую сеть подсети, построенные с использованием разных сетевых технологий.

Для объединения ЛВС совершенно различного типа, работающих по существенно отличающимся друг от друга протоколам, предусмотрены специальные устройства - шлюзы. Шлюз (gateway) - это устройство, позволяющее организовать обмен данными между двумя сетями, использующими различные протоколы взаимодействия. Обычно основной причиной, по которой в сети используют шлюз, является необходимость соединить сети с разными типами системного и прикладного программного обеспечения, а не желание локализовать трафик. Тем не менее, шлюз обеспечивает и локализацию трафика в качестве некоторого побочного эффекта. Шлюз осуществляет свои функции на уровне выше сетевого. С помощью шлюзов можно локальную сеть подключить к глобальной.

Крупные сети практически никогда не строятся без логической структуризации. Для отдельных сегментов и подсетей характерны типовые однородные топологии базовых технологий, а для их объединения всегда используется оборудование, обеспечивающее локализацию трафика. Мосты, маршрутизаторы и шлюзы конструктивно выполняются в виде плат, которые устанавливаются на компьютерах.

Введение

Коммуникационные устройства ПК предназначены для организации обмена данными между компьютерами, компьютером и удаленным устройством ввода вывода, а также для включения компьютера в локальную или глобальную сеть. Обмен данными требуется для различных целей: передачи файлов, совместного использования периферийных устройств (например, принтеров), доступа к разнообразным информационным услугам Интернета и частных сетей, приема и передачи факсимильных сообщений, посылки сообщений на пейджеры и мобильные телефоны, установление голосовой связи (IP-телефония), видеосвязи и даже совместных игр по сети. Современные технологии, используемые для этих целей, ориентированные именно на коммуникации: СОМ-порт, беспроводные интерфейсы, модемы, адаптеры локальных сетей. Связь между компьютерами, правда, с рядом ограничений, может быть установлена и другими средствами: через LPT-порты, последовательные шины FireWire и USB.

Проводные интерфейсы связи

СОМ-порт

Последовательный интерфейс для передачи данных в одном направлении использует одну сигнальную линию, по которой информационные биты передаются друг за другом -- последовательно. Английские названия интерфейса и порта -- Serial Interface и Serial Port. Последовательная передача позволяет сократить количество сигнальных линий и добиться улучшения связи на больших расстояниях.

Начиная с первых моделей, в PC имеется последовательный интерфейс - СОМ-порт (Communications Port -- коммуникационный порт). Этот порт обеспечивает асинхронный обмен по стандарту RS-232C. Синхронный обмен в PC поддерживают лишь специальные адаптеры, например SDLC или V.35. СОМ-порты реализуются на микросхемах универсальных асинхронных приемопередатчиков (UART), совместимых с семейством 18250/16450/16550. Они занимают в пространстве ввода-вывода по 8 смежных 8-битных регистров и могут располагаться по стандартным базовым адресам:

3F8h (COM1), 2F8h (COM2), 3E8h (COM3), 2E8h (COM4).

Порты могут вырабатывать аппаратные прерывания IRQ4 (обычно используются для СОМ1 и COM3) и IRQ3 (для COM2 и COM4). С внешней стороны порты имеют линии последовательных данных передачи и приема, а также набор сигналов управления и состояния, соответствующий стандарту RS-232C. СОМ-порты имеют внешние разъемы-вилки DB25P или DB9P, выведенные на заднюю панель компьютера. Характерной особенностью интерфейса является применение не ТТЛ-сигналов -- все внешние сигналы порта дву-полярные. Гальваническая развязка отсутствует -- схемная земля подключаемого устройства соединяется со схемной землей компьютера. Скорость передачи может достигать 115,2 Кбит/сек.

Название порта указывает на его основное назначение -- подключение коммуникационного оборудования (например, модема) для связи с другими компьютерами, сетями и периферийными устройствами. К порту могут непосредственно подключаться и периферийные устройства с последовательным интерфейсом: принтеры, плоттеры, терминалы и др. СОМ-порт широко используется для подключения мыши, а также организации непосредственной связи двух компьютеров. К СОМ-порту подключают и электронные ключи.

Модемы

Модем предназначен для передачи информации на большие расстояния с использованием телефонных линий и включает в себя модулятор, который преобразует поступающую от компьютера двоичную информацию в аналоговые сигналы, и демодулятор, извлекающий из принятого модулированного сигнала закодированную двоичную информацию и передающий ее в компьютер.

Модем устанавливается между компьютером и телефонной линией, которая соединяет пользователя с провайдером услуг Интернет или с сервером удаленного доступа частной сети. Для доступа в Интернет или корпоративную сеть через телефонную сеть модем пользователя посылает вызов модему, находящемуся на сервере удаленного доступа (Remote Access Server – RAS). Модем любого типа является устройством последовательного действия, в котором биты данных передаются по одному один за другим.

Коммуникационные устройства

Известно много различных коммуникационных или коммутирующих устройств, таких, как повторители, мосты, концентраторы, маршрутизаторы и шлюзы. В табл. 9.2 приведено соответствие коммутирующих устройств уровням стандартной сетевой модели OSI.

Таблица 9.2

Рассмотрение коммутирующих устройств с точки зрения семиуровневой модели OSI позволяет выявить, какая часть информации исходного сообщения используется промежуточными сетевыми устройствами для выбора маршрута в процессе его передачи от отправителя к получателю. Подготовленные отправителем данные (рис. 9.6) последовательно передаются:

Рис. 9.6.

  • на транспортный уровень, который добавляет к ним свой заголовок (например, заголовок TCP – протокола управления передачей);
  • сетевой уровень, который, в свою очередь, также добавляет свой заголовок (пакета), в результате чего формируется пакет сетевого уровня (например, 1Р-пакет);
  • канальный уровень, где формируется кадр путем добавления еще одного заголовка (кадра) и концевика в виде контрольной суммы (CRC-кода);
  • физический уровень для транспортировки по сети.

Рассмотрим особенности коммутирующих устройств и выявим, как они соотносятся с пакетами и кадрами.

Повторители (Repeaters) являются коммуникационными устройствами самого нижнего, физического уровня. Простейший повторитель представляет собой двухпортовое аналоговое устройство для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети (рис. 9.7, а). Каждый порт имеет собственный трансивер, состоящий из передатчика и приемника. Повторитель улучшает качество передаваемого сигнала: восстанавливает амплитуду и мощность выходного сигнала, уменьшает длительность фронтов и т.п. В сети

Рис. 9.7.

Ethernet допускается установка четырех повторителей, что позволяет увеличить длину кабеля до 2500 м.

Концентраторы (Concentrator); или хабы (Hub), как и повторители, работают на физическом уровне, однако отличаются от них тем, что имеют несколько электрически связанных входов/выходов (портов), к которым подключены линии передачи. Все линии должны работать с одинаковыми скоростями. На рис. 9.7, б электрическая связь внутри коммутатора обозначена крупной точкой. Кадры, прибывающие на какую-либо линию (вход), передаются на все остальные линии (выходы). Если одновременно по разным линиям (входам) придут два кадра, то из-за наличия электрической связи в концентраторе произойдет столкновение (коллизия).

Концентраторы Ethernet имеют от 8 до 72 портов. Трансивер каждого порта помимо передатчика и приемника содержит детектор коллизий, с помощью которого можно обеспечить доступ к сети, а также изолировать порт, если на нем обнаруживаются непрерывные ошибки (коллизии).

Логическая структуризация сети осуществляется с помощью мостов, коммутаторов, маршрутизаторов и шлюзов. Рассмотрим мосты и коммутаторы, работающие на канальном уровне.

Мосты (Bridges) соединяют две (см. рис. 9.7, в) или более локальных сетей, называемых также подсетями, сегментами сети или доменами коллизий. Главная функция моста состоит в ретрансляции данных (кадра) из одного сегмента сети в другой. Мост, в отличие от повторителя или концентратора, анализирует адрес назначения кадра, при этом если:

  • адрес назначения поступающего кадра относится к тому же сегменту, то кадр мостом игнорируется;
  • адрес назначения известен мосту и относится к другому сегменту, то мост транслирует этот кадр в соответствующий порт;
  • адрес назначения еще не известен мосту, то кадр транслируется во все порты, кроме того, откуда он пришел, а незнакомый адрес сохраняется для дальнейшего использования, т.е. в ходе работы мост самообучается. После самообучения мост передает кадры только в сегмент назначения, уменьшая тем самым общий объем передаваемых по сети данных.

Широковещательные и многоадресные кадры также транслируются во все порты. Мост позволяет изменять логическую структуру сети при сохранении физического расположения узлов и связей между ними. Логическое деление на подсети повышает безопасность данных, ограничивая доступ к ним отдельных пользователей.

Современные мосты, как и концентраторы, укомплектованы сетевыми платами, рассчитанными обычно на четыре или восемь входов определенного типа. При наличии нескольких плат мост способен работать с сетями разных типов.

Коммутаторы (Switch) являются усовершенствованными мостами и для маршрутизации также используют адреса кадров. Каждый коммутатор оснащен специализированным процессором, благодаря чему общая производительность коммутатора превышает производительность традиционного моста, имеющего один процессорный блок. Однако в отличие от мостов, соединяющих целые сети, коммутаторы чаще всего используются для соединения отдельных компьютеров (см. рис. 9.7, г). Поэтому коммутаторы имеют гораздо больше разъемов для сетевых плат, чем мосты. Каждый порт является областью столкновений (коллизий). Чтобы предотвратить их, каждый порт коммутатора снабжен буфером для хранения пришедших кадров. Поэтому коллизии могут возникнуть только при переполнении буфера. Для предотвращения коллизий современные коммутаторы начинают пересылать кадры сразу после получения их заголовков, т.е. они не используют протоколы с ожиданием. Такие коммутаторы называют сквозными. При этом чаще всего используется аппаратная реализация алгоритма без ожидания, тогда как в мостах традиционно присутствует процессор, программно реализующий маршрутизацию с ожиданием.

Маршрутизаторы (Router) относятся к сетевому уровню модели OSI и имеют существенные отличия от мостов и стандартных концентраторов. Основная функция маршрутизатора состоит в чтении заголовков пакетов сетевых протоколов и в принятии решения о дальнейшем маршруте следования пакета. На маршрутизатор прибывает пакет, сформированный сетевым уровнем (см. на рис. 9.6 выделен темным цветом), в котором отсутствует заголовок кадров и концевик (CRC). Пакет передается программному обеспечению маршрутизатора которое анализирует заголовок пакета и в соответствии с ним выбирает дальнейший путь пакета.

Появление маршрутизаторов обусловлено ограничениями мостов и коммутаторов по топологии связей и другим показателям. Благодаря использованию составных числовых адресов (с указанием номеров подсетей, компьютеров и собственных портов) маршрутизаторы более надежно и эффективно изолируют трафик отдельных частей сети друг от друга. Кроме локализации трафика маршрутизаторы способны выполнить многие другие полезные функции, например они могут работать в сети с замкнутыми контурами, осуществляя при этом выбор рационального маршрута из нескольких возможных, а также связывать в единую сеть подсети, построенные с использованием разных сетевых технологий, например Ethernet и Х.25.

Транспортные шлюзы служат для соединения компьютеров, использующих различные транспортные протоколы, ориентированные на работу с установлением соединения, например TCP/IP и АТМ. В этом случае транспортный шлюз может копировать пакеты, одновременно приводя их к нужному формату.

Шлюзы приложени й работают с форматами и содержимым пакетов на более высоком уровне. Например, шлюз E-Mail может переводить электронные письма в формат SMS-сообщений для мобильных телефонов.

Среды передачи данных

Основной составной частью телекоммуникационных сетей является физическая среда (Medium) или среда передачи данных, по которой передаются сигналы. В качестве такой среды используются коаксиальный кабель, кабель на основе витых пар, оптоволоконный кабель и беспроводная среда (свободное пространство).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    История развития и структура персонального компьютера. Сущность, виды и предназначение внешнего запоминающего устройства и котроллеров. Внешние устройства связи человека с машиной. Возможности компьютерных сетей. Работа с таблицами и диаграммами в Exсel.

    контрольная работа , добавлен 27.02.2011

    Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа , добавлен 18.01.2012

    Состав вычислительной системы - конфигурация компьютера, его аппаратные и программные средства. Устройства и приборы, образующие аппаратную конфигурацию персонального компьютера. Основная память, порты ввода-вывода, адаптер периферийного устройства.

    презентация , добавлен 15.04.2013

    Конструкция системного блока, монитора, клавиатуры и мыши персонального компьютера, как элементов его минимальной комплектации, а также их назначение, особенности работы и современные тенденции развития. Отрывки статей о новинках архитектуры компьютера.

    реферат , добавлен 25.11.2009

    Состав и обоснование выбора компонентов персонального компьютера (процессора, материнской платы, комплектующих и периферийных устройств), требования к ним и характеристики. Структурная схема компьютера, его программное обеспечение и расчёт стоимости.

    контрольная работа , добавлен 12.02.2015

    Сущность глобальной компьютеризации и ее распространенность на современном этапе. Основные характеристики персонального компьютера и требования к нему, главные критерии выбора и оценка ассортимента. Порядок выбора конфигурации персонального компьютера.

    реферат , добавлен 31.10.2010

    Понятие архитектуры персонального компьютера, компоновка частей компьютера и связи между ними. Составляющие системного блока ПК. Функции центрального процессора, системной платы, оперативного запоминающего устройства, видеокарты и жесткого диска.

Понравилась статья? Поделиться с друзьями: