Синхронные и асинхронные системы передачи сообщений. Асинхронные вычисления, или компьютер без процессора

При обращении к асинхронному (также называемому неблокирующим) примитиву, процесс не приостанавливается.

Таким образом, после того как процесс вызывает примитив Send, операционная система возвращает процессу управление сразу после установки сообщения в очередь на передачу или после создания копии сообщения. Когда сообщение передано или скопировано в безопасное место для последующей передачи, передающий процесс прерывается и, таким образом, информируется о том, что буфером сообщения можно пользоваться снова.

Если копии сообщения не создается, то любые изменения сообщения, производимые передающим процессом уже после обращения к примитиву Send, но до отправки сообщения, являются рискованными.

Аналогично, после обращения к асинхронному примитиву Receive процесс продолжает работу. Когда сообщение прибывает, процесс информируется об этом событии путем прерывания или периодического опроса.

Асинхронные примитивы обеспечивают эффективное и гибкое обращение процессов к системе передачи сообщений.

Недостаток этого подхода заключается в том, что программы, использующие подобные примитивы, трудно тестировать и отлаживать.

События, которые зависят от времени и которые невозможно воспроизвести, могут стать источником трудноразрешимых проблем.

Альтернатива заключается в использовании синхронных или, как их еще называют, блокирующих примитивов.

При вызове синхронного примитива Send управление не возвращается передающему процессу до тех пор, пока сообщение не будет передано (ненадежное обслуживание), или до тех пор, пока не будет получено подтверждение о доставке сообщения (надежное обслуживание).

Блокирующий примитив Receive не возвратит управление, пока сообщение не окажется в выделенном для него буфере.

Уделенные вызовы процедур

Уделенный вызов процедуры (Remote Procedure Call, RPC) представляет собой вариант базовой модели передачи сообщения.

Сегодня уделенные вызовы процедур являются общим и широко применяемым методом инкапсуляции взаимодействия в распределенной системе. Суть этой техники состоит в том, чтобы позволить программам на разных машинах взаимодействовать друг с другом путем простого вызова процедур, как если бы они работали на одной машине.

Таким образом, механизм вызова процедур используется для доступа к услугам, предлагаемым удаленной машиной.

Популярность этого подхода связана со следующими преимуществами:

Вызов процедуры представляет собой широко распространенную и понятную абстракцию.

Уделенные вызовы процедур позволяют специфицировать удаленный интерфейс в виде множества именованных операций с объектами указанных типов. Таким образом, интерфейс может быть четко и ясно документирован, а в распределенной программе можно выполнить статический контроль типов.

Поскольку интерфейс стандартизован и точно определен, коммуникационная программа приложения может быть сгенерирована автоматически.

Поскольку интерфейс стандартизован и точно определен, разработчики могут написать клиентский и серверный модули, для перемещения которых на другие платформы и операционные системы потребуется лишь небольшая модификация исходного текста программы.

Механизм удаленного вызова процедур может рассматриваться как усовершенствованная система надежной синхронной передачи сообщений.

Общую архитектуру иллюстрирует рис. 17.11, б, а на рис. 17.13 показана более детальная схема. Вызывающая программа выполняет на своей машине обычный вызов процедуры с параметрами.

Например: CALL P(X. Y)

Здесь ♦ Р - имя процедуры;

♦ X - передаваемые аргументы;

♦ Y - возвращаемые значения. То, что на самом деле происходит удаленный вызов процедуры на какой-то другой машине, может быть прозрачным или непрозрачным для пользователя. Так называемый исполнитель процедуры Р, или стаб, должен быть включен в адресное пространство вызывающего процесса или динамически скомпонован во время вызова.

Стаб создает сообщение, идентифицирующее вызываемую процедуру и содержащее ее параметры. Затем он посылает это сообщение удаленной системе и ждет ответа.

Когда ответ получен, стаб возвращает управление вызвавшей ее программе и передает ей возвращаемые значения. На удаленной машине с вызываемой процедурой ассоциируется другой стаб.

Когда приходит сообщение, стаб исследует его и на основе полученных имени процедуры и параметров формирует обычное локальное обращение CALL P(X, Y).

То есть удаленная процедура вызывается локально, при этом выполняется стандартная передача параметров через стек.

Рис. 17.13. Механизм удаленного вызова процедур

Привязка клиента и сервера Привязка позволяет специфицировать отношения между удаленной процедурой и вызывающей ее программой. Привязка формируется после того, как два приложения установили логическое соединение и готовы обмениваться командами и данными.

Привязка может быть постоянной и непостоянной. При непостоянной привязке логическое соединение между двумя процессами устанавливается только на время удаленного вызова процедуры.

Как только удаленная процедура возвращает значения, соединение разрывается. Активное соединение потребляет ресурсы, так как обе стороны должны хранить информацию о его состоянии.

Использование временных соединений позволяет сберечь эти ресурсы. С другой стороны, на установку соединения требуется время и обмен служебными данными по сети, поэтому данный подход неприемлем для удаленных процедур, часто вызываемых одним и тем же процессом.

При постоянной привязке соединение, устанавливаемое для удаленного вызова процедуры, сохраняется и после того, как удаленная процедура возвращает управление.

Это соединение может использоваться для последующих удаленных вызовов процедуры. Если в течение определенного интервала соединение не используется, оно разрывается. Такая схема удобна для приложений, делающих много удаленных вызовов процедур.

В этом случае постоянная привязка позволяет делать вызовы и получать их результаты через одно и то же логическое соединение.

Мне любопытно, что async ожидает встроенные функции потоковой передачи.

Все говорят, что async намного лучше в случае производительности, потому что он освобождает потоки, ожидающие ответа на длинный асинхронный вызов. Хорошо, я понял.

Но рассмотрим этот сценарий.

У меня есть async methodA, выполняющий операцию async в базе данных. Api базы данных предоставляет функцию BeginQuery и событие QueryCompleted. Я завернул их в задачу (с использованием TaskCompletionSource).

Мой вопрос заключается в том, что происходит под капотом между вызовом BeginQuery и срабатыванием QueryCompleted.

Я имею в виду - не нужно ли создавать какого-то рабочего, чтобы запустить это событие? На очень низком уровне должен быть некоторый синхронный цикл, который блокирует результат чтения нити с db.

Я полагаю, что любой асинхронный вызов должен генерировать поток, чтобы фактически обрабатывать ответ (возможно, дождаться его в цикле с низким уровнем С++ в коде драйвера).

Итак, наш единственный "выигрыш" заключается в том, что поток вызывающего может быть освобожден, когда какой-то другой поток выполняет свою работу.

При вызове асинхронного метода всегда создается новый рабочий поток?

Может ли кто-нибудь подтвердить мое понимание?

4 ответов

Все говорят, что async намного лучше в случае производительности, потому что он освобождает потоки, ожидающие ответа на длительный асинхронный вызов.

Да и нет. Точка за async - освободить вызывающий поток. В приложениях пользовательского интерфейса основным преимуществом async является отзывчивость, поскольку поток пользовательского интерфейса освобождается. В серверных приложениях основным преимуществом async является масштабируемость, поскольку поток запросов освобождается для обработки других запросов.

Таким образом, наш единственный "выигрыш" заключается в том, что поток вызывающего абонента может быть освобожден, когда какой-то другой поток выполняет свою работу. Всегда вызывает асинхронный метод создания нового рабочего потока?

Нет. На уровне ОС все операции ввода/вывода являются асинхронными. Это синхронные API-интерфейсы, которые блокируют поток, в то время как основной асинхронный ввод-вывод выполняется. Я недавно написал это в сообщении в блоге: .

Он создаст порт завершения ввода-вывода (IOCP), представляющий задачу, которая обрабатывается снаружи, и поток будет продолжаться с другими вещами. Затем, когда IOCP уведомляет о том, что задача выполнена, поток будет зависеть от состояния IOCP и продолжит выполнение задачи.

Порты ввода/вывода обеспечивают элегантное решение проблемы написание масштабируемых серверных приложений, использующих многопоточность и асинхронный ввод-вывод.

Я имею в виду - не нужно ли создавать какого-то рабочего, чтобы мероприятие? На очень низком уровне должен быть некоторый синхронный цикл, который блокировка результата чтения нити из db.

Даже когда вам действительно нужно ждать объекта ядра (например, ручное событие reset), вы все равно можете превратить блокирующий синхронный код в асинхронный и освободить поток от блокировки (обновлено: реальный сценарий).

Например, синхронный код:

Void Consume() { var completedMre = new ManualResetEvent(false); producer.StartOperation(completedMre); completedMre.WaitOne(); // blocking wait Console.WriteLine(producer.DequeueResult()); }

Асинхронный аналог:

Async Task ConsumeAsync() { var completedMre = new ManualResetEvent(false); producer.StartOperation(completedMre); var tcs = new TaskCompletionSource(); ThreadPool.RegisterWaitForSingleObject(completedMre, (s, t) => tcs.SetResult(producer.DequeueResult()), null, Timeout.Infinite, true); var result = await tcs.Task; Console.WriteLine(result); }

Асинхронная версия масштабируется более чем в 64 раза (MAXIMUM_WAIT_OBJECTS), что максимальное количество объектов ядра, которое может быть агрегировано RegisterWaitForSingleObject для ожидания в одном потоке). Таким образом, вы можете вызвать Consume() в 64 раза параллельно, и он будет блокировать 64 потока. Или вы можете вызвать ConsumeAsync в 64 раза и заблокировать только один поток.

компонент , тот, что обрабатывает запрос - сервером . "Клиент" и " сервер " в этом контексте обозначают роли в рамках данного взаимодействия. В большинстве случаев один и тот же компонент может выступать в разных ролях - то клиента, то сервера - в различных взаимодействиях. Лишь в небольшом классе систем роли клиента и сервера закрепляются за компонентами на все время их существования.

Синхронным (synchronous) называется такое взаимодействие между компонентами, при котором клиент, отослав запрос , блокируется и может продолжать работу только после получения ответа от сервера. По этой причине такой вид взаимодействия называют иногда блокирующим (blocking) .

Обычное обращение к функции или методу объекта с помощью передачи управления по стеку вызовов является примером синхронного взаимодействия .

Синхронное взаимодействие достаточно просто организовать, и оно гораздо проще для понимания. Человеческое сознание обладает единственным "потоком управления", представленным в виде фокуса внимания, и поэтому человеку проще понимать процессы, которые разворачиваются последовательно, поскольку не нужно постоянно переключать внимание на происходящие одновременно различные события. Код программы клиентского компонента, описывающей синхронное взаимодействие , устроен проще - его часть, отвечающая за обработку ответа сервера, находится непосредственно после части, в которой формируется запрос . В силу своей простоты синхронные взаимодействия в большинстве систем используются гораздо чаще асинхронных.

Вместе с тем, синхронное взаимодействие ведет к значительным затратам времени на ожидание ответа. Это время часто можно использовать более полезным образом: ожидая ответа на один запрос , клиент мог бы заняться другой работой, выполнить другие запросы, которые не зависят от еще не пришедшего результата. Поскольку все распределенные системы состоят из достаточно большого числа уровней, через которые проходят практически все взаимодействия, суммарное падение производительности, связанное с синхронностью взаимодействий, оказывается очень большим.

Наиболее распространенным и исторически первым достаточно универсальным способом реализации синхронного взаимодействия в распределенных системах является удаленный вызов процедур (Remote Procedure Call, RPC ; вообще-то, по смыслу правильнее было бы сказать "дистанционный вызов процедур", но по историческим причинам закрепилась имеющаяся терминология). Его модификация для объектно-ориентированной среды называется удаленным вызовом методов (Remote Method Invocation, RMI) . Удаленный вызов процедур определяет как способ организации взаимодействия между компонентами, так и методику разработки этих компонентов.

На первом шаге разработки определяется интерфейс процедур, которые будут использоваться для удаленного вызова. Это делается при помощи языка определения интерфейсов (Interface Definition Language, IDL) , в качестве которого может выступать специализированный язык или обычный язык программирования , с ограничениями, определяющимися возможностью передачи вызовов на удаленную машину.

Определение процедуры для удаленных вызовов компилируется компилятором IDL в описание этой процедуры на языках программирования, на которых будут разрабатываться клиент и сервер (например, заголовочные файлы на C/C++), и два дополнительных компонента - клиентскую и серверную заглушки (client stub и server stub ).

Клиентская заглушка представляет собой компонент , размещаемый на той же машине, где находится компонент -клиент. Удаленный вызов процедуры клиентом реализуется как обычный, локальный вызов определенной функции в клиентской заглушке. При обработке этого вызова клиентская заглушка выполняет следующие действия.

  1. Определяется физическое местонахождение в системе сервера, для которого предназначен данный вызов. Это шаг называется привязкой (binding) к серверу. Его результатом является адрес машины, на которую нужно передать вызов.
  2. Вызов процедуры и ее аргументы упаковываются в сообщение в некотором формате, понятном серверной заглушке (см. далее). Этот шаг называется маршалингом (marshaling) .
  3. Полученное сообщение преобразуется в поток байтов (это сериализация, serialization ) и отсылается с помощью какого-либо протокола, транспортного или более высокого уровня, на машину, на которой помещен серверный компонент.
  4. После получения от сервера ответа, он распаковывается из сетевого сообщения и возвращается клиенту в качестве результата работы процедуры.

В результате для клиента удаленный вызов процедуры выглядит как обращение к обычной функции.

4.4 Сравнение синхронных и асинхронных систем связи

Как правило, при рассмотрении производительности приемника или демодулятора предполагается наличие некоторого уровня синхронизации сигнала. Например, при когерентной фазовой демодуляции (схема PSK) предполагается, что приемник может генерировать опорные сигналы, фаза которых идентична (возможно, с точностью до постоянного смещения) фазе элементов сигнального алфавита передатчика. Затем в процессе принятия решения относительно значения принятого символа (по принципу максимального правдоподобия) опорные сигналы сравниваются с поступающими.

При генерации подобных опорных сигналов приемник должен быть синхронизирован с принимаемой несущей. Это означает, что фаза поступающей несущей и ее копии в приемнике должны согласовываться. Другими словами, если в поступающей несущей не закодирована информация, поступающая несущая и ее копия в приемнике будут проходить через нуль одновременно. Этот процесс называется фазовой автоподстройкой частоты (это – условие, которое следует удовлетворить максимально близко, если в приемнике мы хотим точно демодулировать когерентно модулированные сигналы). В результате фазовой автоподстройки частоты местный гетеродин приемника синхронизируется по частоте и фазе с принятым сигналом. Если сигнал-носитель информации модулирует непосредственно не несущую, а поднесущую, требуется определить как фазу несущей, так и фазу поднесущей. Если передатчик не выполняет фазовой синхронизации несущей и поднесущей (обычно так и бывает), от приемника потребуется генерация копии поднесущей, причем управление фазой копии поднесущей производится отдельно от управления фазой копии несущей. Это позволяет приемнику получать фазовую синхронизацию как по несущей, так и по поднесущей.

Кроме того, предполагается, что приемник точно знает, где начинается поступающий символ и где он заканчивается. Эта информация необходима, чтобы знать соответствующий промежуток интегрирования символа – интервал интегрирования энергии перед принятием решения относительно значения символа. Очевидно, если приемник интегрирует по интервалу несоответствующей длины или по интервалу, захватывающему два символа, способность к принятию точного решения будет снижаться.

Можно видеть, что символьную и фазовую синхронизации объединяет то, что обе включают создание в приемнике копии части преданного сигнала. Для фазовой синхронизации это будет точная копия несущей. Для символьной – это меандр с переходом через нуль одновременно с переходом поступающего сигнала между символами. Говорят, что приемник, способный сделать это, имеет символьную синхронизацию. Поскольку на один период передачи символа обычно приходится очень большое число периодов несущей, этот второй уровень синхронизации значительно грубее фазовой синхронизации и обычно выполняется с помощью другой схемы, отличной от используемой при фазовой синхронизации.

Во многих системах связи требуется еще более высокий уровень синхронизации, который обычно называется кадровой синхронизацией. Кадровая синхронизация требуется, когда информация поставляется блоками, или сообщениями, содержащими фиксированное число символов. Это происходит, например, при использовании блочного кода для реализации схемы прямой защиты от ошибок или если канал связи имеет временное разделение и используется несколькими пользователями (технология TDMA). При блочном кодировании декодер должен знать расположение границ между кодовыми словами, что необходимо для верного декодирования сообщения. При использовании канала с временным разделением нужно знать расположение границ между пользователями канала, что необходимо для верного направления информации. Подобно символьной синхронизации, кадровая равнозначна возможности генерации меандра на скорости передачи кадров с нулевыми переходами, совпадающими с переходами от одного кадра к другому.

Большинство систем цифровой связи, использующих когерентную модуляцию, требуют всех трех уровней синхронизации: фазовой, символьной и кадровой. Системы с некогерентной модуляцией обычно требуют только символьной и кадровой синхронизации; поскольку модуляция является некогерентной, точной синхронизации фазы не требуется. Кроме того, некогерентным системам необходима частотная синхронизация. Частотная синхронизация отличается от фазовой тем, что копия несущей, генерируемая приемником, может иметь произвольные сдвиги фазы от принятой несущей. Структуру приемника можно упростить, если не предъявлять требование относительно определения точного значения фазы поступающей несущей. К сожалению, это упрощение влечет за собой ухудшение зависимости достоверности передачи от отношения сигнал/шум.

До настоящего момента в центре обсуждения находилась принимающая часть канала связи. Однако иногда передатчик играет более активную роль в синхронизации – он изменяет отчет времени и частоту своих передач, чтобы соответствовать ожиданиям приемника. Примером того является спутниковая сеть связи, где множество наземных терминалов направляют сигналы на единственный спутниковый приемник. В большинстве подобных случаев передатчик для определения точности синхронизации использует обратный канал связи от приемника. Следовательно, для успеха синхронизации передатчика часто требуется двусторонняя связь или сеть. По этой причине синхронизация передатчика часто называется сетевой.

Необходимость синхронизации приемника связана с определенными затратами. Каждый дополнительный уровень синхронизации подразумевает большую стоимость системы. Наиболее очевидное вложение денег – необходимость в дополнительном программном или аппаратном обеспечении для приемника, обеспечивающего получение и поддержание синхронизации. Кроме того, что менее очевидно, иногда мы платим временем, затраченным на синхронизацию до начала связи, или энергией, необходимой для передачи сигналов, которые будут использоваться в приемнике для получения и поддержания синхронизации. В данном случае может возникнуть вопрос, почему разработчик системы связи вообще должен рассматривать проект системы, требующий высокой степени синхронизации. Ответ: улучшенная производительность и универсальность.

Рассмотрим обычное коммерческое аналоговое АМ-радио, которое может быть важной частью системы широковещательной связи, включающей центральный передатчик и множество приемников. Данная система связи не синхронизирована. В то же время полоса пропускания приемника должна быть достаточно широкой, чтобы включать не только информационный сигнал, но и любые флуктуации несущей, возникающие вследствие эффекта Доплера или дрейфа опорной частоты передатчика. Это требование к полосе пропускания передатчика означает, что на детектор поступает дополнительная энергия шума, превышающая энергию, которая теоретически требуется для передачи информации. Несколько более сложные приемники, содержащие систему слежения за частотой несущей, могут включать узкий полосовой фильтр, центрированный на несущей, что позволит значительно снизить шумовую энергию и увеличить принятое отношение сигнал/шум. Следовательно, хотя обычные радиоприемники вполне подходят для приема сигналов от больших передатчиков на расстоянии несколько десятков километров, они могут оказаться недееспособными при менее качественных условиях.

Для цифровой связи компромиссы между производительностью и сложностью приемника часто рассматриваются при выборе модуляции. В число простейших цифровых приемников входят приемники, разработанные для использования с бинарной схемой FSK с некогерентным обнаружением. Единственное требование – битовая синхронизация и сопровождение частоты. Впрочем, если в качестве модуляции выбрать когерентную схему BPSK, то можно получить ту же вероятность битовой ошибки, но при меньшем отношении сигнал/шум (приблизительно на 4 дБ). Недостатком модуляции BPSK является то, что приемник требует точного отслеживания фазы, что может представлять сложную конструктивную проблему, если сигналы обладают высокими доплеровскими скоростями или для них характерно замирание.

Еще один компромисс между ценой и производительностью затрагивает кодирование с коррекцией ошибок. При использовании подходящих методов защиты от ошибок возможно значительное улучшение производительности. В то же время цена, выраженная в сложности приемника, может быть высока. Для надлежащей работы блочного декодера требуется, чтобы приемник достигал блочной синхронизации, кадровой или синхронизации сообщений. Эта процедура является дополнением к обычной процедуре декодирования, хотя существуют определенные коды коррекции ошибок, имеющие встроенную блочную синхронизацию. Сверточные коды также требуют некоторой дополнительной синхронизации для получения оптимальной производительности. Хотя при анализе производительности сверточных кодов часто делается предположение о бесконечной длине входной последовательности, на практике это не так. Поэтому для обеспечения минимальной вероятности ошибки декодер должен знать начальное состояние (обычно все нули), с которого начинается информационная последовательность, конечное состояние и время достижения конечного состояния. Знание момента окончания начального состояния и достижения конечного состояния эквивалентно наличию кадровой синхронизации. Кроме того, декодер должен знать, как сгруппировать символы канала для принятия решения при разветвлении. Это требование также относится к синхронизации.

Приведенное выше обсуждение компромиссов велось с точки зрения соотношения между производительностью и сложностью отдельных каналов и приемников. Стоит отметить, что способность синхронизировать также имеет значительные потенциальные последствия, связанные с эффективностью и универсальностью системы. Кадровая синхронизация позволяет использовать передовые, универсальные методы множественного доступа, подобные схемам множественного доступа с предоставлением каналов по требованию (DAMA). Кроме того, использование методов расширения спектра – как схем множественного доступа, так и схем подавления интерференции – требует высокого уровня синхронизации системы. Эти технологии предлагают возможность создания весьма разносторонних систем, что является очень важным свойством при изменении системы или при воздействии преднамеренных или непреднамеренных помех от различных внешних источников.


Заключение

В первом разделе моей работы описаны принципы построения беспроводных телекоммуникационных систем связи: приведена схема построения системы сотовой связи, указаны методы разделения абонентов в сотовой связи и отмечены преимущества (конфиденциальность и помехоустойчивость) кодового разделения по сравнению с временным и частотным, а также рассмотрены распространенные стандарты беспроводной связи DECT, Bluetooth и Wi-Fi (802.11, 802.16).

Далее рассмотрены корреляционные и спектральные свойства сигналов и, для примера, приведены расчеты спектров некоторых сигналов (прямоугольного импульса, гауссовского колокола, сглаженного импульса) и автокорреляционных функций распространенных в цифровой связи сигналов Баркера и функций Уолша, а также указаны типы сложных сигналов для телекоммуникационных систем.

В третьей главе приведены методы модуляции сложных сигналов: методы фазовой манипуляции, модуляция с минимальным частотным сдвигом (один из методов модуляции с непрерывной фазой), квадратурная амплитудная модуляция; и указаны их преимущества и недостатки.

Последняя часть работы содержит рассмотрение вероятностей ошибок различения М известных и М флуктуирующих сигналов на фоне помех, а также алгоритм расчета ошибок различения М ортогональных сигналов с неизвестным временным положением в асинхронных системах связи с кодовым разделением.


Список литературы:

1. Ратынский М.В. Основы сотовой связи / Под ред. Д. Б. Зимина – М.: Радио и связь, 1998. – 248 с.

2. Скляр Б. Цифровая связь. Теоретические основы и практическое применение, 2-е издание.: Пер. с англ. – М.: Издательский дом “Вильямс”, 2003. – 1104 с.

3. Шахнович И. Современные технологии беспроводной связи. Москва: Техносфера, 2004. – 168 с.

4. Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. «Радиотехника». – 3-е изд., перераб. и доп. – М.: Высш. шк., 2000. – 462 с.

5. Шумоподобные сигналы в системах передачи информации. Под ред. проф. В.Б. Пестрякова. М., «Сов. радио», 1973. – 424 с.

6. Варакин Л.Е. Системы связи с шумоподобными сигналами. – М.: Радио и связь, 1985. – 384 с.

7. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. Москва: Техносфера, 2005. – 592 с.

8. Радченко Ю.С., Радченко Т.А. Эффективность кодового разделения сигналов с неизвестным временем прихода. Труды 5 междунар. конф. «Радиолокация, навигация, связь» - RLNC-99, Воронеж, 1999, т.1, с. 507-514.

9. Радиотехнические системы: Учеб. для вузов по спец. «Радиотехника» / Ю.П. Гришин, В.П. Ипатов, Ю.М. Казаринов и др.; Под ред. Ю.М. Казаринова. – М.: Высш. шк., 1990. – 469 с.

Управляемые выпрямители однофазного тока

Мостовой управляемый выпрямитель трехфазного тока

Работа тиристорных групп /, // в реверсивном преобразователе характеризуется попеременным использованием в них режимов вы­прямления и инвертирования. Различают два режима управления тиристорными группами - совместное и раздельное.

При совместном управлении отпирающие импуль­сы подаются на тиристоры как одной, так и другой групп во всех ре­жимах работы привода, задавая одной группе режим выпрямления, а другой - режим инвертирования. Углы управления щ, ац со­ответственно тиристорами групп I и /I связаны между собой услови­ем равенства средних значений напряжения и ал выпрямителя и ин­-


Синхронные системы импульсно-фазового управления

Синхронный принцип импульсно-фазового управления преобра­зователями является наиболее распространенным. Его характеризу­ет такая функциональная связь узлов СУ, предназначенных для по­лучения управляющих импульсов, при которой синхронизация управ­ляющих импульсов осуществляется напряжением сети переменного тока.

Сущность синхронного принципа построения СУ и функциональ­ное назначение ее узлов покажем на примере выполнения канала уп­равления одним тиристором преобразователя (рис. 6.36). В схему ка­нала входят генератор опорного напряжения ГОН, нуль-орган НО и усилитель-формирова­тель УФ отпирающих импульсов.

Синхронные системы управления многофазными преобразователя­ми могут быть выполнены по многоканальному и одноканальному способам.

В многоканальной системе управления (рис. 6.37) регулирование угла а осуществляется от общего управляю­щего напряжения при выполнении каждого канала по типу рис. 6.36.

Количество каналов равно числу тирис­торов в схеме преобразователя (так, в СУ трехфазного мостового управляемо­го выпрямителя число каналов равно шести). При соответствующей синхро низации фазосдвигающих устройств от сети переменного тока (фази-ровки) система формирует для тиристоров в фазах а, Ь, с управ­ляющие импульсы, симметричные относительно точек естественного отпирания (см. рис. 6.15, в), что требуется для работы схемы.



Многоканальный способ управления получил широкое распро­странение благодаря простоте выполнения СУ, унификации ее узлов, а также применимости для различного типа преобразователей. Вместе с тем в таких системах предъявляются повышенные требования к иден­тичности регулировочных характеристик фазосдвигающих устройств а = / г (%а) отдельных каналов во всем диапазоне изменения управляю­щего напряжения. Различие регулировочных характеристик приво­дит к отличию углов а по каналам управления тиристорами, асиммет­рии управляющих импульсов, что создает, например, в управляемых выпрямителях дополнительные низкочастотные пульсации выпрям­ленного напряжения.

В одноканальной системе управления регулиро­вание фазового сдвига управляющих импульсов производится по од­ному каналу с помощью общего фазосдвигающего устройства, импуль­сы которого затем распределяются по цепям формирования запускаю­щих импульсов для каждого из тиристоров преобразователя. Благода­ря применению общего фазосдвигающего устройства одноканальная система способна обеспечить самые высокие требования в отно­шении симметрии управляющих импульсов. Однако из-за усложне­ния системы управления, особенно для реверсивных преобразовате­лей и НПЧ, одноканальный способ построения СУ менее распростра­нен.

Асинхронные системы импульсно-фазового управления

В рассмотренных синхронных системах управления момент полу­чения управляющего импульса (т. е. угол управления а) отсчиты-вается от некоторой точки напряжения питающей сети (например, от момента его перехода через нуль). Такая синхронизация от напряжения питающей сети осуществляется посредством генератора опорного напряжения. Начало отсчета угла а либо совпадает с момен­том синхронизации, либо сдвинуто относительно него на некоторый постоянный фазовый угол.

В асинхронных системах управления связь во времени управляю­щих импульсов с соответствующими точками напряжения питающей гети играет вспомогательную роль, например служит для ограниче­ния минимальных и максимальных значений углов управления а. 2ами же управляющие импульсы получают без синхронизации узлов;истемы управления напряжением сети переменного тока. Фазосдви-гающее устройство, принципиально необходимое для синхронных систем, здесь отсутствует.


Ступенчатый метод регулирования переменного напряжения. Сту­пенчатый метод регулирования характеризуется ступенчатым изме­нением амплитуды (действующего значения) переменного напряжения, подводимого к нагрузке, без изменения формы его кривой. Этот ме­тод осуществляется с помощью трансформатора, выводы от вторич­ной обмотки которого через включенные встречно-параллельно тиристоры связаны с нагрузкой (рис. 6.55, а). Отпирание ти­ристоров происходит при переходе пере­менного напряжения через нуль (рис. 6.55, б, в). Регулирование мощности в на­грузке (например, с целью изменения тем­пературы печи в определенном диапазоне^ осуществляется системой управления, ко­торая производит избирательную подачу отпирающих импульсов на соответствую­щую пару включенных встречно-парал­лельно тиристоров. Сложная конструк­ция трансформатора, наличие большого количества тиристоров, а также невоз­можность плавного регулирования мощ­ности в нагрузке являются недостатками данного метода регулирования. Преиму­щества метода - отсутствие искажений в кривой потребляемого от сети тока, а также фазового сдвига тока относительно напряжения питающей сети (при чисто активной нагрузке).

Фазоступенчатый метод регулирования переменного напряжения. Фазоступенча­тый метод регулирования основывается на совместном использовании ступенчато­го и фазовых методов регулирования. Он реализуется по схеме с трансформатором на входе вида рис. 6.55, а. В зависимости от числа ступеней вторичного напряжения трансформатора и 2 (тиристорных пар) су­ществует двух-, трех-, четырех-и много­ступенчатое фазовое регулирование.

Сущность фазоступенчатого метода сво­дится к использованию фазового регули­рования для плавного изменения дейст­вующего значения напряжения на нагруз­ке в пределах каждой ступени выходного напряжения

Широтно-импульсный метод регулирования переменного напряже­ния на пониженной частоте. Широтно-импульсный метод регулирова­ния на пониженной частоте основывается на изменении числа периодов переменного напряжения, подво­димого к нагрузке. Для его реализа­ции требуется схема вида рис. 6.47, а или б, в. Диаграммы напряжений на рис. 6.58 иллюстрируют принцип ра­боты преобразователя переменного на­пряжения при данном методе регули­рования. Этот метод позволяет осуще­ствить регулирование мощности в на­грузке в диапазоне от и 2 Ш н до ну­ля. Его недостатком является при­сутствие гармонических в токе сети с частотами ниже 50 Гц, что обуслов­ливается импульсным характером потребления энергии от сети. Ука­занный недостаток в значительной степени ослабляется при питании от общей сети переменного тока группы из нескольких преобразова­телей, когда отсутствие потребления тока одним преобразователем ком­пенсируется потреблением тока дру­гими преобразователями.

Понравилась статья? Поделиться с друзьями: