Устройство компьютерных блоков питания и методика их тестирования. Блоки питания для ПК: принципы работы и основные узлы

Так как блок питания есть неотъемлемой частью ПК, то знать подробнее про него будет интересно каждому человеку связанным с электроникой и не только. От качества БП напрямую зависит работа ПК в целом.

И так, полагаю, что надо начать с самого простого, для каких целей предназначен блок питания:
- формирование напряжения питания компонентов ПК: +3,3 +5 +12 Вольт (дополнительно -12В и -5В);
- гальваническая развязка между 220 и ПК (чтобы не бился током, и не было утечек тока при сопряжении компонент).


Простой пример гальванической развязки это трансформатор. Но для питания ПК нужна большая мощность, а соответственно и трансформатор больших размеров (комп был бы очень большим:), и переносили его бы вдвоем из за немалого веса, но нас это миновало:)).
Для построения компактных блоков используется повышенная частота тока питания трансформатора, с ростом частоты для того самого магнитного потока в трансформаторе нужно меньшее сечение магнитопровода и меньше витков. Создавать легкие и компактные БП позволяет завышенная в 1000 и больше раз частота питающего напряжения трансформатора.
Основной принцип работы БП заключается в следующем, преобразование переменного сетевого напряжения (50 Гц) в пер. напряжение высокой частоты прямоугольной формы (был бы осциллограф показал бы на примере), которое с помощью трансформатора понижается, дальше выпрямляется и фильтруется.

Блок-хема импульсного БП.


1. Блок
Преобразовывает переменные 220В в постоянные.
Состав такого блока: диодный мост для выпрямления переменного напряжения + фильтр для сглаживания пульсаций выпрямленного напряжения. А также должен быть (в дешевых БП на них экономят не впаивая, но я сразу рекомендую при переделке или ремонте их ставить) фильтр напряжения сети от пульсаций импульсного генератора, а также термисторы сглаживают скачок тока при включении.

На картинке фильтр, на схеме обозначен пунктиром, его мы встретим почти в любой схеме БП (но не всегда на плате:)).
2. Блок
Этот блок генерирует импульсы определенной частоты, которыми питается первичная обмотка трансформатора. Частота генерирующих импульсов у различных фирм производителей БП находится, где то в 30-200кГц пределах.
3. Блок
На трансформатор положены такие функции:
- гальваническая развязка;
- понижение напряжения на вторичных обмотках до необходимого уровня.
4. Блок
Этот блок преобразует напряжение, полученное от блока 3, в постоянное. Он состоит из выпрямляющих напряжение диодов и фильтра пульсаций. Состав фильтра: дроссель и группа конденсаторов. Часто для экономии конденсаторы ставят малой емкости, а дроссели малой индуктивности.

Импульсный генератор подробнее.

Схема ВЧ преобразователя состоит с мощных транзисторов, которые работают в режиме ключа и импульсного трансформатора.
БП может собой представлять однотактный и двухтактный преобразователь:
- однотактный: открывается и закрывается один транзистор;
- двухтактный: поочередно открываются и закрываются два транзистора.
Смотрим рисунок.


Элементы схемы:
R1 - сопротивление, задающее смещение на ключах. Необходимое для более стабильного запуска процесса колебаний в преобразователе.
R2 – сопротивление, ограничивающее ток базы на транзисторах, необходимо для защиты транзисторов от выхода из строя.
ТР1 - Трансформатор имеющий три группы обмоток. Первая формирует выходное напряжение. Вторая служит нагрузкой для транзисторов. Третья формирует управляющее напряжение для транзисторов.
При включении первой схемы транзистор приоткрыт совсем немного, потому, что к базе приложено положительное напряжение через резистор R1. На приоткрытом транзисторе протекает ток, который протекает через II обмотку. Ток создает магнитное поле. Магнитное поле создает напряжение в остальных обмотках. На III обмотке создается положительное напряжение, которое открывает транзистор еще больше. Процесс до тех пор происходит, пока транзистор не попадет в режим насыщения. Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору, неизменным остается выходной ток.
Только при изменении магнитного поля генерируется напряжение на обмотках, при отсутствии изменений на транзисторе так же исчезнет и ЭДС в обмотках II и III. Когда напряжение на обмотке III пропадет, тогда и уменьшится открытие транзистора, а следовательно уменьшиться выходной ток транзистора и магнитное поле, что приведет к появлению напряжения противоположной полярности. Отрицательное напряжение на III обмотке еще больше закроет транзистор. Процесс длится пока магнитное поле не исчезнет полностью. Когда поле исчезнет, исчезнет отрицательное напряжение и процесс пойдет по кругу снова.
Двухтактный преобразователь работает так же, но так как в нем два транзистора, работающих поочередно, то такое применение повышает КПД преобразователя и улучшает его характеристики. В основном применяют двухтактные, но если надо малая мощность и габариты, а также простота, то однотактные.
Рассмотренные выше преобразователи есть законченными устройствами, но их применение усложняется разбросом различных параметров таких как: загруженности выхода, напряжения питания, и температуры преобразователя.

Управление ключами ШИМ контролером (494).


Преобразователь состоит из трансформатора Т1 и транзистора VT1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ) диодный мост, фильтруется конденсатором Сф и через обмотку W1 подается на коллектор транзистора VT1. При подаче на базу транзистора импульса прямоугольной формы, он открывается и через него течет ток Iк который нарастает. Этот же ток протекающий и через первичную обмотку трансформатора Т1, приводит к тому, что увеличивается магнитный поток в сердечнике трансформатора, и наводится ЭДС самоиндукции во вторичной обмотке W2. В итоге на диоде VD появиться положительное напряжение. Увеличивая длительность импульса на базе транзистора VT1, будет увеличиваться напряжение во вторичной цепи, а если уменьшать длительность, то напряжение будет уменьшаться. Изменяя длительность импульса на базе транзистора, мы меняем выходное напряжения на W1 обмотке Т1, и осуществляем стабилизацию выходных напряжений блока питания. Нужна схема формирования импульсов запуска и управления их длительностью (широтой). Такой схемой используется ШИМ (широтно – импульсная модуляция) контроллер. ШИМ контроллер состоит из:
- задающего импульсного генератора (определяющего частоту работы преобразователя);
- схемы контроля;
- логической схемы, которая и управляет длительностью импульса;
- схемы защиты.
Это тема другой статьи.
Чтобы стабилизировать выходные напряжения БП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этого используется цепь обратной связи (или цепь слежения), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора Т1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Это приводит на резисторе R2 включенном последовательно фототранзистору к увеличению падения напряжения, и уменьшению напряжения на выводе 1 ШИМки. Уменьшение напряжения заставляет логическую схему, составляющую ШИМ, увеличивать длительность импульса, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. Процесс обратный, когда напряжение уменьшается.
Есть две реализации цепей обратной связи:
- «непосредственная» на схеме выше, обратная связь снимается непосредственно с вторичного выпрямителя;
- «косвенная» снимается непосредственно с дополнительной обмотки W3 (смотрите рисунок ниже);
Изменение напряжения на вторичной обмотке приведет к изменению его на обмотке W3, которое через R2 передается на 1 вывод ШИМки.

Ниже приведена реальная схема БП.

1. Блок
Выпрямляет и фильтрует переменное напряжение, а также здесь находится фильтр от помех которые создает сам БП.
2. Блок
Этот блок формирует +5VSB (дежурное напряжение), а также питает контролер ШИМ.
3. Блок
На третий блок (ШИМ - контролер 494) положены такие функции:
- управление транзисторными ключами;
- стабилизация выходных напряжений;
- защита от короткого замыкания.
4. Блок
В состав этого блока входят два трансформатора, и две группы транзисторных ключей.
Первый трансформатор формирует напряжение управления для выходных транзисторов.
1 группа транзисторов усиливает генерируемый сигнал TL494 и передает его первому трансформатору.
2 группа транзисторов нагружена на основной трансформатор, на котором формируются основные напряжения питания.
5. Блок
В состав этого блока входят диоды Шоттки для выпрямления выходного напряжения трансформатора, а также фильтр низких частот. В состав ФНЧ входят электролитические конденсаторы больших емкостей (зависит от производителя БП) и дросселей, а также резисторов для разрядки этих конденсаторов при выключенном БП.

Немного о дежурке.

Различиями между блоками стандарта АТХ от БП стандарта АТ в том, что БП АТХ стандарта имеют источник дежурного напряжения питания. На 9 контакте (20 контактного, фиолетовый провод) разъема вырабатывается напряжение +5VSB которое идет на мат плату для питания схемы управления БП. Эта схема осуществляет формирования сигнала «PS-ON» (14 контакт разъема, зеленый провод).


В данной схеме преобразователь работает на частоте, определяемой в основном параметрами трансформатора Т3 и номиналами элементов в базовой цепи ключевого транзистора Q5 - емкостью конденсатора С28 и сопротивлением резистора начального смещения R48 . Положительная обратная связь на базу транзистора Q5 поступает с вспомогательной обмотки трансформатора Т2 через элементы С28 и R51. Отрицательное напряжение с этой же обмотки после выпрямителя на элементах D29 и С27, в случае если оно превышает напряжение стабилизации стабилитрона ZD1 (в данном случае 16 В) также подается на базу Q5, запрещая работу преобразователя. Таким способом выполняется контроль за уровнем выходного напряжения. Напряжение питания с сетевого выпрямителя на преобразователь поступает через токоограничительный резистор R45, который при его выходе из строя можно заменить предохранителем на ток 500 мА, либо исключить совсем. В схеме на рис.1 резистор R56 номиналом 0.5 Ом, включенный в эмиттер транзистора Q5 является датчиком тока, при превышении тока транзистора Q5 выше допустимого напряжение с него через резистор R54 поступает на базу транзистора Q9 типа 2SC945 открывая его, и тем самым запрещая работу Q5. Подобным образом осуществляется дополнительная защита Q5 и первичной обмотки Т3. Цепочка R47C29 служит для защиты транзистора Q5 от выбросов напряжения. В качестве ключевого транзистора Q5 в указанной модели БП применяются транзисторы KSC5027.
был на аналогичных элементах (дежурка).

А теперь рассмотрим БП вживую.


1. Элементы фильтра сети от помех генерируемых БП.
2. Диодный мост, выпрямляющий переменные 220В.
3. Емкости фильтра сетевого напряжения.
4. Радиатор для выходных транзисторов преобразователя, а также транзистора преобразователя дежурки.
5. Основной трансформатор: развязка с сетью и формирование всех напряжений.
6. Трансформатор для формирования управляющего напряжения выходных транзисторов.
7. Трансформатор преобразователя, формирующий дежурное напряжение.
8. Радиатор для диодов Шоттки.
9. Микросхема ШИМ – контролера.
10. Фильтры выходных напряжений (электролитические конденсаторы).
11. Дроссели фильтра выходных напряжений.

На этом пока остановлюсь. Всем спасибо за столь долгое внимание.
Надеюсь хоть кому то принес пользу:) Жду комментариев и предложений по дополнению.
Продолжение будет...

Один из самых важных блоков персонального компьютера - это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 - 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

    Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

    Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

    Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

    Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

    Выходные выпрямители. С помощью выпрямителя происходит выпрямление - преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: "No comment ".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115" ). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110...127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220...230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост . При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180...220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Блок питания - это важнейший компонент любого персонального компьютера, от которого зависит надежность и стабильность вашей сборки. На рынке довольно большой выбор продукции от различных производителей. У каждого из них по две-три линейки и больше, которые включают в себя еще и с десяток моделей, что серьезно запутывает покупателей. Многие не уделяют этому вопросу должного внимания, из-за чего часто переплачивают за избыточную мощность и ненужные "навороты". В этой статье мы разберемся, какой же блок питания подойдет для вашего ПК лучше всего?

Блок питания (далее по тексту БП), это прибор, преобразующий высокое напряжение 220 В из розетки в удобоваримые для компьютера значения и оснащенный необходимым набором разъемов для подключения комплектующих. Вроде бы ничего сложного, но открыв каталог , покупатель сталкивается с огромным числом различных моделей с кучей зачастую непонятных характеристик. Прежде, чем говорить о выборе конкретных моделей, разберем, какие характеристики являются ключевыми и на что стоит обращать внимание в первую очередь.

Основные параметры.

1. Форм-фактор . Для того, чтобы блок питания банально поместился в ваш корпус, вы должны определиться с форм-факторов, исходя из параметров самого корпуса системного блока . От форм-фактор зависят габариты БП по ширине, высоте и глубине. Большинство идут в форм-факторе ATX, для стандартных корпусов . В небольших системных блоков стандарта microATX, FlexATX, десктопов и других, устанавливаются блоки меньших размеров, такие как SFX , Flex-ATX и TFX .

Необходимый форм-фактор прописан в характеристиках корпуса, и именно по нему нужно ориентироваться при выборе БП.

2. Мощность. От мощности зависит, какие комплектующие вы сможете установить в ваш компьютер, и в каком количестве.
Важно знать! Цифра на блоке питания, это суммарная мощность по всем его линиям напряжений. Так как в компьютере основными потребителями электроэнергии являются центральный процессор и видеокарта, то основная питающая линия, это 12 В, когда есть еще 3,3 В и 5 В для питания некоторых узлов материнской платы, комплектующих в слотах расширения, питание накопителей и USB портов. Энергопотребление любого компьютера по линиям 3,3 и 5 В незначительно, по этому при выборе блока питания по мощности нужно всегда смотреть на характеристику "мощность по линии 12 В ", которая в идеале должна быть максимально приближена к суммарной мощности.

3. Разъемы для подключения комплектующих , от количества и набора которых зависит, сможете ли вы, к примеру, запитать многопроцессорную конфигурацию, подключить парочку или больше видеокарт, установить с десяток жестких дисков и так далее.
Основные разъемы, кроме ATX 24 pin , это:

Для питания процессора - это 4 pin или 8 pin коннекторы (последний может быть разборным и иметь запись 4+4 pin).

Для питания видеокарты - 6 pin или 8 pin коннекторы (8 pin чаще всего разборный и обозначается 6+2 pin).

Для подключения накопителей 15-pin SATA

Дополнительные:

4pin типа MOLEX для подключения устаревших HDD с IDE интерфейсом, аналогичных дисковых приводов и различных опциональных комплектующих, таких как реобасы, вентиляторы и прочее.

4-pin Floppy - для подключения дискетных приводов. Большая редкость в наши дни, поэтому такие разъемы чаще всего идут в виде переходников с MOLEX.

Дополнительные параметры

Дополнительные характеристики не так критичны, как основные, в вопросе: "Заработает ли этот БП с моим ПК?", но они так же являются ключевыми при выборе, т.к. влияют на эффективность блока, его уровень шума и удобство в подключении.

1. Сертификат 80 PLUS определяет эффективность работы БП, его КПД (коэффициент полезного действия). Список сертификатов 80 PLUS:

Их можно разделить на базовый 80 PLUS, крайний слева (белый), и цветные 80 PLUS, начиная от Bronze и заканчивая топовым Titanium.
Что такое КПД? Допустим, мы имеем дело с блоком, КПД которого 80% при максимальной нагрузке. Это означает, что на максимальной мощности БП будет потреблять из розетки на 20% больше энергии, и вся эта энергия будет преобразована в тепло.
Запомните одно простое правило: чем выше в иерархии сертификат 80 PLUS, тем выше КПД, а значит он будет меньше потреблять лишней электроэнергии, меньше греться, и, зачастую, меньше шуметь.
Для того, чтобы достичь наилучших показатель в КПД и получить "цветной" сертификат 80 PLUS, особенно высшего уровня, производители применяют весь свой арсенал технологий, наиболее эффективную схемотехнику и полупроводниковые компоненты с максимально низкими потерями. Поэтому значок 80 PLUS на корпусе говорит еще и о высокой надежности, долговечности блока питания, а так же серьезном подходе к созданию продукта в целом.

2. Тип системы охлаждения. Низкий уровень тепловыделения блоков питания с высоким КПД, позволяет применять бесшумные системы охлаждения. Это пассивные (где нет вентилятора вообще) , либо полупассивные системы , в которых вентилятор не вращается на небольших мощностях, и начинает работать, когда БП становится "жарко" в нагрузке.

При подборе БП стоит обратить внимание и на длину кабелей, основного ATX24 pin и кабеля питания CPU при установки в корпус с нижним расположением блока питания.

Для оптимальной прокладки питающих проводов за задней стенкой, они должны быть длиной как минимум от 60-65 см , в зависимости от размеров корпуса. Обязательно учтите этот момент, чтобы потом не возиться с удлинителями.
На количество MOLEX нужно обращаться внимание только если вы ищете замену для своего старого и допотопного системного блока с IDE накопителями и приводами, да еще и в солидном количестве, ведь даже у самых простых БП есть минимум пара-тройка стареньких MOLEX, а в более дорогих моделях их вообще десятки.

Надеюсь этот небольшой путеводитель по каталогу компании DNS поможет вам в столь сложном вопросе на начальном этапе вашего знакомства с блоками питания. Удачных покупок!

Если вы покупаете компьютер, возможно, он уже будет укомплектован стандартным блоком питания. Но, учитывая важнейшую функцию этого узла для стабильной, долговременной работы, стоит ознакомиться с его характеристиками, а при необходимости заменить, на более подходящий вам с учетом всех требований к этому элементу. Подобрать мощный и надежный блок питания для компьютера можно, ознакомившись с общими требованиями к нему, выбрать тип, мощность и производителя с учетом специфических особенностей установленного в вашем системнике оборудования.

Что такое блок питания компьютера

Большинство компьютеров подключаются напрямую к розетке общедоступной электрической сети без применения дополнительных стабилизаторов, сглаживающих всплески, перепады напряжения и частоты питающей сети. Современное устройство электропитания обязано выдать для всех узлов компьютера стабильное напряжение требуемой мощности с учетом пиковых нагрузок при выполнении сложных графических задач. От мощности, стабильности работы этого модуля зависят все дорогостоящие узлы компьютера – видеокарты, жесткий диск, материнская плата, процессор, и другие.

Из чего состоит

Современные компьютерные устройства электропитания имеют несколько основных узлов, многие из которых крепятся на радиаторах охлаждения:

  1. Входной фильтр, на который подается напряжение сети. Его задача состоит в сглаживании входного напряжения, подавления пульсаций и помех.
  2. Инвертор сетевого напряжения повышает частоту сети с 50 Гц до сотен килогерц, предоставляя возможность уменьшить габариты основного трансформатора, сохранив его полезную мощность.
  3. Импульсный трансформатор преобразовывает входное напряжение в низковольтное. Дорогие модели содержат несколько трансформаторов.
  4. Трансформатор дежурного напряжения и контролер, управляющий включением основного блока питания в автоматическом режиме.
  5. Выпрямитель переменного сигнала на основе диодной сборки, с дросселями и конденсаторами, которые сглаживают пульсации. Многие модели комплектуются активным корректором коэффициента мощности.
  6. Стабилизация выходного напряжения производится в качественных устройствах независимо по каждой силовой линии. Недорогие модели используют один групповой стабилизатор.
  7. Важным элементом снижения затрат электроэнергии и снижения шума является терморегулятор скорости вращения вентилятора, принцип работы которого основан на использовании термодатчика температуры.
  8. Сигнальные узлы включают схему контроля напряжения и потребляемого тока, систему предотвращения коротких замыканий, перегрузок по потребляемому току, защиту от перенапряжения.
  9. Корпус обязан вместить все перечисленные узлы, включая 120-миллиметровый вентилятор. Качественный блок питания предоставит возможность отключения неиспользуемых жгутов.

Виды блоков питания

Устройства электропитания системников стационарных ПК отличаются от тех, которые применяются в ноутбуках. Различают несколько видов данных устройств по их конструктиву:

  1. Модульные устройства предоставляют возможность отсоединить неиспользуемые жгуты проводов.
  2. Безвентиляторные устройства с пассивным охлаждением, тихие и дорогие.
  3. Полупассивные устройства питания снабжены вентилятором охлаждения с управляющим контроллером.

Для стандартизации размеров, физической компоновки компьютерных модулей используется понятие форм-фактора. Узлы, которые имеют одинаковый форм-фактор, полностью взаимозаменяемы. Одним из первых международных стандартов в этой области был форм-фактор АТ (Advanced Technology), который появился одновременно с первыми IBM-совместимыми компьютерами и применялся до 1995 года. Большинство современных устройств электропитания используют стандарт ATX (Advanced Technology Extended).

Компания Intel в декабре 1997 представила материнскую плату нового семейства microATX, для которой было предложено устройство электропитания меньшего размера – Small Form Factor (SFX). С этого времени стандарт стал SFX использоваться во многих компьютерных системах. Его достоинством является возможность применения пяти физических форм, измененных разъёмов подключения к материнской плате.

Лучшие блоки питания для компьютеров

Выбирая устройства электропитания для компьютера, не стоит экономить. Многие производители таких систем эконом класса для снижения цены исключают важные элементы защиты от помех. Это заметно по установленным на монтажной плате перемычкам. Для стандартизации уровня качества этих приборов был создан Сертификат 80 PLUS, указывающий на коэффициент полезного действия – 80 %. Совершенствование характеристик и комплектующих блоков электропитания компьютеров привело к обновлению разновидностей этого стандарта до:

  • Bronze – КПД 82 %;
  • Silver – 85 %;
  • Gold – 87 %;
  • Platinum – 90%;
  • Titanium – 96%.

Купить блок питания для компьютера можно в компьютерных магазинах или супермаркетах Москвы, Санкт-Петербурга, других городов России, в которых представлен большой выбор комплектующих. Для активных пользователей сети интернет узнать, сколько стоит, сделать подбор из большого количества моделей, купить блок питания для ПК можно в интернет-магазинах, в которых легко выбрать их по фото, заказать по акциям, распродажам, скидкам, сделать покупку. Доставка всех товаров осуществляется курьерскими службами или более дешево – по почте.

AeroCool Kcas 500W

Для большинства настольных домашних компьютеров подойдет мощность 500Вт. Предлагаемый вариант китайского производства сочетает хорошие показатели качества и приемлемую цену:

  • название модели: AEROCOOL KCAS-500W;
  • цена: 2 690 рублей;
  • характеристики: форм-фактор ATX12В В2.3, мощность – 500 Вт, активный PFC, КПД – 85 %, стандарт 80 PLUS BRONZE, цвет – черный, разъемы МП 24+4+4 pin, длина 550 мм, видеокарты 2х(6+2) pin, Molex – 4 шт, SATA – 7 шт, разъемы для FDD –1 шт, 120 мм вентилятор, размеры (ШхВхГ)150х86х140 мм, сетевой шнур в комплекте;
  • плюсы: функция активной коррекции коэффициента мощности;
  • минусы: КПД только 85 %.

AeroCool VX-750 750W

Устройства электропитания линейки VX мощностью 750 Вт собраны из высококачественных компонентов и обеспечивают стабильное и надёжное запитывание систем начального уровня сложности. Такой прибор от компании Aerocool Advanced Technologies (Китай) защищён от перепадов напряжения в сети:

  • название модели: AeroCool VX-750;
  • цена: 2 700 р.;
  • характеристики: стандарт ATX 12В 2.3, активный PFC, мощность – 750 Вт, сила тока по линиям +5 В – 18A, +3.3 В – 22 A, +12 В – 58 A, -12 В – 0.3 A, +5 В – 2,5 A, 120 мм вентилятор, разъемы 1 шт 20+4-pin ATX,1 шт Floppy,1 шт 4+4-pin CPU, 2 шт 8-pin PCI-e (6+2), 3 шт Molex, 6 шт, размеры – 86x150x140 мм, вес – 1,2 кг;
  • плюсы: регулятор скорости вращения вентилятора;
  • минусы: нет сертификата.

FSP Group ATX-500PNR 500W

Китайская компания FSP выпускает большой ассортимент качественных комплектующих для компьютерной техники. Предлагаемый этим производителем вариант имеет низкую цену, но снабжен модулем защит от перегрузок в сетях общего пользования:

  • название модели: FSP Group ATX-500PNR;
  • цена: 2 500 р.;
  • характеристики: стандарт ATX 2В.2, активный PFC, мощность – 500 Вт, нагрузка по линиям +3.3 В – 24A, +5В – 20A, +12В – 18 A, +12 В – 18A, +5В – 2,5A, -12 В – 0,3A, 120 мм вентилятор, разъемы 1 шт 20+4-pin ATX, 1 шт 8-pin PCI-e (6+2), 1 шт Floppy, 1 шт 4+4-pin CPU, 2шт Molex, 3 шт SATA, размеры – 86x150x140 мм, вес – 1,32 кг;
  • плюсы: есть защита от короткого замыкания;
  • минусы: отсутствует сертификация.

Corsair RM750x 750W

Продукция компании Corsair обеспечивает уверенный контроль напряжения, работает бесшумно. Представляемый вариант устройства электропитания имеет Сертификат 80 PLUS Gold, низкий уровень шума и модульную кабельную систему:

  • название модели: Corsair RM750x;
  • цена: 9 320 р.;
  • характеристики: стандарт ATX 12В 2.4, активный PFC, мощность – 750 Вт, нагрузка по линиям +5 В – 25 A, +3,3 В – 25 A, +12 В – 62,5 A, -12 В – 0,8 A, +5 В – 1 A, 135 мм вентилятор, разъемы 1 шт 20+4-pin ATX, 1 шт Floppy, 1 шт 4+4-pin CPU, 4 шт 8-in CI-e (6+2), 8 шт Molex, 9 шт SATA, сертификат 80 PLUS GOLD, защита от короткого замыкания и перегрузки, размеры – 86x150x180 мм, вес – 1,93 кг;
  • плюсы: терморегулируемый вентилятор;
  • минусы: высокая стоимость.

Высокой функциональностью и стабильностью всех характеристик отличаются устройства электропитания компании Thermaltake. Предлагаемый вариант такого прибора подойдет для большинства системных блоков:

  • название модели: Thermaltake TR2 S 600W;
  • цена: 3 360 р.;
  • характеристики: стандарт ATX, мощность – 600 Вт, активный PFC, максимальный ток 3,3 В – 22 А, +5 В – 17 А, + 12 В – 42 А, +12 В – 10 А, 120 мм вентилятор, коннектор материнки – 20+4 pin;
  • плюсы: можно применять в новых и старых компьютерах;
  • минусы: сетевого кабеля в комплекте нет.

Corsair CX750 750 W

Приобретение качественного и дорогого устройства электропитания оправдано при использовании дорогих остальных комплектующих. Применение продукции компании Corsair сделает маловероятным выход из строя этого оборудования по вине устройства электропитания:

  • название модели: Corsair CX 750W RTL CP-9020123-EU;
  • цена: 7 246 р.;
  • характеристики: стандарт ATX, мощность – 750 Вт, нагрузка +3,3 В – 25 A, +5 В – 25 A, +12В – 62,5A, +5 В – 3 A, -12В – 0,8 A, размеры – 150x86x160 мм, 120 мм вентилятор, КПД – 80 %, габариты – 30x21x13 см;
  • плюсы: контроллер скорости вращения вентилятора;
  • минусы: дорого стоит.

Deepcool DA500 500W

Вся продукция компании Deepcool сертифицирована по стандарту 80 PLUS. Предлагаемая модель питающего прибора обладает сертификатом степени Bronze, имеет защиту от перегрузки и короткого замыкания:

  • название модели: Deepcool DA500 500W;
  • цена: 3 350 р.;
  • характеристики: форм-фактор Standard-ATX 12В 2.31 и EPS12В, активный PFC, Основной разъем – (20+4)-pin, 5 интерфейсов 15-pin SATA, 4 molex-разъема, для видеокарты – 2 интерфейса (6+2)-pin, мощность – 500 Вт, 120 мм вентилятор, токи +3.3 В – 18 A, +5 В – 16 A, +12 В – 38 A, -12 В – 0,3 A, +5 В – 2,5 A;
  • плюсы: сертификат 80 PLUS Bronze;
  • минусы: не отмечены.

Zalman ZM700-LX 700 W

Для современных моделей процессоров и дорогих видеокарт желательно покупать сертифицированные блоки питания стандарта не ниже Платинум. Представляемый компьютерный блок питания компании Zalman имеет КПД 90 % и высокую надежность:

  • название модели: Zalman ZM700-LX 700W;
  • цена: 4 605 р.;
  • характеристики: стандарт ATX, мощность – 700 Вт, активный PFC, +3,3 В – 20 A, ток +5 В – 20 A, + 12В – 0,3 A, 140 мм вентилятор, размеры 150х86х157 мм, вес 2,2 кг;
  • плюсы: защита от короткого замыкания;
  • минусы: не отмечены.

Как выбрать блок питания для компьютера

Доверять свое дорогостоящее компьютерное оборудование малоизвестным производителям не стоит. Некоторые непорядочные производители маскируют низкое качество своей аппаратуры под «липовые» сертификаты качества. Высоким рейтингом среди фирм-производителей устройств электропитания для компьютеров обладают Chieftec, Cooler Master, Hiper, SeaSonic, Corsair. Желательно наличие защит от перегрузки, перенапряжения и короткого замыкания. О многом может сказать и внешний вид, материал корпуса, крепления вентилятора, качество разъемов и жгутов.

Разъём питания материнской платы

Количество и вид разъемов, которые установлены на материнской плате, зависят от ее типа. Основными из них являются разъемы:

  • 4 pin – для электроснабжения процессора, HDD дисков;
  • 6 pin – для запитки видеокарт;
  • 8 pin – для мощных видеокарт;
  • 15 pin SATA – для подключения интерфейса SATA с жесткими дисками, CD-ROM.

Мощность блока питания

Обеспечить все требования стабильной работы могут блоки питания для компьютеров, мощность которых подобрана с запасом и превышает номинальное потребление всех узлов компьютера на 30-50 %. Запас мощности гарантирует превышение охлаждающих свойств радиаторов, назначение которых состоит в отводе излишнего перегрева его элементов. Определить нужный вам прибор по обзору их предложения в интернете сложно. Для этой цели есть сайты, на которых, введя параметры своих комплектующих, можно рассчитать требуемые характеристики устройств электропитания.

Номинальное значение потребляемой мощности для домашних компьютеров варьируется от 350 до 450 Вт. Покупать источники питания для коммерческих целей лучше от номинала 500 Вт. Игровые компьютеры, серверы должны запускаться с блоками питания от 750 Вт и выше. Важным компонентом устройства электропитания является PFC или коррекция коэффициента мощности, которая бывает активной или пассивной. Активная PFC увеличивает значение коэффициента мощности до 95%. Этот параметр всегда указывается в паспорте и инструкции на товар.

Видео

Схемотехника компьютерных блоков питания

Схемы для компьютеров

Р. АЛЕКСАНДРОВ, г. Малоярославец Калужской обл.
Радио, 2002 год, № 5, 6, 8

ИБП бытовых компьютеров рассчитаны на работу от сети однофазного переменного тока (110/230 В, 60 Гц ≈ импортные, 127/220 В, 50 Гц ≈ отечественного производства). Поскольку сеть 220 В, 50 Гц в России общепринята, проблемы выбора блока на нужное сетевое напряжение не существует. Нужно лишь убедиться, что переключатель сетевого напряжения на блоке (если он имеется) установлен в положение 220 или 230 В. Отсутствие переключателя говорит о том, что блок способен работать в обозначенном на его этикетке интервале сетевых напряжений без каких-либо переключений. ИБП, рассчитанные на частоту 60 Гц, безупречно работают в сети 50 Гц.

К системным платам формата AT ИБП подключают двумя жгутами проводов с розетками Р8 и Р9, показанными на рис. 1 (вид со стороны гнезд). Указанные в скобках цвета проводов стандартны, хотя не все изготовители ИБП их строго соблюдают. Чтобы правильно сориентировать розетки при подключении к вилкам системной платы, существует простое правило: четыре черных провода (цепь GND), подходящие к обеим розеткам, должны быть расположены рядом.

Основные цепи питания системных плат формата АТХ сосредоточены в разъеме, показанном на рис. 2. Как и в предыдущем случае, вид со стороны гнезд розетки. ИБП этого формата имеют вход дистанционного управления (цепь PS-ON), при соединении которого с общим проводом (цепью СОМ ≈ "common", эквивалентом GND) включенный в сеть блок начинает работать. Если цепь PS-ON≈СОМ разорвана, напряжения на выходах ИБП отсутствуют, за исключением "дежурных" +5 В в цепи +5VSB. В этом режиме потребляемая от сети мощность очень незначительна.

ИБП формата АТХ бывают снабжены дополнительной выходной розеткой, показанной на рис. 3 . Назначение ее цепей следующее:

FanM ≈ выход датчика скорости вращения вентилятора, охлаждающего ИБП (два импульса на один оборот);
FanC ≈ аналоговый (0...12 В) вход управления скоростью вращения этого вентилятора. Если этот вход отключен от внешних цепей или на него подано постоянное напряжение более 10 В, производительность вентилятора максимальна;
3.3V Sense ≈ вход сигнала обратной связи стабилизатора напряжения +3,3 В. Его соединяют отдельным проводом непосредственно с выводами питания микросхем на системной плате, что позволяет скомпенсировать падение напряжения на подводящих проводах. Если дополнительная розетка отсутствует, эта цепь бывает выведена на гнездо 11 основной розетки (см. рис. 2);
1394R ≈ минус изолированного от общего провода источника напряжения 8...48 В для питания цепей интерфейса IEEE-1394;
1394V ≈ плюс того же источника.

ИБП любого формата обязательно снабжают несколькими розетками для питания дисководов и некоторых других периферийных устройств компьютера.

Каждый "компьютерный" ИБП выдает логический сигнал, называемый R G. (Power Good) в блоках AT или PW-OK (Power OK) в блоках АТХ, высокий уровень которого свидетельствует, что все выходные напряжения находятся в допустимых пределах. На "материнской" плате компьютера этот сигнал участвует в формировании сигнала системного сброса (Reset). После включения ИБП уровень сигнала RG. (PW-OK) некоторое время остается низким, запрещая работу процессора, пока в цепях питания не завершатся переходные процессы.

При отключении сетевого напряжения или внезапно возникшей неисправности ИБП логический уровень сигнала P. G. (PW-OK) изменяется прежде, чем выходные напряжения блока упадут ниже допустимых значений. Это вызывает остановку процессора, предотвращает искажение данных, хранящихся в памяти, и другие необратимые операции.

Взаимозаменяемость ИБП можно оценить по следующим критериям.

Число выходных напряжений для питания IBM PC формата AT должно быть не менее четырех (+12 В, +5 В, -5 В и -12 В). Максимальный и минимальный выходные токи регламентируют отдельно для каждого канала. Их обычные значения для источников различной мощности приведены в табл. 1 . Компьютерам формата АТХ дополнительно необходимы +3,3 В и некоторые другие напряжения (о них было сказано выше).

Учтите, что нормальная работа блока при нагрузке меньше минимальной не гарантирована, а иногда такой режим просто опасен. Поэтому включать ИБП без нагрузки в сеть (например, для проверки) не рекомендуется.

Мощность блока питания (суммарная по всем выходным напряжениям) в полностью укомплектованном периферийными устройствами бытовом ПК должна быть не менее 200 Вт. Практически необходимо иметь 230...250 Вт, а при установке дополнительных "винчестеров" и приводов CD-ROM может потребоваться и больше. Сбои в работе ПК, особенно возникающие в моменты включения электродвигателей упомянутых устройств, нередко связаны именно с перегрузкой блока питания. Компьютеры, используемые в качестве серверов информационных сетей, потребляют до 350 Вт. ИБП небольшой мощности (40... 160 Вт) применяют в специализированных, например, управляющих компьютерах с ограниченным набором периферии.

Объем , занимаемый ИБП, обычно растет за счет увеличения его длины в сторону передней панели ПК. Установочные размеры и точки крепления блока в корпусе компьютера остаются неизменными. Поэтому любой (за редкими исключениями) блок удастся установить на место отказавшего.

Основой большинства ИБП служит двухтактный полумостовой инвертор, работающий на частоте в несколько десятков килогерц. Напряжение питания инвертора (приблизительно 300 В) ≈ выпрямленное и сглаженное сетевое. Собственно инвертор состоит из узла управления (генератора импульсов с промежуточным каскадом усиления мощности) и мощного выходного каскада. Последний нагружен на высокочастотный силовой трансформатор. Выходные напряжения получают с помощью выпрямителей, подключенных к вторичным обмоткам этого трансформатора. Стабилизация напряжений производится с помощью широтно-импульсной модуляции (ШИМ) импульсов, генерируемых инвертором. Обычно стабилизирующей ОС охвачен лишь один выходной канал, как правило, +5 или +3,3 В. В результате напряжения на других выходах не зависят от напряжения в сети, но остаются подверженными влиянию нагрузки. Иногда их дополнительно стабилизируют с помощью обычных микросхем-стабилизаторов.

СЕТЕВОЙ ВЫПРЯМИТЕЛЬ


В большинстве случаев этот узел выполняют по схеме, подобной показанной на рис. 4 , различия лишь в типе выпрямительного моста VD1 и большем или меньшем числе защитных и предохранительных элементов. Иногда мост собран из отдельных диодов. При разомкнутом выключателе S1, что соответствует питанию блока от сети 220...230 В, выпрямитель ≈ мостовой, напряжение на его выходе (соединенных последовательно конденсаторах С4, С5) близко к амплитуде сетевого. При питании от сети 110... 127 В, замкнув контакты выключателя, превращают устройство в выпрямитель с удвоением напряжения и получают на его выходе постоянное напряжение, вдвое большее амплитуды сетевого. Подобное переключение предусматривают в ИБП, стабилизаторы которых удерживают выходные напряжения в допустимых пределах лишь при отклонении сетевого на 20%. Блоки с более эффективной стабилизацией способны работать при любом сетевом напряжении (как правило, от 90 до 260 В) без переключения.

Резисторы R1, R4 и R5 предназначены для разрядки конденсаторов выпрямителя после его отключения от сети, а С4 и С5, кроме того, выравнивают напряжения на конденсаторах С4 и С5. Терморезистор R2 с отрицательным температурным коэффициентом ограничивает амплитуду броска тока зарядки конденсаторов С4, С5 в момент включения блока. Затем в результате саморазогрева его сопротивление падает, и он практически не влияет на работу выпрямителя. Варистор R3 с классификационным напряжением больше максимальной амплитуды сетевого защищает от выбросов последнего. К сожалению, этот варистор бесполезен при случайном включении блока с замкнутым выключателем S1 в сеть 220 В. От тяжелых последствий этого спасает замена резисторов R4, R5 варисторами с классификационным напряжением 180...220 В, пробой которых влечет за собой сгорание плавкой вставки FU1. Иногда варисторы подключают параллельно указанным резисторам или только одному из них.

Конденсаторы С1 ≈ СЗ и двухобмо-точный дроссель L1 образуют фильтр, защищающий компьютер от проникновения помех из сети, а сеть ≈ от помех, создаваемых компьютером. Через конденсаторы С1 и СЗ корпус компьютера связан по переменному току с проводами сети. Поэтому напряжение прикосновения к незаземленному компьютеру может достигать половины сетевого. Это не опасно для жизни, так как реактивное сопротивление конденсаторов достаточно велико, но нередко приводит к выходу из строя интерфейсных цепей в момент подключения к компьютеру периферийных устройств.

МОЩНЫЙ КАСКАД ИНВЕРТОРА

На рис. 5 показана часть схемы распространенного ИБП GT-150W. Импульсы, сформированные узлом управления, через трансформатор Т1 поступают на базы транзисторов VT1 и VT2, поочередно открывая их. Диоды VD4, VD5 защищают транзисторы от напряжения обратной полярности. Конденсаторы С6 и С7 соответствуют С4 и С5 в выпрямителе (см. рис. 4). Напряжения вторичных обмоток трансформатора Т2 выпрямляют для получения выходных. Один из выпрямителей (VD6, VD7 с фильтром L1C5) показан на схеме.

Большинство мощных каскадов ИБП отличаются от рассмотренного лишь типами транзисторов, которые могут быть, например, полевыми или содержать встроенные защитные диоды. Существует несколько вариантов исполнения базовых цепей (для биполярных) или цепей затвора (для полевых транзисторов) с разным числом, номиналами и схемами включения элементов. Например, резисторы R4, R6 могут быть подключены непосредственно к базам соответствующих транзисторов.

В установившемся режиме узел управления инвертором питают выходным напряжением ИБП, но в момент включения оно отсутствует. Существуют два основных способа получить необходимое для пуска инвертора напряжение питания. Первый из них реализован в рассматриваемой схеме (рис. 5). Сразу после включения блока выпрямленное сетевое напряжение поступает через резистивный делитель R3 ≈ R6 в базовые цепи транзисторов VT1 и\/Т2, приоткрывая их, причем диоды VD1 и VD2 предотвращают шунтирование участков база-эмиттер транзисторов обмотками II и III трансформатора Т1. В это же время происходит зарядка конденсаторов С4, С6 и С7, причем ток зарядки конденсатора С4, протекая по обмотке I трансформатора Т2 и по части обмотки II трансформатора Т1, наводит в обмотках II и III последнего напряжение, открывающее один из транзисторов и закрывающее другой. Какой из транзисторов закроется, а какой ≈ откроется, зависит от асимметрии характеристик элементов каскада.

В результате действия положительной ОС процесс протекает лавинообразно, а наведенный в обмотке II трансформатора Т2 импульс через один из диодов VD6, VD7, резистор R9 и диод VD3 заряжает конденсатор СЗ до напряжения, достаточного для начала работы узла управления. В дальнейшем он питается по той же цепи, а выпрямленное диодами VD6, VD7 напряжение после сглаживания фильтром L1C5 поступает на выход+12 В ИБП.

Вариант цепей начального запуска, использованный в ИБП LPS-02-150XT, отличается только тем, что напряжение на делитель, аналогичный R3 ≈ R6 (рис. 5), подают от отдельного однополупериодного выпрямителя сетевого напряжения с конденсатором фильтра небольшой емкости. В результате транзисторы инвертора приоткрываются раньше, чем зарядятся конденсаторы фильтра основного выпрямителя (С6, С7, см. рис. 5), что обеспечивает более уверенный запуск.

Второй способ питания узла управления во время пуска предусматривает наличие специального понижающего трансформатора небольшой мощности с выпрямителем, как показано на схеме рис. 6 , примененной в ИБП PS-200B.

Число витков вторичной обмотки трансформатора выбрано таким образом, чтобы выпрямленное напряжение было немного меньшим выходного в канале +12 В блока, но достаточным для работы узла управления. Когда выходное напряжение ИБП достигает номинала, диод VD5 открывается, диоды моста VD1 ≈ VD4 остаются закрытыми в течение всего периода переменного напряжения и узел управления переходит на питание выходным напряжением инвертора, не потребляя больше энергии от "пускового" трансформатора.

В мощных каскадах инверторов, запускаемых таким образом, необходимость в начальном смещении на базах транзисторов и положительной обратной связи отсутствует. Поэтому не требуется резисторов R3, R5, диоды VD1, VD2 заменяют перемычками, а обмотку II трансформатора Т1 выполняют без отвода (см. рис. 5).

ВЫХОДНЫЕ ВЫПРЯМИТЕЛИ

На рис. 7 показана типовая схема четырехканального выпрямительного узла ИБП. Чтобы не нарушать симметрии пе-ремагничивания магнитопровода силового трансформатора выпрямители строят только по двухполупериодным схемам, причем мостовые выпрямители, для которых характерны повышенные потери, почти не применяют. Главная особенность выпрямителей в ИБП ≈ сглаживающие фильтры, начинающиеся с индуктивности (дросселя). Напряжение на выходе выпрямителя с подобным фильтром зависит не только от амплитуды, но и от скважности (отношения длительности к периоду повторения) поступающих на вход импульсов. Это дает возможность стабилизировать выходное напряжение, изменяя скважность входного. Применяемые во многих других случаях выпрямители с фильтрами, начинающимися с конденсатора, подобным свойством не обладают. Процесс изменения скважности импульсов обычно называют ШИМ ≈ широтно-импульсной модуляцией (англ. PWM ≈ Pulse Width Modulation).

Так как амплитуда импульсов, пропорциональная напряжению в питающей сети, на входах всех имеющихся в блоке выпрямителей изменяется по одинаковому закону, стабилизация с помощью ШИМ одного из выходных напряжений стабилизирует и все остальные. Чтобы усилить этот эффект, дроссели фильтров L1.1 ≈ L1.4 всех выпрямителей намотаны на общем магнитопроводе. Магнитная связь между ними дополнительно синхронизирует происходящие в выпрямителях процессы.

Для правильной работы выпрямителя с L-фильтром необходимо, чтобы ток его нагрузки превышал некоторое минимальное значение, зависящее от индуктивности дросселя фильтра и частоты импульсов. Эту начальную нагрузку создают резисторы R4 ≈ R7, подключенные параллельно выходным конденсаторам С5 ≈ С8. Они же служат для ускорения разрядки конденсаторов после выключения ИБП.

Иногда напряжение -5 В получают без отдельного выпрямителя из напряжения -12 В с помощью интегрального стабилизатора серии 7905. Отечественные аналоги ≈ микросхемы КР1162ЕН5А, КР1179ЕН05. Ток, потребляемый узлами компьютера по этой цепи, обычно не превышает нескольких сотен миллиампер.

В некоторых случаях интегральные стабилизаторы устанавливают и в других каналах ИБП. Это решение исключает влияние изменяющейся нагрузки на выходные напряжения, но снижает КПД блока и по этой причине применяется только в сравнительно маломощных каналах. Примером может служить схема узла выпрямителей ИБП PS-6220C, показанная на рис. 8 . Диоды VD7 ≈ VD10 ≈ защитные.

Как и в большинстве других блоков, здесь в выпрямителе напряжения +5 В установлены диоды с барьером Шоттки (сборка VD6), отличающиеся меньшими, чем у обычных диодов падением напряжения в прямом направлении и временем восстановления обратного сопротивления. Оба этих фактора благоприятны для увеличения КПД. К сожалению, сравнительно низкое допустимое обратное напряжение не позволяет применять диоды Шоттки и в канале +12 В. Однако в рассматриваемом узле эта проблема решена последовательным соединением двух выпрямителей: к 5 В недостающие 7 В добавляет выпрямитель на сборке диодов Шоттки VD5.

Для устранения опасных для диодов выбросов напряжения, возникающих в обмотках трансформатора на фронтах импульсов, предусмотрены демпфирующие цепи R1C1, R2C2, R3C3 и R4C4.

УЗЕЛ УПРАВЛЕНИЯ

В большинстве "компьютерных" ИБП этот узел построен на базе микросхемы ШИМ-контроллера TL494CN (отечественный аналог ≈ КР1114ЕУ4) или ее модификаций. Основная часть схемы подобного узла ≈ на рис. 9 , на ней показаны и элементы внутреннего устройства упомянутой микросхемы.

Генератор пилообразного напряжения G1 служит задающим. Его частота зависит от номиналов внешних элементов R8 и СЗ. Генерируемое напряжение поступает на два компаратора (A3 и А4), выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ-НЕ D5 и D6 подают на выходные транзисторы микросхемы (V3, V4). Импульсы с выхода элемента D1 поступают также на счетный вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана лог. 1 или он, как в рассматриваемом случае, оставлен свободным, импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором. Если микросхему TL494 применяют в однотактном преобразователе напряжения, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.

Элемент А1 ≈ усилитель сигнала ошибки в контуре стабилизации выходного напряжения ИБП. Это напряжение (в рассматриваемом случае ≈ +5 В) через резистивный делитель R1R2 поступает на один из входов усилителя. На втором его входе ≈ образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R3 ≈ R5. Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Так как выходное напряжение ИБП зависит от скважности (см. выше), в замкнутой системе автоматически поддерживается его равенство образцовому с учетом коэффициента деления R1R2. Цепь R7C2 необходима для устойчивости стабилизатора. Второй усилитель (А2) в данном случае от ключей подачей соответствующих напряжений на его входы и в работе не участвует.

Функция компаратора A3 ≈ гарантировать наличие паузы между импульсами на выходе элемента D1, даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания A3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GV1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение ИБП падает.

Этим свойством пользуются для плавного пуска ИБП. Дело в том, что в начальный момент работы блока конденсаторы фильтров его выпрямителей полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск инвертора сразу же "на полную мощность" приведет к огромной перегрузке транзисторов мощного каскада и возможному выходу их из строя. Цепь C1R6 обеспечивает плавный, без перегрузок, пуск инвертора.

В первый после включения момент конденсатор С1 разряжен, а напряжение на выводе 4 DA1 близко к +5 В, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С1 через резистор R6 напряжение на выводе 4 уменьшается, а с ним и длительность паузы. Одновременно растет выходное напряжение ИБП. Так продолжается, пока оно не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь. Дальнейшая зарядка конденсатора С1 на процессы в ИБП не влияет. Так как перед каждым включением ИБП конденсатор С1 должен быть полностью разряжен, во многих случаях предусматривают цепи его принудительной разрядки (на рис. 9 не показаны).

ПРОМЕЖУТОЧНЫЙ КАСКАД

Задача этого каскада ≈ усиление импульсов перед их подачей на мощные транзисторы. Иногда промежуточный каскад отсутствует как самостоятельный узел, входя в состав микросхемы задающего генератора. Схема такого каскада, примененного в ИБП PS-200B, показана на рис. 10 . Согласующий трансформатор Т1 здесь соответствует одноименному на рис. 5.

В ИБП APPIS использован промежуточный каскад по схеме, приведенной на рис. 11 , отличающийся от рассмотренного выше наличием двух согласующих трансформаторов Т1 и Т2 ≈ отдельно для каждого мощного транзистора. Полярность включения обмоток трансформаторов такова, что транзистор промежуточного каскада и связанный с ним мощный транзистор находятся в открытом состоянии одновременно. Если не принять специальных мер, через несколько тактов работы инвертора накопление энергии в магнитопроводах трансформаторов приведет к насыщению последних и значительному уменьшению индуктивности обмоток.

Рассмотрим, как решается эта проблема, на примере одной из "половин" промежуточного каскада с трансформатором Т1. При открытом транзисторе микросхемы обмотка Ia подключена к источнику питания и общему проводу. Через нее течет линейно нарастающий ток. В обмотке II наводится положительное напряжение, поступающее в базовую цепь мощного транзистора и открывающее его. Когда транзистор в микросхеме будет закрыт, ток в обмотке Iа прервется. Но магнитный поток в магнитопроводе трансформатора не может измениться мгновенно, поэтому в обмотке Iб возникнет линейно спадающий ток, текущий через открывшийся диод VD1 от общего провода к плюсу источника питания. Таким образом энергия, накопленная в магнитном поле в течение импульса, в паузе возвращается в источник. Напряжение на обмотке II во время паузы ≈ отрицательное, и мощный транзистор закрыт. Аналогичным образом, но в противофазе, работает вторая "половина" каскада с трансформатором Т2.

Наличие в магнитопроводах пульсирующих магнитных потоков с постоянной составляющей приводит к необходимости увеличивать массу и объем трансформаторов Т1 и Т2. В целом промежуточный каскад с двумя трансформаторами не очень удачен, хотя он и получил довольно широкое распространение.

Если мощности транзисторов микросхемы TL494CN недостаточно для непосредственного управления выходным каскадом инвертора, применяют схему, подобную приведенной на рис. 12 , где изображен промежуточный каскад ИБП KYP-150W. Половины обмотки I трансформатора Т1 служат коллекторными нагрузками транзисторов VT1 и VT2, поочередно открываемых импульсами, поступающими от микросхемы DA1. Резистор R5 ограничивает коллекторный ток транзисторов приблизительно до 20 мА. С помощью диодов VD1, VD2 и конденсатора С1 на эммитерах транзисторов VT1 и VT2 поддерживают необходимое для их надежного закрывания напряжение +1,6 В. Диоды VD4 и VD5 демпфируют колебания, возникающие в моменты переключения транзисторов в контуре, образованном индуктивностью обмотки I трансформатора Т1 и ее собственной емкостью. Диод VD3 закрывается, если выброс напряжения на среднем выводе обмотки I превышает напряжение питания каскада.

Еще один вариант схемы промежуточного каскада (ИБП ESP-1003R) показан на рис. 13. В данном случае выходные транзисторы микросхемы DA1 включены по схеме с общим коллектором. Конденсаторы С1 и С2 ≈ форсирующие. Обмотка I трансформатора Т1 не имеет среднего вывода. В зависимости от того, какой из транзисторов VT1, VT2 в данный момент открыт, цепь обмотки замыкается на источник питания через резистор R7 или R8, подключенный к коллектору закрытого транзистора.

ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Прежде чем ремонтировать ИБП, его необходимо извлечь из системного блока компьютера. Для этого отключают компьютер от сети, вынув вилку из розетки. Вскрыв корпус компьютера, освобождают все разъемы ИБП и, отвернув четыре винта на задней стенке системного блока, вынимают ИБП. Затем снимают П-образную крышку корпуса ИБП, отвернув крепящие ее винты. Печатную плату можно извлечь, отвернув три винта-"самореза", которыми она закреплена. Особенность плат многих ИБП в том, что печатный проводник общего провода разделен на две части, которые соединяются между собой лишь через металлический корпус блока. На извлеченной из корпуса плате эти части необходимо соединить навесным проводником.

Если блок питания был отключен от сети питания менее получаса назад, необходимо найти на плате и разрядить оксидные конденсаторы 220 или 470 мкФ х 250 В (это самые большие конденсаторы в блоке). В процессе ремонта эту операцию рекомендуется повторять после каждого отключения блока от сети либо временно зашунтировать конденсаторы резисторами 100...200 кОм мощностью не менее 1 Вт.

В первую очередь осматривают детали ИБП и выявляют явно неисправные, например, сгоревшие или с трещинами в корпусе. Если выход блока из строя был вызван неисправностью вентилятора, следует проверить элементы, установленные на теплоотводах: мощные транзисторы инвертора и сборки диодов Шотки выходных выпрямителей. При "взрыве" оксидных конденсаторов происходит разбрызгивание их электролита по всему блоку. Во избежание окисления металлических токоведущих частей необходимо смыть электролит слабощелочным раствором (например, разведя средство "Fairy" водой в соотношении 1:50).

Включив блок в сеть, прежде всего следует измерить все его выходные напряжения. Если окажется, что хотя бы в одном из выходных каналов напряжение близко к номинальному значению, неисправность следует искать в выходных цепях неисправных каналов. Однако, как показывает практика, выходные цепи редко выходят из строя.

В случае нарушения работы всех каналов методика определения неисправностей следующая. Измеряют напряжение между плюсовым выводом конденсатора С4 и минусовым С5 (см. рис. 4) или коллектором транзистора VT1 и эмиттером VT2 (см. рис. 5) Если измеренное значение существенно меньше 310 В, нужно проверить и при необходимости заменить диодный мост VD1 (см. рис. 4) или отдельные составляющие его диоды. Если выпрямленное напряжение в норме, а блок не работает, скорее всего, отказал один или оба транзистора мощного каскада инвертора (VT1, VT2, см. рис. 5), которые подвержены наибольшим тепловым перегрузкам. При исправных транзисторах остается проверить микросхему TL494CN и связанные с ней цепи.

Отказавшие транзисторы допускается заменять отечественными или импортными аналогами, подходящими по электрическим параметрам, габаритным и установочным размерам, руководствуясь данными, приведенными в табл. 2. Замену диодам подбирают по табл. 3.

Выпрямительные диоды сетевого выпрямителя (см. рис. 4) можно с успехом заменить отечественными КД226Г, КД226Д. Если в сетевом выпрямителе установлены конденсаторы емкостью 220 мкФ, желательно их заменить на 470 мкФ, место для этого на плате обычно предусмотрено. Для снижения помех рекомендуется каждый из четырех выпрямительных диодов зашунтировать конденсатором 1000 пФ на напряжение 400...450 В.

Транзисторы 2SC3039 можно заменить отечественными КТ872А. А вот демпфирующий диод PXPR1001 взамен отказавшего трудно приобрести даже в больших городах. В этой ситуации можно воспользоваться тремя соединенными последовательно диодами КД226Г или КД226Д. Существует возможность взамен отказавшего диода и защищенного им мощного транзистора установить транзистор со встроенным демпфирующим диодом, например, 2SD2333, 2SD1876, 2SD1877 или 2SD1554. Следует заметить, что во многих выпущенных после 1998 г. ИБП такая замена уже произведена.

Для увеличения кликните по изображению (откроется в новом окне)

Для повышения надежности работы ИЭП можно рекомендовать параллельно резисторам R7 и R8 (см. рис. 5) подключить дроссели индуктивностью по 4 мкГн. Их можно намотать проводом диаметром не менее 0,15 мм в шелковой изоляции на любых кольцевых магнитопроводах. Число витков рассчитывают по известным формулам.

Подстроечный резистор для регулировки выходного напряжения (R3, см. рис. 9) во многих ИБП отсутствует, вместо него установлен постоянный. Если требуется подстройка, ее можно произвести, временно установив подстроечный резистор, а затем вновь заменив его постоянным найденного номинала.

Для повышения надежности полезно заменить установленные в фильтрах наиболее мощных выпрямителей + 12 В и +5 В импортные оксидные конденсаторы эквивалентными по емкости и напряжению конденсаторами К50-29. Следует заметить, что на платах многих ИБП установлены не все предусмотренные схемой конденсаторы (по-видимому, из экономии), что отрицательно сказывается на характеристиках блока. Рекомендуется установить недостающие конденсаторы на предназначенные для них места.

Собирая блок после ремонта, не забудьте удалить временно установленные перемычки и резисторы, а также подключить к соответствующему разъему встроенный вентилятор.

ЛИТЕРАТУРА
1. Куличков А. Импульсные блоки питания для IBM PC. - М.: ДМК, серия "Ремонт и сервис", 2000.
2. Гук М. Аппаратные средства IBM PC. - С.-Пб.: Питер, 2000.
3. Куневич А.. Сидоров И. Индуктивные элементы на ферритах. - С.-Пб.: Лениздат, 1997.
4. Никулин С. Надежность элементов радиоэлектронной аппаратуры. - М.: Энергия, 1979.

Понравилась статья? Поделиться с друзьями: