Типы регуляторов напряжения. Основные параметры регулятора напряжения. Регуляторы напряжения автомобильных генераторов

  • 2.7. Неисправности аккумуляторных батарей
  • 2. Быстрое снижение
  • 3. Выплескивание электролита через вентиляционные отверстия в пробках
  • 4. Аккумуляторная батарея не заряжается
  • 5. Амперметр показывает большой зарядный ток при нормальном уровне регулируемого напряжения
  • 6. Понижена емкость батареи
  • 3.1. Принцип действия вентильного генератора
  • 3.2. Принцип действия регулятора напряжения
  • 3.3. Электрические схемы генераторных установок
  • 3.4. Характеристики генераторных установок
  • Глава 1 5
  • Глава 10 534
  • Глава 11 556
  • 3.5. Конструкция генераторов
  • Глава 1 5
  • Глава 10 536
  • Глава 11 558
  • 3.6. Бесщеточные генераторы
  • 3.7. Схемное и конструктивное исполнение регуляторов напряжения
  • 3.8. Техническое обслуживание генераторных установок
  • 3.9. Характерные неисправности генераторных установок и методы их обнаружения
  • 3.10. Замена типа генераторной установки на автомобиле
  • Глава 4
  • 4.1. Пусковые качества автомобильных двигателей
  • На 4.1. Зависимость момента сопротивления от частоты вращения коленчатого вала при пуске бензинового двигателя 3m3-53:
  • 4.2. Системы электростартерного пуска
  • 4.3. Особенности работы электростартеров и требования к электростартерам
  • 4.4. Устройство электростартеров
  • 4.5. Характеристики электростартеров
  • 4.6. Схемы управления электростартерами
  • 4.7. Система стоп-старта
  • 4.8. Правила эксплуатации и техническое обслуживание электростартеров
  • 4.33. Схемы регулировки стартеров:
  • Глава 5
  • 5.1. Свечи накаливания и подогрева воздуха
  • 5.1.1. Свечи накаливания
  • 5.1.2. Свечи подогрева воздуха во впускном трубопроводе
  • 5.2. Электрофакельные подогреватели воздуха
  • 12.3741 (КамАз, Урал, газ, маз, КрАз)
  • 14.3741 (Зил-1эзвя, зил-1эзгя)
  • 5.3. Техническое обслуживание электрофакельных подогревателей
  • 5.4. Устройства для подачи пусковой жидкости
  • 5.5. Электрические подогреватели
  • Го управления подогревателей пжд-30
  • Глава 6
  • 6.1. Назначение и принцип действия
  • 6.2. Контактная система зажигания
  • 6.3. Контактно-транзисторная система зажигания
  • 6.4. Электронные системы зажигания
  • 6.4.3. Микропроцессорные системы зажигания
  • 6.5. Элементы систем зажигания
  • 6.5.2. Распределители зажигания
  • 6.5.3. Свечи зажигания
  • 6.5.4. Высоковольтные провода
  • 6.6. Применяемость элементов систем зажигания
  • Контактные системы зажигания
  • Контактно-транзисторные системы зажигания
  • 6.7. Техническое обслуживание систем зажигания
  • Двигатель работает с перебоями
  • Двигатель не развивает полной мощности
  • 7.1. Основные принципы управления двигателем
  • Глава 7Сигналы (импульсы) датчиков управления
  • 7.2. Системы автоматического управления
  • 7.3. Системы подачи топлива с электронным управлением
  • 7.3.1. Карбюраторы с электронным управлением
  • 7.3.2. Электронные системы впрыскивания топлива
  • 5 M в бортовой сети, в жидкости, °с в двигатель воздуха, °с
  • 7.4. Комплексные системы управления двигателем
  • 7.5. Датчики электронных систем управления двигателем
  • 7.5.1. Измерители расхода воздуха
  • 7.5.2. Измерители расхода топлива
  • 7.5.3. Датчики давления
  • 7.5.4. Датчики температуры
  • 7.5.6. Датчики детонации
  • Рчс. 7.40. Циркониевый датчик кислорода:
  • Лк. 7.41. Датчик кислорода на основе щ:
  • 7.6. Исполнительные устройства систем впрыска
  • 7.6.1. Электромагнитные форсунки
  • 7.6.2. Электромагнитные клапаны. Переключающие устройства
  • 7.6.3. Исполнительные устройства с электродвигателями
  • 7.7. Электронные системы управления автомобильными дизелями
  • 7.8. Эксплуатация систем управления двигателем
  • 7.8.1. Эксплуатация сауэпхх
  • J Стрелка тестера отклоияется]- I Нет
  • 7.8.3. Проверка и регулирование системы впрыскивания топлива «Motronic»
  • Глава 8
  • 8.1. Назначение и классификация световых приборов
  • 8.2. Международная система обозначений световых приборов
  • 8.3. Лампы световых приборов
  • 8.4. Фары головного освещения. Блок-фары. Прожекторы
  • 8.5. Противотуманные фары и фонари
  • 8.6. Приборы световой сигнализации
  • Вой оптической системой:
  • 8.7. Приборы внутреннего освещения и сигнализаторы
  • 8.8. Техническое обслуживание системы освещения и световой сигнализации
  • Не работают указатели поворота в режиме как маневрирования автомобиля, так и аварийной сигнализации
  • 8.9. Звуковые сигналы
  • Глава 9
  • 9.1. Датчики электрических приборов
  • 9.1.1. Реостатные датчики
  • 9.1.2. Терморезистивные датчики
  • 9.1.3. Термобиметаллические датчики
  • 9.1.4. Датчики давления
  • 9.1.5. Датчики электронных информационных систем
  • 9.2. Указатели автомобильных информационных измерительных систем
  • 9.2.1. Магнитоэлектрические указатели
  • 9.2.2. Электромагнитные указатели
  • 9.2.3. Указатели импульсной системы
  • 9.3. Термометры
  • 9.4. Измерители давления
  • 9.5. Измерители уровня топлива
  • 9.6. Измерители зарядного режима аккумуляторной батареи
  • 9.7. Спидометры и тахометры
  • 9.8. Эконометр
  • 9.9. Тахографы
  • 9.10. Электронные информационные системы
  • 9.11. Техническое обслуживание информационно- измерительной системы
  • Глава 10
  • Нын возбуждением:
  • 10.1. Электродвигатели
  • 10.2. Моторедукторы
  • Стителя заднего стекла:
  • 10.5. Техническое обслуживание электропривода
  • Лем (а) и реле стеклоомывателя (б) на микро­схемах кр1055гп2 и кр1055гп1
  • При включении системы электродвигатель привода не работает, предохранители срабатывают
  • Глава 11
  • 11.1. Автомобильные провода
  • 11.2. Защитная аппаратура
  • 11.3. Коммутационная аппаратура
  • 11.4. Мультиплексная система проводки
  • 11.5. Техническое обслуживание бортовой сети
  • Глава 1 5
  • Глава 10 536
  • Глава 11 558
  • Глава 8. С иста мы освещения, световой
  • Глава 9. Информационно-измерительная
  • Глава 10. Электропривод вспомогательного оборудования автомобиля
  • Глава 11. Схемы электрооборудования. Комму
  • 7.8.2. Проверка, регулирование и поиск неисправностей системы «l-Jetronic»
  • 3.2. Принцип действия регулятора напряжения

    Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора ге­нератора, электрической нагрузки, температуры окружающей среды.

    Кроме того, он может выполнять дополнительные функции - защищать эле­менты генераторной установки от аварийных режимов и перегрузки, автомати­чески включать в бортовую сеть цепь обмотки возбуждения или систему сигна­лизации аварийной работы генераторной установки.

    Все регуляторы напряжения работают по единому принципу. Напряжение ге­нератора определяется тремя факторами - частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, соз­даваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напря­жение генератора, снижение тока возбуждения уменьшает напряжение. Все ре­гуляторы напряжения, отечественные и зарубежные, стабилизируют напряже­ние изменением тока возбуждения. Если напряжение возрастает или уменьша­ется, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

    Блок-схема регулятора напряжения представлена на рис. 3.3.

    Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регу­лирующий элемент 4. Измерительный элемент воспринимает напряжение гене­ратора 2 Ujj и преобразует его в сигнал U M3M , который в элементе сравнения сравнивается с эталонным значением U 3T .

    Если величина U M3M отличается от эталонной величины и эт , на выходе изме­рительного элемента появляется сиг­нал U 0 , который активизирует регули­рующий элемент, изменяющий ток в обмотке возбуждения так, чтобы на­пряжение генератора вернулось в за­данные пределы.

    Ш

    Рис. 3.3. Блок-схема регулятора напряжения:

    1 - регулятор; 2 - генератор; 3 - элемент сравнения; 4 - регулирующий элемент; 5 -измерительный элемент

    Таким образом, к регулятору напря­жения обязательно должно быть под­ведено напряжение генератора или на­пряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбу­ждения генератора. Если функции ре­гулятора расширены, то и число подсо­единений его в схему растет.

    Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на эле­мент сравнения, г де роль эталонной величины играет обычно напряжение стабили­зации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через се­бя ток. если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным. Ток через стаби­литрон включает электронное реле, которое коммутирует цепь возбуждения таким образом что ток в обмотке возбуждения изменяется в нужную сторону. В вибраци­онных и контактно-транзисторных регуляторах чувствительный элемент представ­лен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина - это сила на­тяжения пружины, противодействующей силе притяжения электромагнита. Комму­тацию в цепи обмотки возбуждения осуществляют контакты реле или, в контакт- но-транзисторном регуляторе, полупроводниковая схема, управляемая этими кон­тактами. Особенностью автомобильных регуляторов напряжения является то. что они осуществляют дискретное регулирование напряжения путем включения и вы­ключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и кон­тактно-транзисторных регуляторах), при этом меняется относительная продолжи- т епьность включения обмотки или дополнительного резистора.

    Поскольку вибрационные и контактно-транзисторные регуляторы представ­ляют лишь исторический интерес, а в отечественных и зарубежных генератор­ных установках в настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы, близкой к отечественному регулятору напряжения Я112А1 и регулятору EE14V3 фирмы BOSCH (рис. 3.4).

    Регулятор 2 на схеме работает в комплекте с генератором 1. имеющим допол­нительный выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает j epe3 себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается, и по нему начинает протекать ток.

    Транзисторы же пропускают ток между коллектором и эмиттером, т.е. откры­ты. если в цепи база-змиттер ток протекает, и не пропускают этого тока. т.е. закрыты, если базовый ток прерывается.

    Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1 , R2. Пока напряжение генератора неве­лико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон за­крыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вы­вода Д поступает в базовую цепь транзистора VT2, он открывается, через его пе­реход эмиттер-коллектор начинает протекать ток в базе транзистора VT3, кото­рый открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер-коллектор VT3 подключена к цепи питания. Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а пи-

    1 - генератор; 2 - регулятор

    тание базовой цепи одного транзистора производится от эмиттера другого, на­зывается схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом уси­ления. Обычно такой транзистор и выполняется на одном кристалле кремния. Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1 .

    При достижении этим напряжением величины напряжения стабилизации ста­билитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1 , который открывается и своим переходом эмиттер-коллектор закорачивает вывод базы составного транзистора VT2, VT3 на «массу». Состав­ной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются ста­билитрон VD2, транзистор VT1, открывается составной транзистор VT2, VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генерато­ра возрастает и т.д., процесс повторяется.

    Таким образом регулировка напряжения генератора регулятором осуществ­ляется дискретно через изменение относительного времени включения обмот­ки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяет­ся так, как показано на рис. 3.5. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если

    частота вращения уменьшилась или нагрузка возросла - увеличивается.

    В схеме регулятора по рис. 3.4 име­ются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбужде­ния со значительной индуктивностью.

    В этом случае ток обмотки возбуж­дения может замыкаться через этот диод, и опасных всплесков напряже­ния не происходит. Поэтому диод VD2 называется гасящим. Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии состав­ного транзистора VT2, VT3 оно оказы­вается подключенным параллельно сопротивлению R2 делителя напряже­ния. При этом напряжение на стабили­троне VD2 резко уменьшается, что ус­коряет переключение схемы регулятора и повышает частоту этого переключе­ния. Это благотворно сказывается на качестве напряжения генераторной уста­новки. Конденсатор С1 является своеобразным фильтром, защищающим регу­лятор от влияния импульсов напряжения на его входе.

    Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочас­тотных помех на работу регулятора, либо ускоряют переключения транзисторов.

    В последнем случае конденсатор, заряжаясь в один момент времени, разря­жается на базовую цепь транзистора в другой момент, ускоряя броском разряд­ного тока переключение транзистора и, следовательно, снижая потери мощно­сти в нем и его нагрев.

    Из рис. 3.4 хорошо видна роль лампы контроля работоспособного состояния генераторной установки HL.

    При неработающем двигателе внутреннего сгорания замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA че­рез эту лампу поступать в обмотку возбуждения генератора. Этим обеспечива­ется первоначальное возбуждение генератора. Лампа при этом горит, сигнали­зируя, что в цепи обмотки возбуждения нет обрыва.

    Рис. 3.5. Изменение силы тока в обмотке воз­буждения te по времени t:

    *вкп и Ъыкп ~ соответственно время включения и выключения обмотки возбуждения генератора; П 1 и п 2 ~ частоты вращения ротора генератора, причем п 2 больше гу, 1в 1 и 1в 2 - среднее значе­ние тока в обмотке возбуждения

    После запуска двигателя, на выводах генератора Д и «+» появляется практи­чески одинаковое напряжение и лампа гаснет. Если генераторная установка при работающем двигателе автомобиля не развивает напряжения, то лампа HL про­должает гореть и в этом режиме, что является сигналом об отказе генератор­ной установки или обрыве приводного ремня.

    Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбу­ждения. то лампа HL загорится.

    Аккумуляторная батарея для своей надежной работы требует, чтобы с пониже­нием температуры электролита напряжение, подводимое к батарее от генератор­ной установки, несколько повышалось, а с повышением температуры - понижалось.

    Для автоматизации процессов изменения уровня поддерживаемого напряже­ния применяется датчик, помещенный в электролит аккумуляторной батареи и включаемый в схему регулятора напряжения. В простейшем случае термоком­пенсация в регуляторе подобрана таким образом, что в зависимости от темпе­ратуры поступающего в генератор охлаждающего воздуха напряжение генера­торной установки изменяется в заданных пределах.

    3 рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключений в цепи обмотки возбуждения изменя­ется по мере изменения режима работы генератора. Нижний предел этой час­тоты составляет 25-50 Гц.

    Однако имеется и другая разновидность схем электронных регуляторов, в ко­торых частота переключения строго задана. Регуляторы такого типа оборудо­ваны широтно-импульсным модулятором (ШИМ), который и обеспечивает за­данную частоту переключения. Применение ШИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.

    8 настоящее время все больше зарубежных фирм переходит на выпуск гене­раторных установок без дополнительного выпрямителя. Для автоматического предотвращения разряда аккумуляторной батареи пои неработающем двигате­ле автомобиля в регулятор такого типа заводится фаза генератора. Регулято­ры. как правило, оборудованы ШИМ, который, например, при неработающем двигателе переводит выходной транзистор в колебательный режим, при кото­ром ток в обмотке возбуждения невелик и составляет доли ампера.

    После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы.

    Схема регулятора осуществляет в этом случае и управление лампой контро­ля работоспособного состояния генераторной установки.

    Электрооборудование любого автомобиля включает в себя генератор - устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

    Что такое регулятор напряжения генератора?

    Поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

    Принцип действия регулятора напряжения

    В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

    Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить увеличивается.

    Проверка регулятора напряжения

    Прежде чем проверить регулятор напряжения, нужно убедиться, что проблема кроется именно в нём, а не в других элементах генератора (слабо натянут ремень, окислилась масса и т.д.), для этого нужно проверить сам генератор (Как проверить генератор?). После этого вам нужно снять регулятор напряжения. Процесс демонтажа регулятора описан в статье «как снять регулятор напряжения?». В двух словах скажу, что сначала нужно снять минусовую клемму, снять все провода с генератора, снять пластиковый кожух с генератора, затем открутить и вынуть регулятор напряжения в сборе вместе с щётками.

    Давайте перейдём непосредственно к проверке регулятора напряжения. Проверять регулятор напряжения нужно обязательно в сборе с щёткодержателями – т.к. в случае обрыва цепи щёток и регулятора напряжения, мы сразу это заметим. Перед проверкой, обратите внимание на состояние щёток: если они обломаны или их длина короче 5мм, неподвижны и не пружинят, – то их нужно заменить. Для проверки нам понадобится:

    – провода;

    – аккумулятор автомобильный;

    – лампочка на 12в 1-3Вт;

    – две обычные пальчиковые батарейки.

    Чтобы проверить регулятор напряжения, нам нужно будет построить две схемы: К щёткам подключаем лампочку, К выводам Б и В подключаем «+» от аккумулятора, «-» аккумулятора закрепляем на массу регулятора. Делаем ту же схему, но добавляем последовательно две пальчиковые батарейки. Вывод из всего вышесказанного таков. Исправный регулятор напряжения: в первой схеме лампа горит, во второй схеме лампа не горит, т.к. напряжение выше 14,7в и подача напряжения на щётки должна быть прекращена. Неисправный регулятор напряжения: в обоих случая лампа горит, значит в регуляторе пробой. Лампа не горит вообще – значит, отсутствует контакт между щётками и регулятором или обрыв цепи в регуляторе.

    Трехуровневые регуляторы напряжения

    Сначала узнаем, для чего нужен этот регулятор. Автомобильный генератор во время движения и работы двигателя должен подпитывать аккумуляторную батарею. Тем самым восстанавливается ёмкость аккумулятора, когда он разряжается во время стоянки. Если мы ездим каждый день, то аккумулятор почти не разряжается, если он в исправном состоянии.

    Хуже приходиться аккумулятору, когда машина долго стоит без движения, ведь его энергия постепенно уходит на поддержание работы авто сигнализации. Ещё хуже дела обстоят зимой, когда при отрицательных температурах аккумуляторная батарея разряжается очень быстро. А если вы ездите помалу и не часто, то аккумулятор не заряжается полностью во время движения и может полностью разрядится как-то утром.

    Справиться с вышеуказанной проблемой, призван трехуровневый регулятор напряжения. У него три положения работы: это максимальное (выдаёт напряжение на генераторе 14,0-14,2 В), нормальное (13,6-13,8 В) и минимальное (13,0-13,2 В). Как мы знаем из статьи про проверку работоспособности аккумулятора, нормальное напряжение при заведённом двигателе должно быть от 13,2-13,6 В. Это означает, что генератор работает в нормальном режиме и АКБ заряжается в полном объёме.

    Это соответствует среднему (нормальному) положению регулятора напряжения. А вот зимой, желательно повысить напряжение до 13,8-14,0 В, т.к. аккумулятор быстрее разряжается при отрицательных температурах. Это делается простым переводом рычажка на регуляторе напряжения. Так будет обеспечена лучшая зарядка АКБ зимой при работающем двигателе.

    Летом, особенно когда жара превышает +25 градусов и выше - желательно понизить напряжение генератора до 13,0-13,2 В. Зарядка от этого не пострадает, но генератор не будет “выкипать”, т.е. не будет терять свою номинальную ёмкость и не сокращать ресурс.

    Как снять или заменить регулятор напряжения?

    Перед заменой регулятора напряжения, обязательно проверьте генератор в целом (Как проверить генератор?). Регулятор напряжения нужно менять, если напряжение под нагрузкой бортовой сети (включены дальний, обогрев зеркал, печка) меньше 13в. Так же регулятор напряжения может стать причиной высокого напряжения (выше 14,7в). Но, как писалось выше, перед снятием регулятора нужно проверить сам генератор, ознакомиться с другими возможными неисправностями (например слабо натянут ремень генератора), и только потом приступать к замене регулятора напряжения. Так же данная статья вам понадобится для замены щёток генератора, т.к. щётки и регулятор напряжения устанавливаются на генератор в сборе.


    Итак, как же снять регулятор напряжения? Открываем капот, снимаем минусовую клемму аккумулятора, находим генератор, отсоединяем колодку проводов «D».

    - Снимаем защитный резиновый колпачок с наконечников проводов вывода «+». Откручиваем гайку крепления этих проводов, снимаем их с блока генератора.

    Находим регулятор напряжения, и крестовой отверткой откручиваем его крепления.

    Вынимаем регулятор напряжения в сборе с щётками, и отключаем от него колодку проводов.

    Устанавливаем регулятор напряжения строго в обратной последовательности. Стоит отметить, что в последнее время, многие автолюбители стали пользоваться трёхуровневым регулятором напряжения, для того, чтобы избавиться от просадок напряжения в бортовой сети.

    Подписывайтесь на наши ленты в

    Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования автомобиля, и зарядки аккумуляторной батареи при работающем двигателе. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля и работы двигателя не происходил прогрессивный разряд аккумуляторной батареи или ее перезаряд, а питание потребителей осуществлялось напряжением и током требуемой величины.
    Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.

    ЭДС индукции в соответствии с законом Фарадея, зависит от скорости перемещения проводника в магнитном поле и величины магнитного потока:

    Е = с×Ф×ω ,

    где с - постоянный коэффициент, зависящий от конструкции генератора;
    ω - угловая скорость ротора (якоря) генератора:
    Ф - магнитный поток возбуждения.

    Поэтому напряжение, вырабатываемое генератором, зависит от частоты вращения его ротора и интенсивности магнитного потока, создаваемого обмоткой возбуждения. В свою очередь мощность магнитного потока зависит от величины тока возбуждения, который изменяется пропорционально частоте вращения ротора, поскольку ротор выполнен в виде вращающегося электромагнита.
    Кроме того, ток, поступающий в обмотку возбуждения, зависит от величины нагрузки, отдаваемой в данный момент потребителям бортовой сети автомобиля. Чем больше частота вращения ротора и ток возбуждения, тем большее напряжение вырабатывает генератор, чем больше ток нагрузки, тем меньше генерируемое напряжение.

    Пульсация напряжения на выходе из генератора недопустима, поскольку это может привести к выходу из строя потребителей бортовой электрической сети, а также перезаряду или недозаряду аккумулятора. Поэтому использование на автомобилях в качестве источника электроэнергии генераторных установок обусловило использование специальных устройств , поддерживающих генерируемое напряжение в приемлемом для работы потребителей диапазоне. Такие устройства называются реле-регуляторы напряжения.
    Функцией регулятора напряжения является стабилизация вырабатываемого генератором напряжения при изменении частоты вращения коленчатого вала двигателя и нагрузки в бортовой электросети.

    Наиболее просто контролировать величину вырабатываемого генератором напряжения изменением величины тока в обмотке возбуждения, регулируя тем самым мощность создаваемого обмоткой магнитного поля. Можно было бы использовать в качестве ротора постоянный магнит, но управлять магнитным полем такого магнита сложно, поэтому в генераторных установках современных автомобилей применяются роторы с электромагнитами в виде обмотки возбуждения.

    На автомобилях для регулирования напряжения генератора применяются регуляторы напряжения дискретного типа, в основу работы которых положен принцип действия различного рода реле. По мере развития электротехники и электроники, регуляторы генерируемого напряжения претерпели существенную эволюцию, от простых электромеханических реле, называемых вибрационными регуляторами напряжения, до бесконтактных интегральных регуляторов, в которых полностью отсутствуют подвижные механические элементы.

    

    Вибрационный регулятор напряжения

    Рассмотрим работу регулятора на примере простейшего вибрационного (электромагнитного) регулятора напряжения.

    Вибрационный регулятор напряжения (рис. 1 ) имеет добавочный резистор R о , который включается последовательно в обмотку возбуждения ОВ . Величина сопротивления резистора рассчитана так, чтобы обеспечить необходимое напряжение генератора при максимальной частоте вращения. Обмотка регулятора ОР , намотанная на сердечнике 4 , включена на полное напряжение генератора.

    При неработающем генераторе пружина 1 оттягивает якорь 2 вверх, удерживая контакты 3 в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты 3 и якорь 2 подключена к генератору, минуя резистор R о .

    С увеличением частоты вращения ток возбуждения работающего генератора и его напряжение растут. При этом увеличивается сила тока в обмотке регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленного значения, силы магнитного притяжения якоря 2 к сердечнику 4 недостаточно для преодоления силы натяжения пружины 1 и контакты 3 регулятора остаются замкнутыми, а ток в обмотку возбуждения проходит, минуя добавочный резистор.

    При достижении напряжения генератора значения размыкания U р сила магнитноо притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора напряжения размыкаются. При этом в цепь обмотки возбуждения включится добавочный резистор, и ток возбуждения, достигший к моменту срабатывания реле значения I р , начнет падать.
    Уменьшение тока возбуждения влечет за собой уменьшение напряжения генератора, а это, в свою очередь, приводит к уменьшению тока в обмотке ОР . Когда напряжение уменьшится до значения замыкания U з , сила натяжения пружины преодолеет силу магнитного притяжения якоря к сердечнику, контакты вновь замкнутся, и ток возбуждения увеличится. При работающем двигателе и генераторе этот процесс периодически повторяется с большой частотой.
    В результате происходит пульсация напряжения генератора и тока возбуждения. Среднее значение напряжения U ср определяет напряжение генератора. Очевидно, что это напряжение зависит от силы натяжения пружины реле, поэтому изменяя натяжение пружины можно регулировать напряжение генератора.

    В конструкцию вибрационных регуляторов (рис. 1, а ) входит ряд дополнительных узлов и элементов, назначение которых - обеспечить повышение частоты колебания якоря с целью уменьшения пульсации напряжения (ускоряющие обмотки или резисторы), уменьшение влияния температуры на величину регулируемого напряжения (добавочные резисторы из тугоплавких металлов, биметаллические пластины, магнитные шунты), стабилизацию напряжения (выравнивающие обмотки).

    Недостатком вибрационных регуляторов напряжения является наличие подвижных элементов, вибрирующих контактов, которые подвержены износу, и пружины, характеристики которой в процессе эксплуатации меняются.
    Особенно сильно эти недостатки проявились в генераторах переменного тока , у которых ток возбуждения почти в два раза больше, чем в генераторах . Использование раздельных ветвей питания обмотки возбуждения и двухступенчатых регуляторов напряжения с двумя парами контактов не решали проблему полностью и приводили к усложнению конструкции регулятора, поэтому дальнейшее совершенствование шло, прежде всего, по пути широкого использования полупроводниковых приборов.
    Сначала появились контактно-транзисторные конструкции, а затем и бесконтактные.

    Контактно-транзисторные регуляторы напряжения являются переходной конструкцией от механических регуляторов к полупроводниковым. При этом транзистор выполнял функцию элемента, прерывающего ток в обмотку возбуждения, а электромеханическое реле с контактами управляло работой транзистора. В таких регуляторах напряжения сохранялись электромагнитные реле с подвижными контактами, однако, благодаря использованию транзистора ток, протекающий через эти контакты, удалось значительно уменьшить, увеличив тем самым срок службы контактов и надежность работы регулятора.

    В полупроводниковых регуляторах ток возбуждения регулируется с помощью транзистора, эмиттерно-коллекторная цепь которого включена последовательно в обмотку возбуждения.
    Транзистор работает аналогично контактам вибрационного регулятора. При повышении напряжения генератора выше заданного уровня транзистор запирает цепь обмотки возбуждения, а при снижении уровня регулируемого напряжения транзистор переключается в открытое состояние.

    Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов).
    С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В , выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается.
    Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.

    Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора.
    Этот процесс запирания и отпирания регулятора происходит с высокой частотой . Поэтому колебания напряжения на выходе генератора незначительны, и практически можно считать его постоянным, поддерживаемым на уровне 13,5…14,2 В .

    Конструктивно регуляторы напряжения могут выполняться в виде отдельного прибора, устанавливаемого раздельно с генератором, или интегральными (интегрированными), устанавливаемыми в корпусе генератора. Интегральные регуляторы напряжения обычно объединяются с щеточным узлом генератора.

    Необходимый диапазон регулируемого напряжения устанавливается в зависимости от состояния аккумуляторной батареи и температуры окружающего воздуха. Для изменения диапазона регулируемого напряжения отверните заглушку, закрывающую переключатель, и поверните рычажок переключателя в требуемое положение. При установке заглушки на место обратите внимание на наличие уплотнительного кольца.

    Основные технические характеристики регулятора напряжения РР132А.

    Напряжение, поддерживаемое регулятором при температуре окружающей среды плюс 20 градусов, В:
    - в положении переключателя «мин»: 13,6+-0.35
    - в положении переключателя «ср»: 14,2+-0.35
    - в положении переключателя «макс»: 14,7+-0.35

    Техническое обслуживание регулятора напряжения РР132А.

    После запуска двигателя проследите за состоянием регулятора напряжения по показаниям. Если на средних частотах вращения коленчатого вала амперметр показывает значительный зарядный ток, значение которого быстро падает по мере зарядки аккумуляторной батареи, то регулятор исправен. Во время очередного технического обслуживания проверьте надежность соединения проводов на клеммах регулятора напряжения.

    Ремонт регулятора напряжения РР132А.

    При подозрении на неисправность проверьте регулятор напряжения на специализированном стенде, а при его отсутствии - на стенде, собранном, как показано на схеме ниже. Аккумуляторная батарея должна иметь степень заряженности не ниже 75 %, класс точности - не ниже 0,5, амперметра - не ниже 1,0.

    Рычажок переключателя должен быть установлен поочередно в трех положениях, соответствующих минимальному, среднему и максимальному напряжению. Снятие показателей проводите непосредственно после включения на режим.

    При токе нагрузки в 14 Ампер, частоте вращения ротора генератора 3500 оборотов в минуту и температуре окружающего воздуха 20+-5 градусов регулятор напряжения РР132А должен обеспечивать значения напряжения указанные в его характеристиках. При этом ток возбуждения должен быть не более 3,5 Ампер. Если уровень настройки напряжения отличается от пределов, указанных выше, более чем на +-0,15 Вольт, то подбором резисторов 10, 11 и 12 добейтесь необходимых значений напряжений.

    Если регулятор не обеспечивает нормального возбуждения, проверьте падение напряжении в регуляторе, подключив вольтметр между выводами Ш и «+» . Рычажок переключателя напряжения должен быть в среднем положении, Реостатом устанавливается ток 3 Ампера. При температуре окружающего воздуха 25+-10 градусов падение напряжения должно быть не более 2 Вольт.

    Необходимо иметь в виду, что на регулируемое напряжение влияет состояние контактов выключателя зажигания. Если контакты подгорели, то регулируемое напряжение будет подниматься. Падение напряжения на выводах выключателя зажигания должно быть не более 0,15 Вольт при токе 12 Ампер.

    Прежде чем искать неисправности в работе генератора или регулятора напряжения, тщательно проверьте состояние электропроводки, правильность схемы соединения проводов и надежность выключателя зажигания и стартера. Неисправности, обнаруженные при проверке должны быть устранены. Выключатель зажигания с большим сопротивлением замените.

    Отказ регулятора напряжения РР132А в пути.

    При отказе в работе регулятора напряжения в пути можно продолжать движение, но при этом:

    1. При отсутствии зарядного тока через каждые 150-200 километров пробега соедините на 25-30 минут клеммы «+» и Ш генератора и двигайтесь со скоростью, при которой зарядный ток будет не более 20 Ампер.

    2. При большой силе зарядного тока, более 20 Ампер, отсоедините штепсельный разъем регулятора и через 150-200 километров пробега включите его на 25-30 минут для подзарядки аккумулятора.

    Отключать при этом аккумуляторную батарею, а не регулятор напряжения, нельзя. Двигайтесь при включенном регуляторе, как и в первом случае, со скоростью, при которой зарядный ток будет не более 20 Ампер.

    Особенности эксплуатации регулятора напряжения РР132А.

    Во время эксплуатации запрещается соединять выводы Ш регулятора и генератора с массой и выводы Ш и «+» регулятора между собой, так как при этом откажет регулятор напряжения. Запрещается запускать двигатель при отключенном плюсовом проводе генератора, так как это приведет к возникновению на его выпрямительном блоке повышенного напряжения и к отказу в работе диодов.

    В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети.


    Поделитесь работой в социальных сетях

    Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

    ВВЕДЕНИЕ 3

    Описание прибора 4

    Основное назначение и область применения 5

    Виды регуляторов напряжений 6

    регуляторы переменного напряжения на основе тиристоров 7

    регуляторы переменного напряжения на основе магнитных усилителей 8

    регуляторы переменного напряжения на основе транзисторов 9

    синхронный компенсатор: назначение, принцип работы 10

    Принцип работы регулятора напряжения 1 3

    Заключение 1 4

    Список литературы 1 5

    Введение: Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Расчеты показывают, что как правило, дополнительные затраты, связанные с применением регулирующих устройств и их автоматизацией, окупаются той экономией, которая достигается при улучшении режимов напряжений в электрических сетях и системах. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом, возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети. Представляется целесообразным построение локальной системы автоматического регулирования с применением транзисторов.

    Цель исследования : Изучить принцип работы и применения регуляторов напряжения для повышения эффективности функционирования электротехнических устройств.

    Задачи исследования:

    1. Узнать область назначения и применения регулятора напряжения.
    2. Определить виды регуляторов напряжения.
    3. Изучить принцип работы регуляторов напряжения.
    4. Сделать выводы о проделанной работе.

    1. Описание прибора:

    Регулятор напряжения представляет собой электрический прибор, который регулирует электрическое напряжение, вырабатываемое генератором переменного тока или генератором постоянного тока в интервале от 14 до 14,4 В при номинальном напряжении сети 12 В и от 7 до 7,2 В при номинальном напряжении сети 6 В.

    Регулируемое в указанном интервале напряжение обеспечивает правильную работу батареи и защиту приборов от разрушения. Предпосылкой правильной работы является недопущение возможности перегрузки электрической мощности регулятора. Например: Регулятор имеет максимальную электрическую мощность 200 Вт. Это значит, что мощность генератора переменного тока должна быть P alt При перегрузке может наступить разрушение регулятора, либо разряд и разрушение батареи.

    Регулятор напряжения переменного тока обеспечивает среднее значение напряжения в указанном интервале. Это означает, что, например, измеряемое осциллоскопом напряжение меняется периодически на большую величину, чем номинальное напряжение. Например, от +- 20 до 30 В. Это среднее значение гарантирует, что приборы типа электрических лампочек не разрушатся. Однако действует такое правило, по которому сумма электропотребления приборов должна быть Ps[Вт]

    2. Основное назначение и область применения:

    Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Существуют различные способы регулирования напряжения. Разнообразие решений обусловлено требованиями по устойчивости, необходимой точности регулирования, параметрами нагрузок, экономическими и другими факторами.

    Регулирование в источниках вторичного электропитания

    Величину выпрямленного напряжения в ряде случаев нужно изменять. Такая необходимость может возникнуть при включении мощных двигателей, накала генераторных ламп, для уменьшения бросков тока при включении. Регулирование выпрямленного напряжения можно осуществлять на стороне переменного тока (входе), на стороне постоянного тока (выходе) и в самом выпрямителе применением регулируемых вентилей.

    В качестве регуляторов напряжения на стороне переменного тока применяются:

    регулируемые трансформаторы или автотрансформаторы.

    регулирующие дроссели (магнитные усилители).

    В регулируемом трансформаторе или автотрансформаторе первичная или вторичная обмотка выполняются с несколькими выводами. С помощью переключателя изменяется число витков обмотки и, следовательно выходное напряжение трансформатора или автотрансформатора. При коммутации обмоток часть витков может оказаться замкнутой накоротко движком переключателя, что приведет к созданию в замкнутых витках чрезмерно больших токов и к выходу трансформатора из строя. Поэтому такую коммутацию рекомендуется производить после отключения трансформатора из сети. Это является большим недостатком.

    3. Виды регуляторов напряжений.

    1. По количеству узлов в одном корпусе:

    • только регулятор напряжения
    • регулятор напряжения вместе с выпрямителем электрического тока
    • комбинированный регулятор для напряжения переменного тока и напряжения постоянного тока с выпрямителем

    2. По номинальному напряжению в сети транспортного средства и изменению напряжения:

    • номинальное напряжение 6 или 12 В
    • напряжение переменного тока или напряжение постоянного тока

    3. По электрической мощности (нагрузке) регулятора

    4. По числу фаз на 1-фазные и 3-фазные

    5. По типу регулируемого генератора постоянного тока – для генераторов с независимым возбуждением и генераторов с постоянными магнитами.

    3.1. Регуляторы переменного напряжения на основе тиристоров:

    Тиристорные регуляторы позволяют значительно уменьшить физические размеры устройства, снизить его стоимость и сократить потери электроэнергии, но они обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Тиристорные регуляторы переменного напряжения широко применяются в электроприводе, также для питания электротермических установок. Применение тиристоров для коммутации статорных цепей асинхронных двигателей с короткозамкнутым ротором позволяет решить задачу создания простого и надежного бесконтактного асинхронного электропривода. Можно эффективно воздействовать на процессы разгона, замедления, осуществлять интенсивное торможение и точную остановку. Безыскровая коммутация, отсутствие подвижных частей, высокая степень надежности позволяют применять тиристорные регуляторы во взрывоопасных и агрессивных средах.

    Обобщенная схема тиристорного регулятора переменного напряжения приведена на рис. 1:

    3.2. Регуляторы переменного напряжения на основе магнитных усилителей:

    Рассмотрим регуляторы переменного напряжения на основе магнитных усилителей, тиристоров и транзисторов. Магнитный усилитель (МУ) представляет собой статический электромагнитный аппарат, позволяющий при помощи управляющего сигнала постоянного тока небольшой мощности управлять значительными мощностями в цепи переменного тока . Регулирующий дроссель (или магнитный усилитель) включается на входе выпрямителя. Если обмотки переменного тока магнитного усилителя включить последовательно с нагрузкой и изменить ток в обмотке управления, то будет изменяться индуктивное сопротивление обмоток дросселя и падение напряжения на этих обмотках. Следовательно, будет изменяться. При увеличении, уменьшается, уменьшается, уменьшается и растет.

    Регуляторы напряжения, построенные на основе магнитных усилителей, обладают рядом достоинств: практически неограниченный срок службы, простота эксплуатации, высокая температурная и временная стабильность характеристик, высокий КПД. Несмотря на ряд достоинств, регуляторы, построенные на базе магнитных усилителей, редко применяются в современных системах управления, так как существенным недостатком таких устройств являются их большие габариты и масса, вызванные конструктивными особенностями магнитных усилителей.

    3.3. Регуляторы переменного напряжения на основе транзисторов:

    Транзисторный регулятор напряжения не вносит помех в электрическую сеть и его можно применять для управления нагрузкой, как с активным, так и индуктивным сопротивлением. Регулятор можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора.

    Обобщенная схема транзисторных регуляторов переменного напряжения приведена на рисунке 2:

    3.4. Синхронный компенсатор назначение, принцип работы:

    Понимание того, насколько важно качество электроэнергии (соотношение ее активной и реактивной составляющих – коэффициент мощности), постоянно растет, и вместе с ним будет расти и применение компенсации коэффициента мощности (ККМ). Улучшение качества электроэнергии путем увеличения ее коэффициента мощности уменьшает расходы и гарантирует быстрое возвращение затраченных капиталов. В распределении мощности в сетях с малым и средним напряжением ККМ уделяет основное внимание соотношению активной и реактивной составляющих мощности (cosφ) и оптимизации стабильности напряжения, путем генерации реактивной мощности с целью увеличения качества и стабильности напряжения на распределительном уровне.

    Компенсатор синхронный, синхронный электродвигатель, работающий без активной нагрузки, предназначенный для улучшения коэффициента мощности и регулирования напряжения в линиях электропередачи и в электрических сетях В зависимости от изменений величины и характера нагрузки (индуктивная или емкостная) электрической сети меняется напряжение у потребителя (на приемных концах линии электропередачи). Если нагрузка электрической сети велика и носит индуктивный характер, к сети подключают К. с., работающий в перевозбужденном режиме, что эквивалентно подключению емкостной нагрузки. При передаче электроэнергии по линии большой протяженности с малой нагрузкой на режим работы сети заметно влияет распределенная емкость в линии. В этом случае для компенсации емкостного тока в сети к линии подключают К. с., работающий в недовозбужденном режиме. Постоянство напряжения в линии поддерживается регулированием тока возбуждения от напряжения регулятора. Пуск К. с. осуществляется также, как и обычных синхронных двигателей; сила пускового тока К. с. составляет 30–100% его номинального значения. К. с. изготовляют мощностью до 100 ква и более; мощные К. с. имеют водородное или водяное охлаждение. Применяются главным образом на электрических подстанциях.

    Любое электрооборудование, использующее магнитные поля (двигатели, дроссели, трансформаторы, оборудование индукционного нагрева, генераторы для дуговой сварки) подвержено определенному запаздыванию при изменении тока, которое называется индуктивностью. Это запаздывание электрооборудования сохраняет направление тока на определенное время, не смотря на то, что отрицательное напряжение пытается его переменить. Пока этот фазовый сдвиг сохраняется, ток и напряжение имеют противоположные знаки. Производящаяся все это время отрицательная мощность отдается обратно в сеть. Когда ток и напряжение по знаку снова уравниваются, необходима такая же энергия, чтобы восстановить магнитные поля индукционного оборудования. Эта магнитная реверсионная энергия называется реактивной мощностью. В сетях с напряжением переменного тока (50/60 Hz) такой процесс повторяется 50–60 раз в секунду. Очевидным выходом из данной ситуации является накопление реверсионной магнитной энергии в конденсаторах с целью освобождения сети (линии питания). Именно поэтому автоматические системы компенсации реактивной мощности (расстроенные / стандартные) устанавливаются на мощную нагрузку, например, на заводах. Такие системы состоят из нескольких конденсаторных блоков, которые могут быть подключены и отключены по мере надобности, и управляются контролером ККМ на основании данных трансформатора тока.

    Низкий коэффициент мощности (cosφ) приводит: к повышению затрат и потребления энергии,уменьшению мощности, передающейся по сети, потерям мощности в сети, повышению потерь трансформатора, повышенному падению напряжения в распределенных сетях питания. Увеличение коэффициента мощности может быть достигнуто путем: компенсации реактивной мощности конденсаторами, активной компенсации – использование полупроводников, перевозбуждением синхронных машин (двигатель / генератор)

    В системе электроснабжения потери в сетях составляют 8–12% от объема производства. Для уменьшения этих потерь необходимо: правильно о п ределять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электр о магнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это – созд а ние быстродействующих средств компенсации реактивной мощности, улу ч шающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономи ч ного оборудования и оптимизация его режимов работы. Режим работы энергосистемы характеризуется тремя параметрами: напряжением, током и активной мощностью. Вспомогательный параметр – реактивная мощность. Реактивная мощность и энергия ухудшают показатели работы энергосист и чивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивную мо щ ность потребляют такие элементы питающей сети как трансформаторы эле к тростанций; главные понизительные электростанции, линии электропередач – на это приходится 42% реактивной мощности генератора, из них 22% на п о вышающие трансформаторы; 6,5% на линии электропередач районной си с темы; 12,5% на понижающие трансформаторы. Основные же потребители реактивной мощности – асинхронные электр о двигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами. Говоря иначе, существуют приемники электроэнергии, нуждающиеся в реактивной мощности. Одной реактивной мощности, выдаваемой генератором явно недостаточно. Увел и чивать реактивную мощность, выдаваемую генератором нецелесообразно из-за вышеперечисленных причин, т.е. нужно выдавать реактивную мо щ ность именно там, где она больше всего нужна.

    4. Принцип работы регулятора напряжения:

    В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. При подключении регулятора к электросети не допускается менять полюса + и – батареи. Регулятор может разрушиться.

    Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

    Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

    Заключение:

    Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Сделав выводы об устройстве и применении регулятора напряжения переменного тока можно с уверенностью сказать, что данное устройство может достаточно облегчить работу как радиотехника так и обычного человека в его использовании для улучшения качество потребляемой электроэнергии.

    Список литературы:

    1. Бутов А. „Устройство защиты маломощных ламп накаливания“, Журнал „Радио“ №2, 2004г.
    2. Чекаров А. „Беспомеховый регулятор напряжения“ Журнал „Радио“, №11, 1999г.
    3. Основы радиотехники [Текст] / Н. М. Изюмов, Д. П. Линде. - 4-е изд., перераб. и доп. - М. : Радио и связь, 1983. - 376 с. : ил. - (Массовая радиобиблиотека; вып. 1059). - Б. ц.
    4. Радиотехника [Текст] : к изучению дисциплины / И. П. Жеребцов. - 4-е изд., перераб. и доп. - М. : [б. и.], 1958. - 495 с. - Б. ц.
    5. Практикум по электротехнике и радиотехнике [Текст] : пособие для студ. пед. ин-тов / Под ред. Н.Н. Малова. - М. : Учпедгиз, 1958. - 166 с. - Б. ц.
    6. Курс электротехники и радиотехники [Текст] : учебное пособие: для пед. ин-тов / Н.Н. Малов. - М. : Госфизмат, 1959. - 424 с. - Б. ц.

    PAGE \* MERGEFORMAT 2

    Другие похожие работы, которые могут вас заинтересовать.вшм>

    11466. Стратегический менеджмент как основа повышения эффективности функционирования предприятия в кризисной ситуации 32.6 KB
    В прошлом предприятия могли успешно функционировать обращая внимание в основном на ежедневную работу на внутренние проблемы связанные с повышением эффективности использования ресурсов в текущей деятельности. Сейчас же хотя не снимается задача рационального использования потенциала в текущей деятельности исключительно важным становиться осуществление такого управления которое обеспечивает адаптацию предприятия к быстро меняющимся условиям окружающей среды. Стратегическими являются те решения и действия которые имеют...
    16837. Проблема применения коэффициента замещения как основного индикатора эффективности функционирования пенсионной системы в России 8.8 KB
    Главным образом с позиции застрахованного лица судить об эффективности функционирования схем пенсионного страхования в которых финансирование выплат осуществляется за счет уплаты страховых взносов можно по уровню замещения пенсией утраченного заработка работника. Такой показатель в теории пенсионного страхования называется коэффициентом замещения. Так в проекте Стратегии долгосрочного развития пенсионной системы РФ сказано что задачами развития пенсионной системы являются обеспечение коэффициента замещения трудовой пенсией по старости...
    2542. Знакомство с практическими схемами автоматических регуляторов напряжения СГ 306.51 KB
    Принципиальная схема АРН генераторов серии ТМВ Автоматическое регулирование напряжения СГ серии ТМВ обеспечивается с точностью 57 системой АФК. Кроме того регулятор имеет корректор напряжения который доводит точность стабилизации напряжения до 12. В качестве компаундирующего сопротивления используется трехфазный дроссель Др включенный в каждую фазу обмотки напряжения возбудительного трансформатора.
    948. Пути повышения эффективности коммерческой работы в розничной торговой организации 100.41 KB
    Теоретические основы исследования эффективности коммерческой деятельности торгового предприятия. Функции цели задачи коммерческой деятельности розничной торговой организации. Коммерческая деятельность является одной из важнейших областей человеческой деятельности возникших в результате разделения труда. Однако такое широкое толкование коммерческой деятельности не согласуется с ранее изложенным подходом к коммерции как торговым процессам по осуществлению актов куплипродажи товаров.
    5380. Разработка учебного стенда Устройство и принцип работы принтера как средство повышения качества подготовки учащихся специальности Техническое обслуживание средств вычислительной техники и компьютерных сетей 243.46 KB
    Классифицируются принтеры по пяти основным позициям: принципу работы печатающего механизма, максимальному формату листа бумаги, использованию цветной печати, наличию или отсутствию аппаратной поддержки языка PostScript, а также по рекомендуемой месячной нагрузке.
    19917. Направления совершенствования обучения персонала и повышения эффективности работы АО ДБ «Банк Китая в Казахстане» 146.22 KB
    Роль обучения персонала в стратегии развития организации. Процесс профессионального обучения и оценка его эффективности. Управление процессом обучения и формирования эффективного персонала организации. Методики совершенствования обучения персонала.
    15626. Пути повышения эффективности организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении 68.85 KB
    Анализ социально-педагогической работы с педагогически запущенными подростками как проблема исследования. Исследование зарубежного и отечественного опыта в изучении проблемы педагогической запущенности. Состояние организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении. Обоснование модели социально-педагогической работы с педагогически запущенными подростками в общеобразовательной школе.
    598. Понятие защитного заземления и принцип его действия. Виды заземляющих устройств 8.92 KB
    Понятие защитного заземления и принцип его действия. Назначение заземления – устранение опасности поражения электротоком в случае соприкосновения к корпусу. Расчет заземления производится по допустимым напряжениям прикосновения и шага или допустимому сопротивлению растекания тока заземлителя. Расчет заземления имеет целью установить главные параметры заземления – число вертикальных заземлителей и их размеров порядок размещения заземлителей длины заземляющих проводников и их сечения.
    6655. Полевые транзисторы, принцип их работы 48.85 KB
    При увеличении отрицательного значения напряжения U происходит увеличение ширины pn перехода за счет уменьшения ширины nканала см. Таким образом управление потоком рабочих носителей заряда в полевом транзисторе осуществляется за счет изменения сопротивления канала при изменении напряжения затвористок. Очевидно степень уменьшения ширины канала а следовательно его сопротивление будет увеличиваться при увеличении напряжения U. При малых значениях напряжения U обусловленное этим напряжением уменьшение ширины канала не существенно и...
    14245. Назначение, устройство и принцип работы магнитолы 68.26 KB
    Основными функциональными узлами магнитофона являются лентопротяжный механизм ЛПМ блок магнитных головок БМГ БВГ для записи воспроизведения и стирания сигналов и электронные устройства обеспечивающие работу БМГ. Характеристики ЛПМ в наибольшей степени влияют на качество звуковоспроизведения аппарата в целом потому что искажения которые неидеальный ЛПМ вносит в сигнал невозможно исправить никакой коррекцией в аналоговом электронном тракте...

    Регуляторы напряжения


    К атегория:

    Передвижные электростанции

    Регуляторы напряжения


    Передвижные станции мощностью до 200 кет работают, как правило, в условиях резко меняющихся нагрузок. Пуск коротко-замкнутых электродвигателей или быстрое отключение больших нагрузок вызывает резкие колебания напряжения генератора, что отрицательно отражается на работе токоприемников, включенных в сеть, питаемую данным генератором.

    Для поддержания на шинах щита управления номинального напряжения в схемах передвижных электростанций предусмотрено регулирование напряжения генераторов при помощи специальных регуляторов.

    Генераторы с самовозбуждением СГ-9С и ЧС-7 в регулировании не нуждаются. Их настраивают на заводе с таким расчетом, чтобы после процесса самовозбуждения по обмотке возбуждения генератора проходил выпрямленный ток такой силы, при которой на зажимах генератора устанавливается номинальное напряжение. Для этого подбирают соответствующее число витков первичной и вторичной обмоток (высшего и низшего напряжения) стабилизирующего трансформатора, а также число пластин и положение магнитного шунта.

    При холостом ходе трансформатора, когда но цепи нагрузки, а значит, и по последовательной обмотке трансформатора ток не протекает, магнитное поле трансформатора создается только током первичной обмотки (обмотки высшего напряжения).

    С возрастанием нагрузки генератора по последовательной обмотке проходит ток нагрузки и соответственно магнитное поле трансформатора создается током не только первичной обмотки, но и последовательной, в результате чего возрастают напряжение вторичной обмотки (обмотки низшего напряжения) и сила тока возбуждения генератора. Соответствие между изменением силы тока нагрузки и силы тока возбуждения обеспечивает постоянство напряжения самосинхронизирующихся генераторов при изменении нагрузки в широких пределах.

    У синхронных генераторов с независимым (машинным) возбуждением СГ, С и Сд напряжение регулируется ручными или автоматическими регуляторами напряжения.

    В качестве ручного регулятора напряжения обычно применяют шунтовые реостаты.

    Шунтовой реостат состоит из системы контактов, сопротивлений и ползункового устройства с рукояткой.

    Наиболее распространенным типом шунтового реостата для ручного регулирования напряжения генераторов передвижных станций является регулятор возбуждения РВ-5200. Регуляторы этой серии, выполняют как с ручным непосредственным приводом, так и с приводом ПД-9006/3 для дистанционного ручного регулирования напряжения.

    Регулятор включается в цепь возбуждения и позволяет регулировать напряжение генератора при изменениях нагрузки от нуля до номинальной. Сопротивление в цепи возбуждения создается с помощью проволочных спиралей реостата, изготовленных из материалов, обладающих большим удельным сопротивлением (нихром, фехраль, константан и др.).

    Шунтовой реостат описанной конструкции применяется для ручного регулирования напряжения в передвижных станциях ПЭС -60 и ПЭС -100 с генераторами СГ и С. Однако ручное регулирование требует от персонала, обслуживающего станцию, постоянного наблюдения за изменением нагрузок и быстрого оперативного вмешательства ери резком возрастании или падении напряжения. Все это усложняет обслуживание и снижает надежность работы передвижных станций.

    Для упрощения эксплуатации и обеспечения нормальной и бесперебойной работы станций в их схемах предусматривается автоматическое регулирование напряжения, осуществляемое при помощи специальных автоматических устройств.

    Для автоматического регулирования напряжения в передвижных электростанциях с генераторами СГ и С применяют универсальное компаундирующее устройство УКУ -ЗМ или вибрационный регулятор напряжения АВРН -3.

    Универсальное компаундирующее устройство УКУ -ЗМ (рис. 1) состоит из селенового выпрямителя, трехфазного, трансформатора и щитка зажимов, смонтированных на общем основании, штампованном из листовой стали толщиной 2 мм.

    Рис. 1. Компаундирующее устройство УКУ -ЗМ: 1 - селеновый выпрямитель, 2 - трансформатор, 3 - щиток зажимов, 4 - подвижное ярмо, 5 - регулировочный винт

    Вторичные обмотки трансформатора насажены непосредственно на стержень магнитопровода, а первичные уложены поверх вторичных. Первичные обмотки выполнены медным проводом прямоугольного сечения с двухслойной бумажной изоляцией и состоят из двух секций по пяти витков каждая. Концы проводов каждой секции выведены на щиток и присоединены к зажимам.

    В отличие от других трансформаторов магнитопровед трансформатора УКУ -ЗМ имеет подвижное ярмо. Постепенным перемещением ярма плавно изменяют индуктивность трансформатора и силу тока вторичных обмоток, что необходимо для регулирования степени компаундирования. Ярмо магнитопрово-да перемещают регулировочным винтом, головка которого выведена на крышку кожуха.

    Первичную обмотку трансформатора включают последовательно в силовую цепь генератора и через нее проходит весь ток нагрузки. От вторичных обмоток ток поступает к селеновому выпрямителю, который выпрямляет его и направляет в цепь возбуждения возбудителя дополнительно к току, создаваемому в обмотках возбуждения. Токи вторичных обмоток и обмоток возбуждения суммируются.

    Действие компаундирующего устройства основано на прямой зависимости тока возбуждения от тока нагрузки. С возрастанием нагрузочного тока, проходящего через первичную обмотку трансформатора, автоматически повышается сила тока во вторичных обмотках. При этом соответственно увеличивается сила дополнительного тока возбуждения, протекающего от селенового выпрямителя к обмоткам возбуждения. С уменьшением силы тока нагрузки уменьшаются сила тока во вторичных обмотках и сила дополнительного тока возбуждения. Напряжение на зажимах генератора будет оставаться неизменным в определенных пределах.

    В компаундирующем устройстве УКУ -ЗМ имеется щиток зажимов, который изготовляют обычно из гетинакса или текстолита толщиной 6-8 мм.

    На щитке расположено 14 зажимов: по четыре зажима на каждую фазу для переключения секций первичной обмотки и подключения устройства к силовой цепи генератора и два зажима для присоединения обмотки возбуждения возбудителя. Трансформатор, выпрямитель и щиток закрыты общим металлическим кожухом.

    Компаундирующее устройство включают в силовую цепь генератора между его линейными зажимами и щитом управления или между нулевыми выводами, если генератор имеет шесть выводов.

    Секции первичной обмотки трансформатора соединяют последовательно или параллельно. Способ соединения секций выбирают в зависимости от силы линейного тока генератора: при силе тока до 50 а секции соединяют последовательно, при силе тока свыше 50 и до 100 а - параллельно.

    Обмотку возбуждения возбудителя генератора подключают к зажимам выпрямленного тока компаундирующего устройства с соблюдением полярности: плюсовой вывод обмотки возбуждения возбудителя подключают к плюсовому зажиму щитка.

    Универсальное компаундирующее устройство УКУ -ЗМ предназначено для автоматического регулирования напряжения генераторов С и СГ мощностью до 60 ква и аналогичных им типов генераторов, имеющих ток возбуждения не более 4,5 а при напряжении до 45 в.

    Для регулирования напряжения генераторов мощностью -выше 60 и до 100 ква часто применяют вибрационный регулятор АВРН.

    Рис. 2. Схемы присоединения универсального компаундирующего устройства УКУ -ЗМ: а - к линейным выводам генератора, б - к нулевым выводам фаз

    Автоматический вибрационный регулятор напряжения АВРН -3 состоит из электромагнита, конденсаторов, системы контактов и регулировочных винтов. Его действие основано на изменении сопротивления в цепи возбуждения путем автоматического включения или выключения шунтового реостата.

    Схема соединения регулятора АВРН -3 с генератором показана на рис. 4. Электромагнит подключен к фазным зажимам генератора, а контакты включены параллельно шунто-вому реостату возбуждения возбудителя. Подвижный вольфрамовый контакт и жестко укрепленный на магнитопроводе электромагнита неподвижный контакт нормально замкнуты и шунтируют реостат.

    В начале работы генератора сопротивление в цепи возбуждения отсутствует (реостат зашунтирован контактами) и напряжение быстро возрастает. При этом якорь притягивается к электромагниту, а укрепленный на нем подвижный контакт замыкается с неподвижным. Сохранению такого положения подвижного и неподвижного контактов препятствует пружина, которая отталкивает подвижный контакт от неподвижного, возвращая его в исходное положение. Под встречным действием сил притяжения электромагнита и пружины подвижный контакт начинает вибрировать, замыкаясь и размыкаясь с неподвижным контактом. Вследствие такой вибрации реостат, первоначальна полностью зашунтированный, периодически отключается от цепи возбуждения или включается в нее. Чем продолжительнее будут замкнуты контакты, тем длительнее будет зашунтирован реостат и тем больше будет ток возбуждения. С увеличением времени, в течение которого контакты разомкнуты, продолжительность шунтирования реостата соответственно сократится и ток возбуждения уменьшится, а следовательно, снизится и напряжение на зажимах генератора.

    Рис. 3. Автоматический регулятор напряжения АВРН -3: 1 - катушка электромагнита, 2 - якорь электромагнита, 3 - пружина якоря, 4 - прокладки, 5 - кожух вибратора, 6-подвижный контакт, 7 - неподвижный контакт, 8 - регулировочные винты, 9 - регулировочная пружина, 10- основание вибратора, 11 - щиток со штепсельным разъемом, 12 - корпус регулятора, 13 - зарядный конденсатор, 14 - искрогасительный конденсатор

    Подвижный контакт закреплен на якоре электромагнита, установленном на пластинчатой пружине, противодействующей притяжению якоря. Изменив натяжение пружины при помощи винта, можно увеличить или уменьшить продолжительность размыкания (замыкания) контактов и, таким образом, настроить генератор на требуемое рабочее напряжение.

    Рис. 4. Схема соединения регулятора напряжения АВРН -3 с генератором на 400 в: 1 - генератор, 2 - возбудитель, 3 - шунтовой реостат, 4 и 8 - конденсаторы, 5 - электромагнит, 6 - подвижный контакт, 7 - неподвижный контакт

    Напряжение на зажимах генератора изменяется также с изменением, скорости вращения ротора. Для поддержания необходимого напряжения на зажимах генератора при изменении скорости вращения его ротора в схеме регулятора предусмотрена установка конденсатора КЗ емкостью 1 мкф, включаемого последовательно с обмоткой электромагнита.

    С изменением скорости вращения ротора, а следовательно, и частоты изменяется сопротивление конденсатора: при повышении частоты сопротивление уменьшается, а при снижении - увеличивается. В случае снижения напряжения (из-за уменьшения скорости вращения ротора) сопротивление конденсатора увеличится, сила тока в обмотке электромагнита уменьшится к контакты замкнутся, восстанавливая напряжение.

    Вибрационный регулятор АВРН -3 способен поддерживать напряжение на зажимах генератора с точностью ±5% номинального независимо от коэффициента мощности и при изменении частоты в пределах ±20%.

    В передвижных станциях мощностью 100 ква и выше для автоматического регулирования напряжения применяют угольные регуляторы РУН -111 или УРН -400.

    Автоматический угольный регулятор напряжения РУН -1 состоит из регулирующего устройства, селенового выпрямителя, стабилизирующего трансформатора и установочных реостатов.

    Регулирующее устройство состоит из электромагнита, якорь которого укреплен на рычаге. С рычагом связана тяга, сжимающая столбики угольных дисков при помощи коромысла. Плечо тяги, а следовательно, и усилие, сжимающее угольные диски, регулируют винтами, установленными на угольнике. Между угольниками помещена противодействующая пружина. Детали регулирующего устройства смонтированы на стальйой плите толщиной 2 мм.

    Стабилизирующий трансформатор ТС двух-обмоточный: на стержень его магнитопровода надета вторичная обмотка, а поверх нее - первичная. Концы обмоток выведены и присоединены к зажимам на щитке трансформатора.

    Установочные реостаты РУ-1 и РУ-2 выполнены по типу ползунковых реостатов с фиксируемым движком, который позволяет закреплять ползунки в определенных точках сопротивления.

    Обмотка электромагнита подключается к зажимам линейного напряжения генератора через селеновый выпрямитель ВС (типа ВС-255) и установочный реостат PY-L Эту цепь регулятора называют контрольно-измерительной.

    Столбики угольных дисков регулятора через зажимы включаются последовательно с обмоткой возбуждения возбудителя генератора. Для обеспечения устойчивой работы регулятора с генератором в схеме применен стабилизирующий трансформатор, первичная обмотка которого подсоединяется к зажимам обмотки возбуждения генератора последовательно с установочным реостатом РУ-2, а вторичная обмотка включается последовательно в цепь обмотки электромагнита регулятора через зажимы.

    Рис. 5. Угольный регулятор напряжения РУН -111: а-общий вид регулирующего устройства, б - принципиальная схема включения регулятора напряжения со стабилизирующим трансформатором, селеновым выпрямителем и установочными реостатами; 1 – коромысло, 2 – столбики угольных дисков, 3 – тяга, 4 - рычаг, 5 - якорь электромагнита, 6 - электромагнит, 7 и 9 угольники, 8 пружина, 10-15- зажимы

    При использовании РУН -111 с генераторами, имеющими линейное напряжение 400 в, контрольно-измерительную цепь регулятора подсоединяют к генератору через понижающий трансформатор с вторичным напряжением 133 в.

    Регулирование напряжения с помощью угольного регулятора РУН -111 происходит следующим образом.

    В процессе работы при номинальном напряжении на зажимах генератора подвижная система регулятора занимает уравновешенное положение, при котором сила натяжения Fx пружины 8 уравновешивает силу F2 электромагнита регулятора и противодействие столбика угольных дисков. В момент снижения напряжения, вызванного увеличением нагрузки или какими-либо иными причинами, уменьшается сила тока, протекающего по обмотке электромагнита регулятора, а также и сила F2. Вследствие этого снижается сила притяжения якоря, нарушается равновесие и подвижная система регулятора под действием избыточной силы смещается, сжимая диски столбиков. При сжатии столбиков контакт между дисками улучшается, вследствие чего переходное сопротивление между отдельными дисками, а следовательно, и общее сопротивление столбиков уменьшаются, сила тока в обмотке возбуждения возбудителя увеличивается и напряжение на зажимах генератора восстанавливается. Уменьшение избыточной силы Fi приводит к замедлению движения подвижной системы, а в дальнейшем и к наступлению равновесия, но уже в новом положении - с более низкими значениями * сопротивления столбиков угольных дисков и напряжения на зажимах генератора по сравнению с первоначальным положением. Повышение напряжения на зажимах генератора вследствие уменьшения нагрузки или каких-либо других причин вызовет обратные явления и соответствующие действия регулятора.

    Чтобы повысить чувствительность регулятора, в нем применена так называемая отрицательная обратная связь, принцип действия которой заключается в следующем. Электромагнит обмотки регулятора кроме основной обмотки имеет дополнительную, включенную так, что протекающий по ней ток ослабляет магнитное поле электромагнита. Дополнительная обмотка получает питание от вторичной обмотки трансформатора тока, первичная обмотка которого присоединена к выводам возбудителя. Возрастание напряжения в возбудителе приводит к появлению тока в цепи вторичной обмотки трансформатора, замкнутой через дополнительную обмотку электромагнита. Ток в дополнительной обмотке электромагнита уменьшает усилие, противодействующее пружине, и в результате этого при изме-, нении нагрузки обеспечивается автоматическое поддержание напряжения на зажимах генератора на уровне, близком к номинальному.

    Если предполагается работа генератора на общие шины параллельно с другими генераторами, то для регулирования их напряжения необходимо в цепь переменного тока питания электромагнита включать регулируемое добавочное сопротивление установочного реостата, по которому будет проходить ток к трансформатору тока. При помощи движка реостата добиваются совмещения характеристик напряжения на всех параллельно работающих генераторах.

    Конструктивно наиболее совершенным и надежным регулирующим устройством для автоматического регулирования напряжения на зажимах генераторов передвижных станций является угольный регулятор УРН -400.

    Автоматический угольный регулятор напряжения УРН -400 состоит из электромагнита, угольного столба и контактов. Электромагнит представляет собой магнитопровод с сердечником и катушкой.

    Якорь 8 электромагнита соединен с пакетом пружин и через подвижный контакт сжимает угольный столб. Угольный столб состоит из 50 шайб (дисков) диаметром 11 мм и толщиной около 1 мм. Шайбы изготовлены из графитированного угля и имеют шероховатую поверхность, вследствие чего общая площадь соприкосновения шайб и величина переходного сопротивления между ними находится в прямой зависимости от величины усилия, сжимающего их. Угольный столб помещен в керамическую трубку, которая вставлена в алюминиевый корпус, Имеющий ребра для лучшего отвода тепла. Одним концом угольный столб упирается в подвижный угольный контакт, а другим - в неподвижный угольный контакт. В торец алюминиевого корпуса регулятора ввернут нажимной колпак, в который запрессован контакт.

    Регулятор УРН -400 встраивают в блок регулирования напряжения БРН -400, имеющий также стабилизирующий трансформатор, селеновые выпрямители, стабилизирующие регулировочные и добавочные (вспомогательные) сопротивления, конденсатор.

    В блоке БРН -400 установлены два селеновых выпрямителя, один из которых питает постоянным током катушку электромагнита регулятора, а другой защищает обмотку возбуждения от перенапряжений и угольные диски от подгорания, возможного при разрыве цепи возбуждения возбудителя и при различных переходных процессах, вызванных резким набросом и сбросом нагрузки, а также коротким замыканием в цепи.

    Рис. 6. Угольный регулятор напряжония УРН -400: а - общий вид, б - продольный разрез; 1 - магнитопровод, 2-сердечник, 3 - стопорный винт сердечника. 4 - основание магнитопровода, 5 - винты для крепления основания магнитопровода, 6 - катушка электромагнита, 7 - шайба, 3 - якорь, 9 - опорное коническое кольцо, 10- пакет пружин, 11 - пластина для крепления пружин, 12 - плунжер для крепления угольного контакта, 13 - прокладки из слюды, 14 - керамические втулки, 15 - винт для крепления скобы, 16 - скоба, 17 - нажимной колпак, 18 - неподвижный угольный контакт, 19 - корпус регулятора, 20 - керамическая трубка, 21 - угольный столб, 22 - подвижный угольный контакт, 23 - колпак, 24 - контактная пластина

    В блоке регулирования напряжения имеются три сопро-hгтения. Сопротивления намотаны высокоомной оксиаированной проволокой, О-Х-15Н-60 на фарфоровой трубке диаметром 25 мм и длиной 140 мм, а сопротивление - на такой же фарфоровой трубке, но проволокой из константана. Добавочное сопротивление включено последовательно с угольным столбом и служит для уменьшения мощности, рассеиваемой в угольном столбе. Стабилизирующее сопротивление предназначено для ограничения напряжения, поступающего в первичную обмотку трансформатора, а также для настройки схемы регулирования напряжения.

    Рис. 7. Блок регулирования напряжения БРН -400 с регулятором напряжения УРН -400 (кожух снят): 1 - стальной каркас, 2 - блок селеновых выпрямителей, 3 - стабилизирующий трансформатор, 4 - амортизирующие шайбы, 5 - угольный регулятор напряжения, 6 - добавочное сопротивление угольного столба, 7 - стабилизирующее сопротивление трансформатора, 8 - компенсирующее сопротивление

    Схема электрических соединений элементов блока регулирования напряжения БРН -400 с генератором и его возбудителем показана на рис. 8.

    Понижающий трансформатор ТП применяют при напряжении 400 в и присоединяют к силовой цепи генератора. Стабилизирующий трансформатор ТС служит для обеспечения более устойчивой работы регулятора и для быстрого восстановления напряжения при изменениях нагрузки.

    Рис. 8. Принципиальная схема электрических соединений элементов блока регулирования БРН -400 с генератором и возбудителем: ТП - понижающий трансформатор, ТТ - трансформатор тока, РУ - реостат настройки регулятора, ТС - стабилизирующий трансформатор, ЭМ - электромагнит регулятора напряжения, К - конденсатор, УС - угольный столб, Л, - R, - сопротивления, ВС - селеновый выпрямитель

    Реостат РУ включен последовательно во вторичную цепь трансформатора и служит для установки в требуемых пределах регулирования напряжения генератора при настройке регулятора. Угольный регулятор напряжения УРН -400 работает аналогично регулятору РУН -111.

    К атегория: - Передвижные электростанции

    Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

    Фазовое регулирование напряжения

    Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

    Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

    Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.


    На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

    Схема тиристорного регулятора напряжения


    Таблица номиналов элементов

    • C1 – 0,33мкФ напряжение не ниже 16В;
    • R1, R2 – 10 кОм 2Вт;
    • R3 – 100 Ом;
    • R4 – переменный резистор 33 кОм;
    • R5 – 3,3 кОм;
    • R6 – 4,3 кОм;
    • R7 – 4,7 кОм;
    • VD1 .. VD4 – Д246А;
    • VD5 – Д814Д;
    • VS1 – КУ202Н;
    • VT1 – КТ361B;
    • VT2 – КТ315B.

    Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

    В устройстве всего два силовых компонента диодный мост и тиристор . Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

    Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

    В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
    Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

    Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

    Для корректной работы автомобильного генератора необходима регулировка напряжения. Благодаря устройству потенциал поддерживается в рабочем диапазоне.

    Общий вид автомобильного генератора

    Важно знать об устройстве, принципе работы, диагностике, ремонте и замене регулятора напряжения в автомобиле. Это позволит избежать ряда негативных ситуаций в дороге, таких как незапуск двигателя, сгорание проводки автомобиля.

    Строение генератора

    Вне зависимости от марки и модели автомобиля, типа автомобильного генератора, всегда в конструкцию включен регулятор напряжения, позволяющий поддерживать работоспособность независимо от частоты вращения ротора. Регулировка осуществляется за счет изменения силы электротока на обмотке ротора.

    Узлы генератора (схема):

    • Статор (корпус) – неподвижная часть автомобильного генератора.
    • Обмоток три, соединены они в одну звездой, которая формирует трехфазное переменное напряжение.
    • Ротор, на лопатках которого образуется магнитное поле, и ЭДС.
    • Выпрямитель трехфазный – полупроводниковые диоды, преобразующие напряжение. Одна сторона диодов токопроводящая, другая – с изолированной поверхностью.
    • Устройство автоматического регулирования напряжения.

    Ротор генератора автомобиля

    Три обмотки позволяют значительно снизить пульсацию за счет перекрытия фаз между собой.

    Принцип работы генератора

    При движении ротора возникает ЭДС на выходе автомобильного генератора, который напрямую связан с АКБ. С помощью регулировки она передается на обмотку возбуждения статора. При увеличении частоты вращения ротора, напряжение начинает изменяться.

    Напряжение на обмотке присутствует всегда.

    Для стабилизации величины напряжения устанавливается реле регулятора напряжения, где происходит обработка, сравнение (в аналитическом блоке) входного сигнала. При отклонении от нормы блок управления подает сигнал на исполнительный механизм, где происходит снижение силы тока. После этого напряжение на выходе автомобильного генератора стабилизируется. При слишком низком значении тока, регулятор повышает выходное напряжение.

    Принцип работы регулятора напряжения

    Для повышения надежности работы регуляторы выполняют по упрощенным схемам. Включает несколько устройств: сравнение сигнала, орган управления, задающий и специальный датчики.

    Готовая схема состоит из двух основных элементов:

    • Регулятор. Устройство, которое позволяет настраивать и контролировать напряжение. Изготавливается в двух исполнениях – аналоговом (механическом) и цифровом (электронном).
    • Графитовые щетки, которые подключаются к полупроводниковым элементам. Предназначены для сообщения напряжения на ротор автомобильного генератора.

    Графитовые щетки передают напряжение на ротор генератора автомобиля

    Современные устройства имеют микропроцессорную базу.

    Двухуровневая схема регулирования

    В состав входят три основных элемента: генератор, аккумуляторная батарея, выпрямитель. Внутри устройства находится магнит, обмотка которого соединена с контроллером. В качестве задающих устройств используются металлические пружины, а сравнивающих – подвижные рычаги. Контактная группа используется в качестве измерительного прибора, а постоянное сопротивление в качестве устройства регулирования.

    Двухуровневый регулятор напряжения

    Принцип работы двухуровневого регулятора

    При возникновении напряжения и электромагнитного поля происходит сравнение сигналов. В качестве сравнивающего устройства применяется пружина, которая действует на плечо рычага. Магнитное поле действует на рычаг в нескольких направлениях (замыкает, размыкает, остается неизменным), после чего схема регулятора действует в зависимости от величины напряжения.

    При выходе сигнала из рабочего диапазона в большую сторону происходит размыкание контактов.

    В цепь подключено постоянное напряжение.

    При этом на обмотку подается меньший ток и напряжение стабилизируется. Если изначально происходит замыкание контактов, которое свидетельствует о низком напряжении, сила тока увеличивается, и генератор продолжает работать в нормальном режиме.

    Недостатки механических моделей:

    • быстрый износ деталей;
    • применение электромагнитных реле.

    Электронные регуляторы

    Работают идентично аналоговым моделям за исключением того, что механические элементы заменены на цифровые датчики. Вместо электромагнитных классических реле применяют тиристоры, симисторы, транзисторы и др. Чувствительный элемент представляет собой систему постоянных резисторов, установленных на делителе напряжения.

    Схема электронного регулятора

    Принцип работы состоит в следующем: при подаче напряжения на тиристоры происходит сравнение выходных сигналов. Исполнительный орган в зависимости от полученных данных замыкает или размыкает, при необходимости включая в схему добавочное сопротивление.

    Преимущества электронных моделей:

    • высокая точность регулировки;
    • регулятор установлен в едином блоке со щетками, что позволяет экономить место, упрощать диагностику, ремонт и замену оборудования;
    • повышенная надежность и долговечность;
    • более тонкая настройка прибора;
    • в качестве выпрямителей применяются полупроводниковые диоды, благодаря которым обеспечивается стабильность напряжения на выходе;
    • задающий элемент выполнен в виде стабилитрона.

    Для новых моделей автомобилей целесообразно применение более совершенных систем регулирования ввиду более сложного технического устройства.

    Снятие регулятора напряжения

    Для того чтобы убрать регулятор с задней крышки автомобильного генератора, необходима отвертка (крестовидная или плоская). Сам автогенератор и ремень снимать не нужно.

    Снимать конструкцию можно только после отсоединения аккумуляторной батареи. Далее необходимо отсоединить провод от автомобильного генератора, открутив крепежные болты.

    Главные причины неисправностей автогенератора:

    • стирание угольных щеток;
    • пробой изоляции полупроводниковых элементов.

    Проверка работоспособности регулятора

    Практически на всех моделях авто реле регулятора диагностируется аналогично. Для проведения диагностики необходим источник постоянного напряжения (аккумулятор, батарейки), лампа 12 В или вольтметр.

    Контакт минус присоединяется к пластине устройства, «плюс» – к разъему реле регулятора.

    После снятия регулятора с корпуса необходимо проверить работоспособность щеток. Если они менее 5мм в длину, то щеточный узел подлежит замене.

    Лампа накаливания должна быть включена в схему между парой щеток:

    • потухание лампочки при увеличении напряжения говорит об исправности аппарата;
    • постоянное свечение лампочки при изменении параметров сигнализирует о неисправности регулятора напряжения.

    Пайка новых щеток не принесет результата, т.к. надежность конструкции значительно уменьшится. Недопустимо использовать для проверки светодиодную продукцию, т.к. проведение диагностики по данной схеме не даст реальных результатов.

    Проверка без снятия напряжения

    Заключается в измерении бортового напряжения в автомобиле. Наличие скачков в сети также определяется миганием ламп во время поездки. Для проверки понадобится мультиметр (либо обычная лампа накаливания). Мультиметр позволяет получить более точные результаты.

    Порядок действий:

    1. Завести двигатель, включить фары.
    2. Присоединить измерительный прибор к АКБ.
    3. Рабочее напряжение колеблется в пределах 12..14,8 В. При выходе за данный интервал регулятор напряжения считается неисправным.

    Проверка под напряжением не позволяет определить состояние щеточного узла. Выход за рабочие параметры напряжения может быть связан с ослаблением или окислением контактов.

    Происходит усовершенствование работы систем регулирования в автомобилях. Для современных авто нет смысла использовать двухуровневое регулирование. Более совершенные системы имеют 2 и более добавочных сопротивлений. В новых моделях вместо традиционного добавочного сопротивления используется принцип увеличения частоты срабатывания электронного ключа.

    Наравне с классическими, применяются системы следящего автоматического регулирования, в которых нет электромагнитного реле.

    Самым распространенным методом является трехуровневая схема регулировки с частотной модуляцией для управления логическими элементами.

    Трехуровневая схема регулирования

    Качество зарядки аккумуляторной батареи зависит от эффективности работы регулятора напряжения. При неполной зарядке аккумулятор теряет емкость с большой скоростью, и впоследствии завести двигатель становится невозможно.

    Трехуровневый регулятор напряжения

    Двухуровневые модели имеют большой недостаток – разброс величины напряжения на выходе. Поэтому для повышения стабильности работы системы применяют трехуровневую систему регулировки, в состав которой входит тумблер (изменяет параметры системы).

    Применение данного вида моделей позволяет более точно проводить диагностику и контролировать потенциал на выходе генератора, что важно для новых моделей среднего ценового уровня, где производители используют не всегда качественные механизмы.

    Наиболее актуально применение данной системы в зимнее время года в регионах с холодным климатом, когда от низких температур сильно снижается емкость АКБ. На смену механическим регуляторам пришли бесконтактные трехуровневые, более совершенные.

    Схема и принцип работы схожи с двухуровневыми моделями за исключением того, что напряжение сначала поступает в блок обработки информации. При отклонении от рабочего значения подается звуковой сигнал (рассогласования). После этого сила электротока, поступающая на обмотку, меняется до рабочего значения.

    Принцип установки

    Допускается установка трехуровневых моделей в любой автомобиль самостоятельно при условии знания схемы подключения:

    • Необходимо отсоединить щеточный узел, открутив болты.
    • Полупроводниковый узел установить на корпусе авто, сделав необходимые крепления.
    • Полупроводниковый узел устанавливается сначала на алюминиевый радиатор, т.к. требует эффективного охлаждения, а затем закрепляется на корпусе.

    При отсутствии системы охлаждения регулирование будет происходить некорректно.

    • После установки двух узлов необходимо обеспечить электрическую связь между ними проводами, обеспечив качественную изоляцию корпусов.

    Поверхности необходимо покрыть изолирующим материалом, чтобы предотвратить замыкания на корпус. Для коммутации полупроводников следует предусмотреть переключатель.

    Для установки конструкции необходим корпус. Обычно применяют пластик или алюминий, который обладает большей теплоотдачей, т.е. охлаждение будет происходить более эффективно.

    Видео. Генератор в автомобиле

    Регулятор напряжения в схеме автомобиля занимает одно из ключевых мест. Необходимо постоянно следить за состоянием прибора, своевременно проводить плановые осмотры, зачищать контакты (для предотвращения сбоев в работе). Т.к. деталь расположена в нижней, не защищенной от пыли и влаги, стороне моторного отсека, регулярно очищать поверхности от загрязнений.

    При наличии внешних дефектов и повреждений не следует пользоваться таким устройствам, т.к. в этом случае возможен быстрый разряд аккумулятора либо полный выход из строя автомобильного генератора, а также электрической части автомобиля (из-за резкого повышения напряжения в бортовой сети).

    Понравилась статья? Поделиться с друзьями: