Сетевые протоколы и стандарты. Основной стек протоколов интернет. Стек (сетевые коммутаторы). Настройка сетевых устройств Базовым стеком протоколов в сети интернет является

Стеки протоколов

Стек протоколов - это иерархически организованный набор сетевых протоколов различных уровней, достаточный для организации и обеспечения взаимодействия узлов в сети. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, Novell NetWare, DECnet, XNS, SNA и OSI. Все эти стеки, кроме SNA, на нижних уровнях - физическом и канальном - используют одни и те же хорошо стандартизованные протоколы Ethemet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Все протоколы, входящие в стек, разработаны одним производителем, то есть они способны работать максимально быстро и эффективно.

Важным моментом в функционировании сетевого оборудования, в частности сетевого адаптера, является привязка протоколов. Она позволяет использовать разные стеки протоколов при обслуживании одного сетевого адаптера. Например, можно одновременно использовать стеки TCP/IP и IPX/SPX. Если вдруг при попытке установления связи с адресатом с помощью первого стека произошла ошибка, то автоматически произойдёт переключение на использование протокола из следующего стека. Важным моментом в данном случае является очередность привязки, поскольку она однозначно влияет на использование того или иного протокола из разных стеков.

Вне зависимости от того, какое количество сетевых адаптеров установлено в компьютере, привязка может осуществляться как «один к нескольким», так и «несколько к одному», то есть один стек протоколов можно привязать сразу к нескольким адаптерам или несколько стеков к одному адаптеру.

NetWare - сетевая операционная система и набор сетевых протоколов, которые используются в этой системе для взаимодействия с компьютерами-клиентами, подключёнными к сети. В основе сетевых протоколов системы лежит стек протоколов XNS. В настоящее время NetWare поддерживает протоколы TCP/IP и IPX/SPX. Novell NetWare была популярна в 80-е и 90-е года по причине большей эффективности в сравнении с операционными системами общего назначения. Ныне это устаревшая технология.

Стек протоколов XNS (Xerox Network Services Internet Transport Protocol) разработан компанией Xerox для передачи данных по сетям Ethernet. Содержит 5 уровней.

Уровень 1 - среда передачи - реализует функции физического и канального уровня в OSI-модели:

* управляет обменом данными между устройством и сетью;

* маршрутизирует данные между устройствами одной сети.

Уровень 2 - межсетевой - соответствует сетевому уровню в OSI- модели:

* управляет обменом данными между устройствами, находящимися в разных сетях (обеспечивает дейтаграммный сервис в терминах IEEE- модели) ;

* описывает способ прохождения данных через сеть.

Уровень 3 - транспортный - соответствует транспортному уровню в OSI-модели:

* обеспечивает связь "end-to-end" между источником и приемником данных.

Уровень 4 - контрольный - соответствует сессионному и представительному уровню в OSI-модели:

* управляет представлением данных;

* управляет контролем над ресурсами устройств.

Уровень 5 - прикладной - соответствует высшим уровням в OSI- модели:

* обеспечивает функции обработки данных для прикладных задач.

Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol) на сегодня является наиболее распространенным и функциональным. Он работает в локальных сетях любых масштабов. Данный стек является основным стеком в глобальной сети Интернет. Поддержка стека была реализована в компьютерах c операционной системой UNIX. В результате популярность протокола TCP/IP возросла. В стек протоколов TCP/IP входит достаточно много протоколов, работающих на различных уровнях, но свое название он получил благодаря двум протоколам - TCP и IP.

TCP (Transmission Control Protocol) - транспортный протокол, предназначенный для управлением передачей данных в сетях, использующих стек протоколов TCP/ IP. IP (Internet Protocol) - протокол сетевого уровня, предназначенный для доставки данных в составной сети с использованием одного из транспортных протоколов, например TCP или UDP.

Нижний уровень стека TCP/IP использует стандартные протоколы передачи данных, что делает возможным его применение в сетях с использованием любых сетевых технологий и на компьютерах с любой операционной системой.

Изначально протокол TCP/IP разрабатывался для применения в глобальных сетях, именно поэтому он является максимально гибким. В частности, благодаря способности фрагментации пакетов данные, несмотря на качество канала связи, в любом случае доходят до адресата. Кроме того, благодаря наличию IP-протокола становится возможной передача данных между разнородными сегментами сети.

Недостатком TCP/IP-протокола является сложность администрирования сети. Так, для нормального функционирования сети требуется наличие дополнительных серверов, например DNS, DHCP и т. д., поддержание работы которых и занимает большую часть времени системного администратора. Лимончелли Т., Хоган К., Чейлап С. - Сестемное и сетевое администрирование. 2-е изд. 2009год. 944с

Стек протоколов IPX/SPX (Internetwork Packet Exchange/Sequenced Packet Exchange) является разработкой и собственностью компании Novell. Он был разработан для нужд операционной системы Novell NetWare, которая еще до недавнего времени занимала одну из лидирующих позиций среди серверных операционных систем.

Протоколы IPX и SPX работают на сетевом и транспортном уровнях модели ISO/ OSI соответственно, поэтому отлично дополняют друг друга.

Протокол IPX может передавать данные с помощью датаграмм, используя для этого информацию о маршрутизации в сети. Однако для того, чтобы передать данные по найденному маршруту, необходимо сначала установить соединение между отправителем и получателем. Этим и занимается протокол SPX или любой другой транспортный протокол, работающий в паре с IPX.

К сожалению, стек протоколов IPX/SPX изначально ориентирован на обслуживание сетей небольшого размера, поэтому в больших сетях его использование малоэффективно: излишнее использование широковещательного вещания на низкоскоростных линиях связи недопустимо.

На физическом и канальном уровнях стек OSI поддерживает протоколы Ethernet, Token Ring, FDDI, а также протоколы LLC, X.25 и ISDN, то есть использует все разработанные вне стека популярные протоколы нижних уровней, как и большинство других стеков. Сетевой уровень включает сравнительно редко используемые протоколы Connectionoriented Network Protocol (CONP) и Connectionless Network Protocol (CLNP). Протоколы маршрутизации стека OSI это ES-IS (End System -- Intermediate System) между конечной и промежуточной системами и IS-IS (Intermediate System -- Intermediate System) между промежуточными системами. Транспортный уровень стека OSI скрывает различия между сетевыми сервисами с установлением соединения и без установления соединения, так что пользователи получают требуемое качество обслуживания независимо от нижележащего сетевого уровня. Чтобы обеспечить это, транспортный уровень требует, чтобы пользователь задал нужное качество обслуживания. Службы прикладного уровня обеспечивают передачу файлов, эмуляцию терминала, службу каталогов и почту. Из них наиболее популярными являются служба каталогов (стандарт Х.500), электронная почта (Х.400), протокол виртуального терминала (VTP), протокол передачи, доступа и управления файлами (FTAM), протокол пересылки и управления работами (JTM).

Достаточно популярный стек протоколов, разработкой которого занимались компании IBM и Microsoft, соответственно, ориентированный на использование в продуктах этих компаний. Как и у TCP/IP, на физическом и канальном уровне стека NetBIOS/SMB работают стандартные протоколы, такие как Ethernet, Token Ring и другие, что делает возможным его использование в паре с любым активным сетевым оборудованием. На верхних же уровнях работают протоколы NetBIOS (Network Basic Input/Output System) и SMB (Server Message Block).

Протокол NetBIOS был разработан в середине 80-х годов прошлого века, но вскоре был заменен на более функциональный протокол NetBEUI (NetBIOS Extended User Interface), позволяющий организовать очень эффективный обмен информацией в сетях, состоящих не более чем из 200 компьютеров.

Для обмена данными между компьютерами используются логические имена, присваиваемые компьютерам динамически при их подключении к сети. При этом таблица имен распространяется на каждый компьютер сети. Поддерживается также работа с групповыми именами, что позволяет передавать данные сразу нескольким адресатам.

Главные плюсы протокола NetBEUI - скорость работы и очень малые требования к ресурсам. Если требуется организовать быстрый обмен данными в небольшой сети, состоящей из одного сегмента, лучшего протокола для этого не найти. Кроме того, для доставки сообщений установленное соединение не является обязательным требованием: в случае отсутствия соединения протокол использует датаграммный метод, когда сообщение снабжается адресом получателя и отправителя и «пускается в путь», переходя от одного компьютера к другому.

Однако NetBEUI обладает и существенным недостатком: он полностью лишен понятия о маршрутизации пакетов, поэтому его использование в сложных составных сетях не имеет смысла. Пятибратов А.П.,Гудыно Л.П.,Кириченко А.А.Вычислительные машины, сети и телекоммуникационные системы Москва 2009год. 292с

Что касается протокола SMB (Server Message Block), то с его помощью организуется работа сети на трех самых высоких уровнях - сеансовом, уровне представления и прикладном уровне. Именно при его использовании становится возможным доступ к файлам, принтерам и другим ресурсам сети. Данный протокол несколько раз был усовершенствован (вышло три его версии), что позволило применять его даже в таких современных операционных системах, как Microsoft Vista и Windows 7. Протокол SMB универсален и может работать в паре практически с любым транспортным протоколом, например TCP/IP и SPX.

Стек протоколов DECnet (Digital Equipment Corporation net) содержит 7 уровней. Несмотря на разницу в терминологии, уровни DECnet очень похожи на уровни OSI-модели. DECnet реализует концепцию сетевой архитектуры DNA (Digital Network Architecture), разработанную фирмой DEC, согласно которой разнородные вычислительные системы (ЭВМ разных классов), функционирующие под управлением различных операционных систем, могут быть объединены в территориально-распределенные информационно-вычислительные сети.

Протокол SNA (System Network Architecture) компании IBM предназначен для удаленной связи с большими компьютерами и содержит 7 уровней. SNA основана на концепции главной (хост) -машины и обеспечивает доступ удаленных терминалов к мейнфреймам IBM. Основной отличительной чертой SNA является наличие возможности доступа каждого терминала к любой прикладной программе главной ЭВМ. Системная сетевая архитектура реализована на базе виртуального телекоммуникационного метода доступа (Virtual Telecommunication Access Method - VTAM) в главной ЭВМ. VTAM управляет всеми линиями связи и терминалами, причем каждый терминал имеет доступ ко всем прикладным программам.

При помощи сеансового уровня (Session Layer) организуются диалог между сторонами, фиксируется, какая из сторон является инициатором, какая из сторон активна и каким образом завершается диалог.

Представительный уровень (Presentation Layer) занимается формой предоставления информации нижележащим уровням, например, перекодировкой или шифрованием информации.

Прикладной уровень (Application Layer) это набор протоколов, которыми обмениваются удаленные узлы, реализующие одну и ту же задачу (программу).

Следует отметить, что некоторые сети появились гораздо раньше, чем была разработана модель OSI, поэтому для многих систем соответствие уровней модели OSI весьма условно.

1.3. Стек протоколов Интернет

Интернет предназначена для транспортировки любого вида информации от источника к получателю. В транспортировке информации участвуют различные элементы сети (рис. 1.1) – оконечные устройства, коммутационные устройства и серверы. Группы узлов при помощи коммутационных устройств объединяются в локальную сеть, локальные сети соединяются между собой шлюзами (маршрутизаторами). Коммутационные устройства используют различные технологии: Ethernet, Token Ring, FDDI и другие.

Каждое оконечное устройство (хост) может одновременно обслуживать несколько процессов по обработке информации (речь, данные, текст …), которые существуют в виде сетевых приложений (специализированных программ), расположенных на высшем уровне; от приложения информация поступает в средства обработки информации в нижележащие уровни.

Транспортировка приложения в каждом узле решается последовательно различными уровнями. Каждый уровень для решения свой части задачи использует свои протоколы и обеспечивает дуплексное прохождение информации. Последовательность прохождения задач образует стек протоколов. В процессе транспортировки информации каждый узел задействует необходимый ему стек протоколов. На рис. 1.3 показан полный стек базовых протоколов сетевого соединения в Интернет.

Узлы, с точки зрения сети, представляют собой источники и получатели информации. Четыре нижних уровня в совокупности независимы от вида передаваемой информации. Каждое сетевое приложение, связывающееся с четвертым уровнем, идентифицируется своим уникальным номером порта . Значения портов занимают диапазон от 0 до 65535. В этом диапазоне номера портов 0-1023 выделены под общесетевые приложения (well-known ports), номера портов 1024-49151 используются разработчиками специализированного программного обеспечения, номера портов 49152-65535 – динамически закрепляются за сетевыми приложениями пользователей на время сеанса связи. Численные значения номеров портов стека приведено в .

Транспортный (четвертый) уровень поддерживает два режима установления связи

– с установлением соединения и без установления соединения. Каждый из режимов идентифицируется своим номером протокола (Protocol) . В стандартах Интернет принято кодирование в шестнадцатеричном коде. Первый режим используется модулем TCP, имеющий код протокола 6 (в шестнадцатеричном коде – 0x06) и используется для гарантированной транспортировки информации. Для этого каждый передаваемый пакет снабжается порядковым номером и должен быть подтвержден

______________________________________________________________________________

приемной стороной о его правильном приеме. Второй режим используется модулем UDP без гарантии доставки информации получателю (гарантия доставки обеспечивается приложением). Протокол UDP имеет код 17 (в шестнадцатеричном коде – 0x11).

Прикладной

Представительный

Сеансовый

DHCP (Port = 67/68)

Транспортный

Protocol = 0x0059

Protocol = 0x0002

Protocol = 0x0001

Protocol Type = 0x0806

Protocol Type = 0x0800

Канальный

Канальный

Канальный

Физический

Канальный

Кабель,Ethernetвитая пара, оптоволокно

Физический Кабель, витая пара, оптоволокно

Физический

Кабель, витая пара, оптоволокно

Физический

Кабель, радио, оптоволокно

Рис. 1.3. Стек базовых протоколов Интернет

______________________________________________________________________________

Сетевой (третий) уровень обеспечивает перемещение информации в виде пакетов между сетями (интерфейсами канального уровня), используя сетевой адрес. Семейство протоколов третьего уровня нижележащими уровнями идентифицируется типом протокола (ARP – типом 0x0806 или IP – типом 0x0800). Связка “протокол – сетевой адрес – номер порта ” называется сокетом (socket). Пара сокетов – на передаче и приеме – однозначно определяет установленное соединение. Адрес назначения каждого пакета, поступившего в модуль IP с канального уровня, анализируется, чтобы понять, куда пакет следует дальше направить: в собственное приложение или переместить на другой интерфейс для дальнейшей транспортировке по сети.

Второй (канальный) уровень осуществляет обработку пакетов в локальной сети, используя различные технологии: Ethernet, Token Ring, FDDI и другие. Первый уровень обеспечивает преобразование бинарных кодов в линейные коды, которые наиболее хорошо подходят к используемой транспортной среде (металлический кабель, оптоволоконная линия связи, радиоканал).

ВОПРОСЫ К РАЗДЕЛУ 1.3

1. Чем определяются средства сетевого уровня для обработки пакетов, поступающих с канального уровня?

Ответ. Типом протокола: 0x0806 – для ARP и 0x0800 – для IP.

2. Чем определяются средства транспортного уровня для обработки пакетов, поступающих с сетевого уровня?

Ответ. Номером протокола: 0x0006 – для TCP и 0x0011 – для UDP.

3. Чем определяется тип сетевого приложения для обработки дейтаграмм?

Ответ. Номером порта.

4. Приведите примеры номеров портов общесетевых приложений.

Ответ: Порт 80 – HTTP, порт 23 – TELNET, порт 53 – DNS.

1.4. Протоколы доступа в Интернет

Для доступа в Интернет используется семейство протоколов под общим названием PPP (Point-to-Point Protocol) , в число которых входят :

1. Протокол управления каналом (Link Control Protocol – LCP) для согласования параметров обмена пакетами на канальном уровне на участке хост – сервер сетевого доступа (в частности, для согласования размера пакета и типа протокола аутентификации).

2. Протокол аутентификации (Authentication Protocol) для установления легитимности пользователя (в частности, с использованием протокола Challenge Handshake Authentication Protocol – CHAP).

3. Протокол сетевого управления (IP Control Protocol – IPCP) для конфигурации параметров сетевого обмена (в частности, присвоения IP-адреса).

После этого начинается обмен информацией по протоколу IP.

Каждый из перечисленных протоколов может использовать любую транспортную среду, поэтому существует много способов инкапсуляции PPP на физическом уровне. Для инкапсуляции PPP в каналы связи “точка-точка” используется процедура схожая с

HDLC .

Обмен кадрами с использованием процедуры схожей с HDLC (High-level Data Link Control Procedure) предполагает дуплексный обмен кадрами. Каждый переданный кадр должен быть подтвержден, при отсутствии подтверждения в течение тайм-аута передатчик повторяет передачу. Структура кадра приведена на рис. 1.4. Порядок передачи полей кадра – слева направо. Назначение полей кадра следующее.

Ю.Ф.Кожанов, Колбанев М.О ИНТЕРФЕЙСЫ И ПРОТОКОЛЫ СЕТЕЙ СЛЕДУЮЩЕГО ПОКОЛЕНИЯ

______________________________________________________________________________

Рис. 1.4. Структура полей HDLC-кадра

Каждый передаваемый кадр должен начинаться и заканчиваться комбинацией "Флаг" (Flag), имеющую битовую структуру вида 01111110 (0х7е). Одна и та же комбинация "Флаг" может быть использована как закрывающая для одного кадра и открывающая для следующего кадра. Комбинации "Флаг" должны выявляться приемной стороной с целью определения границ кадра. Для обеспечения кодонезависимого переноса информации необходимо исключить из последующих полей кадра все комбинации, совпадающие со служебными символами (например, комбинацией "Флаг").

В асинхронном режиме формирование всех полей кадра производится побайтно, каждый байт предваряется битом “старт” и заканчивается битом “стоп”.

В синхронном режиме используется либо байт-вставка, либо бит-вставка. В первом случае в полях кадра производится замена байтовых последовательностей 0x7e (“Флаг”) на 2-байтовые 0x7d и 0x5e, 0x7d на 0x7d и 0x5d, 0x03 на 0x7d и 0x23. Во втором случае после формирования всех полей кадра производится побитовый просмотр содержимого каждого кадра между комбинациями "Флаг" и вставляется бит "ноль" после каждых пяти смежных битов "единица". При декодировании кадра на приеме производится побитовый просмотр содержимого кадра между комбинациями "Флаг" и изъятии бита "ноль" после каждых пяти смежных битов "единица".

Адресное поле (Address) имеет постоянное значение 11111111 (0хff), а поле управления (Control) – значение 00000011 (0x03).

Поле протокола принимает значение 0хс021 для протокола LCP, 0хc223 – для протокола CHAP, 0х8021 – для IPCP и 0х0021 – для протокола IP.

Заполнение информационного поля зависит от типа протокола, но его длина не должна быть менее 4 байт.

Проверочная последовательность (Frame Check Sequence, FCS) на передаче формируется так, чтобы а)при умножении информации между флагами на Х16 и б)последующем делении по модулю 2 на образующий полином Х16 + Х12 + Х5 + 1 результат был бы равен постоянному числу 0хf0b8.

Процедура доступа абонента ТФОП в Интернет состоит из нескольких этапов. На первом этапе используется протокол LCP (Protocol = 0xc021), который

использует следующий формат (рис. 1.5).

Рис. 1.5. Формат кадра протокола LCP

Поле протокола принимает значение 0хс021. Каждое сообщение характеризуется своим кодом (Code), порядковым номером (ID), длиной (Length). В длину сообщения включаются все поля от Code до FCS. В одном сообщении может содержаться несколько параметров, каждый из которых характеризуется типом параметра (Type),

длиной (Length) и данными (Date).

(Configure-Nak), 04 – отказ от конфигурации (Configure-Reject), 05 – запрос на разъединение (Terminate-Request), 06 – подтверждение разъединения (Terminate-Ack).

Полная диаграмма взаимодействия оконечного устройства (Host), сервера сетевого доступа (NAS) и сервера аутентификации, авторизации и учета (ААА) при организации доступа абонента ТФОП в Интернет приведена на рис. 1.6.

______________________________________________________________________________

Из рисунка 1.6 видно, что вначале хост по протоколу LCP (Protocol = 0xc021) запросил соединение с параметрами MTU=300, PFC=7, но в результате их согласования с сервером доступа NAS (Code=02) установлены параметры MTU=200 (MTU – максимальный размер пакета в байтах), протокол аутентификации – CHAP (Auth.prot=c223). Обмен сжатыми заголовками (PFC=7) сервером доступа NAS был отвергнут (Code=04).

Type = 3, IP-address = a.b.c.d, Mask,

Protocol = 0xc021, code=04,

Protocol = 0xc021, code=01,

Type = 1, MTU=300

Protocol = 0xc021, code=03,

Type = 1, MTU=200

Protocol = 0xc021, code=01,

Type = 1, MTU=200

Protocol = 0xc021, code=02,

Type = 1, MTU=200

Protocol = 0xc021, code=01,

Protocol = 0xc021, code=02,

Type = 3, Auth.prot=0xc223, Algorithm=5

Protocol = 0xc223, code=01,

Protocol = 0xc223, code=02,

Prot=UDP, code=01,

Name=ABC, Value = W

Auth = 0, Attr = Name, Chall=V

Prot=UDP, code=02,

IP-address=a.b.c.d , Mask,

Prot=UDP, code=05, Data

Protocol = 0x0021, …

Protocol =0x0021, …

Protocol = 0xc021, code=05,

1994, DS] . Суть процедуры аутентификации состоит в том, что NAS посылает хосту некоторое случайное число V, а хост возвращает другое число W, вычисленное по заранее известной функции с использованием имени (Name) и пароля (Password), которые вводятся пользователем в компьютер из купленной Интернет карты у провайдера. Иначе говоря, W=f(V, Name, Password). Предполагается, что злоумышленник (хакер) в состоянии перехватить пересылаемые по сети значения V, Name и W, и ему известен алгоритм вычисления функции f. Существо формирования W состоит в том, что исходное элементы (биты) случайного числа V различным образом “перемешиваются” с неизвестным злоумышленнику элементами пароля Password. Затем полученный зашифрованный текст подвергается сжатию, например, суммированию байтов по модулю два. Такое преобразование называется дайджест-функцией (digest function) или хэш-функцией, а результат – дайджестом. Точная процедура формирования дайджеста определена алгоритмом MD5 и описана в . NAS по протоколу RADIUS запрашивает у сервера ААА истинное значение W, пересылая ему значения Name и Challenge=V. Сервер AAA на основании полученных от NAS значений V и Name и имеющегося у него в базе данных пароля Password по тому же алгоритму вычисляет W и отсылает его NAS. NAS сравнивает два значения W, полученных от хоста и от сервера AAA: если они совпадают, то хосту посылается сообщение об успешной аутентификации – Success (Code=03).

На третьем этапе происходит конфигурация сетевых параметров по протоколу IPCP (он же PPP IPC, Protocol=0x8021). Хост запрашивает у NAS сетевые IP-адреса и NAS выделяет из пула (диапазона) IP-адрес для хоста (IP-address=a.b.c.d), а

также сообщает IP-адрес DNS-сервера (IP-address=e.f.g.h). NAS по протоколу RADIUS

высылает серверу ААА извещение (Code=04) о начале тарификации и получает подтверждение (Code=05).

На 4-м этапе пользователь начинает сеанс связи с Интернет по протоколу IP (Protocol = 0x0021).

После завершения сеанса (этап 5) пользователь по протоколу LCP высылает NAS сообщение о разрушении соединения (Code=05), NAS подтверждает это сообщение (Code=06), отсылает серверу ААА извещение об окончании тарификации и получает от него подтверждение. Все устройства возвращаются в исходное состояние.

ВОПРОСЫ К РАЗДЕЛУ 1.4

1. Назовите состав и назначение семейства протоколов РРР.

Ответ. LCP – для согласования параметров обмена пакетами, CHAP – для установления легитимности пользователя, IPCP – для присвоения IP-адреса.

2. Обеспечивает ли протокол РРР обнаружение ошибок и упорядоченную доставку пакетов?

Ответ. Обнаружение ошибок – да, упорядоченную доставку – нет, это обеспечивает протокол TCP.

3. Где хранятся данные для аутентификации пользователя?

Ответ. В Интернет-карте и на сервере ААА.

4. Можно ли до установления соединения с сервером NAS заранее определить IPадрес пользователя?

Ответ: Нет. После успешной аутентификации NAS выдает свободный IP-адрес из диапазона отведенных адресов.

5. Какие способы используется для учета стоимости соединений в Интернет? Ответ: Обычно взимается абонентская плата или плата за объем принятой

Стек NetBIOS/SMB

Фирмы Microsoft и IBM совместно работали над сетевыми средствами для персональных компьютеров, поэтому стек протоколов NetBIOS/SMB является их совместным детищем. Средства NetBIOS появились в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM, которая на прикладном уровне (рис. 3) использовала для реализации сетевых сервисов протокол SMB.

Рис. 3. Стек NetBIOS/SMB

Протокол NetBIOS работает на трех уровнях модели взаимодействия открытых систем: сетевом, транспортном и сеансовом . NetBIOS может обеспечить сервис более высокого уровня, чем протоколы IPX и SPX, однако не обладает способностью к маршрутизации. Таким образом, NetBIOS не является сетевым протоколом в строгом смысле этого слова. NetBIOS содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням, однако с его помощью невозможна маршрутизация пакетов, так как в протоколе обмена кадрами NetBIOS не вводится такое понятие как сеть. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети. NetBIOS поддерживает как дейтаграммный обмен, так и обмен с установлением соединений.

Протокол SMB , соответствующий прикладному и представительному уровням модели OSI, регламентирует взаимодействие рабочей станции с сервером. В функции SMB входят следующие операции:

Управление сессиями. Создание и разрыв логического канала между рабочей станцией и сетевыми ресурсами файлового сервера.

Файловый доступ. Рабочая станция может обратиться к файл-серверу с запросами на создание и удаление каталогов, создание, открытие и закрытие файлов, чтение и запись в файлы, переименование и удаление файлов, поиск файлов, получение и установку файловых атрибутов, блокирование записей.

Сервис печати. Рабочая станция может ставить файлы в очередь для печати на сервере и получать информацию об очереди печати.

Сервис сообщений. SMB поддерживает простую передачу сообщений со следующими функциями: послать простое сообщение; послать широковещательное сообщение; послать начало блока сообщений; послать текст блока сообщений; послать конец блока сообщений; переслать имя пользователя; отменить пересылку; получить имя машины.

Из-за большого количества приложений, которые используют функции API, предоставляемые NetBIOS, во многих сетевых ОС эти функции реализованы в виде интерфейса к своим транспортным протоколам. В NetWare имеется программа, которая эмулирует функции NetBIOS на основе протокола IPX, существуют программные эмуляторы NetBIOS для Windows NT и стека TCP/IP.


Стек TCP/IP

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных стеков коммуникационных протоколов. Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является основным в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 4. Протоколы TCP/IP делятся на 4 уровня.

Рис. 4. Стек TCP/IP

Самый нижний (уровень IV) - уровень межсетевых интерфейсов - соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов - собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка - точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP , который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня: протокол копирования файлов FTP, протоколы удаленного управления telnet и ssh, почтовый протокол SMTP, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Кратко остановимся на некоторых из протоколов стека, наиболее тесно связанных с тематикой данного курса.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

В современном мире информация распространяется за считанные секунды. Вот только что появилась новость, а через секунду она уже доступна на каком-либо сайте в сети интернет. Интернет считается одной из самых полезных разработок человеческого разума. Чтобы пользоваться всеми благами, которые предоставляет интернет, необходимо подключиться к этой сети.

Мало кто знает, что простой процесс посещения веб-страничек подразумевает незаметную для пользователя, сложную систему действий. Каждый переход по ссылке активирует сотни различных вычислительных операций в сердце компьютера. В их числе передачи запросов, прием ответов и многое другое. За каждое действие в сети отвечают так называемые протоколы TCP/IP. Что они собой представляют?

Любой протокол интернета TCP/IP работает на своем уровне. Иными словами, каждый занимается своим делом. Все семейство TCP/IP протоколов одновременно выполняет колоссальную работу. А пользователь в это время видит только яркие картинки и длинные строки текста.

Понятие стека протоколов

Стек протоколов TCP/IP - это организованный набор основных сетевых протоколов, который иерархическим способом разделен на четыре уровня и представляет собой систему транспортного распределения пакетов по компьютерной сети.

TCP/IP - это наиболее известный стек сетевых протоколов, который используется на данный момент. Принципы стека TCP/IP применяются как в локальных, так и в глобальных сетях.

Принципы использования адресов в стеке протоколов

Стек сетевых протоколов TCP/IP описывает пути и направления отправки пакетов. Это основная задача всего стека, выполняющаяся на четырех уровнях, которые взаимодействуют между собой протоколированным алгоритмом. Для правильной отправки пакета и его доставки ровно в ту точку, которая его запросила, была введена и стандартизирована адресация IP. Этому послужило наличие следующих задач:

  • Адреса различного типа, должны быть согласованы. Например преобразование домена сайта в IP адрес сервера и обратно, или преобразование имени узла в адрес и обратно. Таки образом становится возможен доступ к точке не только с помощью IP адреса, но и по интуитивному названию.
  • Адреса должны быть уникальны. Это вызвано тем, что в некоторых частных случаях пакет должен попасть только в одну конкретную точку.
  • Необходимость конфигурирования локальных вычислительных сетей.

В малых сетях, где используется несколько десятков узлов, все эти задачи выполняются элементарно, с помощью простейших решений: составление таблицы с описанием принадлежности машины и соответствующего ей IP адреса, или можно вручную раздать всем сетевым адаптерам IP адреса. Однако для крупных сетей на тысячу или две тысячи машин задача ручной выдачи адресов не кажется такой выполнимой.

Именно поэтому для сетей TCP/IP был изобретен специальный подход, который и стал отличительной чертой стека протоколов. Было введено понятие - масштабируемость.

Уровни стека протоколов TCP/IP

Здесь существует определенная иерархия. Стек протоколов TCP/IP предусматривает четыре уровня, каждый из которых обрабатывает свой набор протоколов:

Прикладной уровень : создан для обеспечения работы пользователя с сетью На этом уровне обрабатывается все то, что видит и делает пользователь. Уровень позволяет пользователю получить доступ к различным сетевым службам, например: доступ к базам данных, возможность прочитать список файлов и открыть их, отправить электронное сообщение или открыть веб-страницу. Вместе с пользовательскими данными и действиям, на этом уровне передается служебная информация.

Транспортный уровень: это механизм передачи пакетов в чистом виде. На этом уровне совершенно не имеет значения ни содержимое пакета, ни его принадлежность к какому бы то ни было действию. На этом уровне имеет значение только адрес узла отправки пакета и адрес узла, на который пакет должен быть доставлен. Как правило, размер фрагментов, передаваемых с использованием разных протоколов, может изменяться, потому на этом уровне блоки информации могут дробиться на выходе и собираться в единое целое в точке назначения. Этим обусловлена возможная потеря данных, если в момент передачи очередного фрагмента произойдет кратковременный разрыв соединения.

Транспортный уровень включает в себя много протоколов, которые делятся на классы, от простейших, которые просто передают данные, до сложных, которые оснащены функционалом подтверждения приема, или повторного запроса недополученного блока данных.

Данный уровень, предоставляет вышестоящему (прикладному) два типа сервиса:

  • Осуществляет гарантированную доставку, с помощью протокола ТСР.
  • Осуществляет доставку по возможности по протоколу UDP.

Чтобы обеспечить гарантированную доставку, согласно протоколу TCP устанавливается соединение, которое позволяет выставлять на пакетах нумерацию на выходе и подтверждать их прием на входе. Нумерация пакетов и подтверждение приема - это так называемая служебная информация. Этот протокол поддерживает передачу в режиме "Дуплекс". Кроме того, благодаря продуманному регламенту протокола, он считается очень надежным.

Протокол UDP предназначен для моментов, когда невозможно настроить передачу по протоколу TCP, либо приходится экономить на сегменте сетевой передачи данных. Также протокол UDP может взаимодействовать с протоколами более высокого уровня, для повышения надежности передачи пакетов.

Сетевой уровень или "уровень интернета": базовый уровень для всей модели TCP/IP. Основной функционал этого уровня идентичен одноименному уровню модели OSI и описывает перемещение пакетов в составной сети, состоящей из нескольких, более мелких подсетей. Он связывает соседние уровни протокола TCP/IP.

Сетевой уровень является связующим между вышестоящим транспортным уровнем и нижестоящим уровнем сетевых интерфейсов. Сетевой уровень использует протоколы, которые получают запрос от транспортного уровня, и посредством регламентированной адресации передают обработанный запрос на протокол сетевых интерфейсов, указывая, по какому адресу направить данные.

На этом уровне используются следующие сетевые протоколы TCP/IP: ICMP, IP, RIP, OSPF. Основным, и наиболее популярным на сетевом уровне, конечно же является протокол IP (Internet Protocol). Основной его задачей является передача пакетов от одного роутера к другому до тех пор, пока единица данных не попадет на сетевой интерфейс узла назначения. Протокол IP разворачивается не только на хостах, но и на сетевом оборудовании: маршрутизаторах и управляемых коммутаторах. Протокол IP работает по принципу негарантированной доставки с максимальными усилиями. Т. е., для отправки пакета нет необходимости заранее устанавливать соединение. Такой вариант приводит к экономии трафика и времени на движении лишних служебных пакетов. Пакет направляется в сторону назначения, и вполне возможно, что узел останется недоступным. В таком случае возвращается сообщение об ошибке.

Уровень сетевых интерфейсов: отвечает за то, чтобы подсети с разными технологиями могли взаимодействовать друг с другом и передавать информацию в том же режиме. Реализовано это двумя простыми шагами:

  • Кодирование пакета в единицу данных промежуточной сети.
  • Преобразование информации о месте назначения в стандарты необходимой подсети и отправка единицы данных.

Этот подход позволяет постоянно расширять количество поддерживаемых технологий построения сетей. Как только появляется новая технология, она сразу попадает в стек проколов TCP/IP и позволяет сетям со старыми технологиями передавать данные в сети, построенные с применением более современных стандартов и способов.

Единицы передаваемых данных

За время существования такого явления, как протоколы TCP/IP, установились стандартные термины по части единиц передаваемых данных. Данные при передаче могут дробиться по-разному, в зависимости от технологий, используемых сетью назначения.

Чтобы иметь представление о том, что и в какой момент времени происходит с данными, нужно было придумать следующую терминологию:

  • Поток данных - данные, которые поступают на транспортный уровень от протоколов вышестоящего прикладного уровня.
  • Сегмент - фрагмент данных, на которые дробится поток по стандартам протокола TCP.
  • Датаграмма (особо безграмотные произносят как "Дейтаграмма") - единицы данных, которые получаются путем дробления потока с помощью протоколов, работающих без установления соединения (UDP).
  • Пакет - единица данных, производимая посредством протокола IP.
  • Протоколы TCP/IP упаковывают IP-пакеты в передаваемые по составным сетям блоки данных, которые называются кадрами или фреймами .

Типы адресов стека протоколов TCP/IP

Любой протокол передачи данных TCP/IP для идентификации узлов использует один из следующих типов адресов:

  • Локальные (аппаратные) адреса.
  • Сетевые адреса (IP адреса).
  • Доменные имена.

Локальные адреса (MAC-адреса) - используются в большинстве технологий локальных вычислительных сетей, для идентификации сетевых интерфейсов. Под словом локальный, говоря о TCP/IP, следует понимать интерфейс, который действует не в составной сети, а в пределах отдельно взятой подсети. Например, подсеть интерфейса, подключенного к интернет - будет локальной, а сеть интернет - составной. Локальная сеть может быть построена на любой технологии, и независимо от этого, с точки зрения составной сети машина, находящаяся в отдельно выделенной подсети, будет называться локальной. Таким образом, когда пакет попадает в локальную сеть, дальше его IP адрес ассоциируется с локальным адресом, и пакет направляется уже на MAC-адрес сетевого интерфейса.

Сетевые адреса (IP-адреса). В технологии TCP/IP предусмотрена собственная глобальная адресация узлов, для решения простой задачи - объединения сетей с разной технологией в одну большую структуру передачи данных. IP-адресация совершенно не зависит от технологии, которая используется в локальной сети, однако IP адрес позволяет сетевому интерфейсу представлять машину в составной сети.

В итоге была разработана система, при которой узлам назначается IP адрес и маска подсети. Маска подсети показывает, какое количество бит отводится под номер сети, а какое количество под номер узла. IP адрес состоит из 32 бит, разделенных на блоки по 8 бит.

При передаче пакета ему назначается информация о номере сети и номере узла, в который пакет должен быть направлен. Сначала маршрутизатор направляет пакет в нужную подсеть, а потом выбирается узел, который его ждет. Этот процесс осуществляется протоколом разрешения адресов (ARP).

Доменные адреса в сетях TCP/IP управляются специально разработанной системой доменных имен (DNS). Для этого существуют серверы, которые сопоставляют доменное имя, представленное в виде строки текста, с IP адресом, и отправляет пакет уже в соответствии с глобальной адресацией. Между именем компьютера и IP адресом не предусмотрено соответствий, поэтому, чтобы преобразовать доменное имя в IP адрес, передающему устройству необходимо обратиться к таблице маршрутизации, которая создается на DNS сервере. Например, мы пишем в браузере адрес сайта, DNS сервер сопоставляет его с IP адресом сервера, на котором сайт расположен, и браузер считывает информацию, получая ответ.

Кроме сети интернет, есть возможность выдавать компьютерам доменные имена. Таким образом, упрощается процесс работы в локальной сети. Пропадает необходимость запоминать все IP-адреса. Вместо них можно придумать каждому компьютеру любое имя и использовать его.

IP-адрес. Формат. Составляющие. Маска подсети

IP адрес - 32-битное число, которое в традиционном представлении записывается в виде чисел, от 1 до 255, разделенных между собой точками.

Вид IP адреса в различных форматах записи:

  • Десятичный вид IP адреса: 192.168.0.10.
  • Двоичный вид того же IP адреса: 11000000.10101000.00000000.00001010.
  • Запись адреса в шестнадцатеричной системе счисления: C0.A8.00.0A.

Между ID сети и номером точки в записи нет разделительного знака, но компьютер способен их разделять. Для этого существует три способа:

  1. Фиксированная граница. При этом способе весь адрес условно делится на две части фиксированной длины побайтно. Таким образом, если под номер сети отдать один байт, тогда мы получим 2 8 сетей по 2 24 узлов. Если границу сдвинуть еще на байт вправо, тогда сетей станет больше - 2 16 , а узлов станет меньше - 2 16 . На сегодняшний день подход считается устаревшим и не используется.
  2. Маска подсети. Маска идет в паре с IP адресом. Маска имеет последовательность значений "1" в тех разрядах, которые отведены под номер сети, и определенное количество нулей в тех местах IP адреса, которые отведены на номер узла. Граница между единицами и нулями в маске - это граница между идентификатором сети и ID узла в IP-адресе.
  3. Метод классов адресов. Компромиссный метод. При его использовании размеры сетей не могут быть выбраны пользователем, однако есть пять классов - А, В, С, D, Е. Три класса - А, В и С - предназначены для различных сетей, а D и Е - зарезервированы для сетей специального назначения. В классовой системе каждый класс имеет свою границу номера сети и ID узла.

Классы IP адресов

К классу А относятся сети, в которых сеть идентифицируется по первому байту, а три оставшихся являются номером узла. Все IP адреса, которые имеют в своем диапазоне значение первого байта от 1 до 126 - это сети класса А. Количественно сетей класса А получается совсем мало, зато в каждой из них может быть до 2 24 точек.

Класс В - сети, в которых два высших бита равны 10. В них под номер сети и идентификатор точки отводится по 16 бит. В результате получается, что количество сетей класса В в большую сторону отличается от количества сетей класса А количественно, но они имеют меньшее количество узлов - до 65 536 (2 16) шт.

В сетях класса С - совсем мало узлов - 2 8 в каждой, но количество сетей огромно, благодаря тому, что идентификатор сети в таких структурах занимает целых три байта.

Сети класса D - уже относятся к особым сетям. Он начинается с последовательности 1110 и называется групповым адресом (Multicast adress). Интерфейсы, имеющие адреса класса А, В и С, могут входить в группу и получать вдобавок к индивидуальному еще и групповой адрес.

Адреса класса Е - в резерве на будущее. Такие адреса начинаются с последовательности 11110. Скорее всего, эти адреса будут применяться в качестве групповых, когда наступит нехватка IP адресов в глобальной сети.

Настройка протокола TCP/IP

Настройка протокола TCP/IP доступна на всех операционных системах. Это - Linux, CentOS, Mac OS X, Free BSD, Windows 7. Протокол TCP/IP требует только наличия сетевого адаптера. Разумеется, серверные операционные системы способны на большее. Очень широко, с помощью серверных служб, настраивается протокол TCP/IP. IP адреса в в обычных настольных компьютерах задаются в настройках сетевых подключений. Там настраивается сетевой адрес, шлюз - IP адрес точки, имеющий выход в глобальную сеть, и адреса точек, на которых располагается DNS сервер.

Протокол интернета TCP/IP может настраиваться в ручном режиме. Хотя не всегда в этом есть необходимость. Можно получать параметры протокола TCP/IP с динамически-раздающего адреса сервера в автоматическом режиме. Такой способ используют в больших корпоративных сетях. На DHCP сервер можно сопоставить локальный адрес к сетевому, и как только в сети появится машина с заданным IP адресом, сервер сразу даст ему заранее подготовленный IP адрес. Этот процесс называется резервирование.

TCP/IP Протокол разрешения адресов

Единственный способ установить связь между MAC-адресом и IP адресом - ведение таблицы. При наличии таблицы маршрутизации каждый сетевой интерфейс осведомлен о своих адресах (локальном и сетевом), однако встает вопрос, как правильно организовать обмен пакетами между узлами, применяя протокол TCP/IP 4.

Для чего был придуман протокол разрешения адресов (ARP)? Для того, чтобы связывать семейство TCP/IP протоколов и других систем адресации. На каждом узле создается таблица соответствия ARP, которая заполняется путем опроса всей сети. Происходит это после каждого выключения компьютера.

ARP таблица

Так выглядит пример составленной ARP таблицы.

Стек TCP/IP был разработан по инициативе Министерства обороны США (DoD) более 20 лет назад для связи экспериментальной сети ARPANET с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС Unix. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров в Интернете, а также в огромном числе корпоративных сетей.

Поскольку стек TCP/IP изначально создавался для Интернета, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментироватъ пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая проще, чем другие протоколы аналогичного назначения включать в составную сеть сети разных технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей. В стеке TCP/IP очень экономно используются широковещательные рассылки. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации больших вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети разнообразных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, но в то же время сама требует пристального внимания со стороны администраторов.

В стеке TCP/IP определены 4 уровня.

Прикладной уровень стека TCP/IP соответствует трем верхним уровням модели OSI: прикладному, представления и сеансовому. Он объединяет службы, предо­ставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. К ним относятся такие распространенные протоколы, как протокол передачи файлов (File Transfer Proocol, FTP), протокол эмуляции терминала (telnet), простой протокол передачи электронной почты (Simple Mail Transfer Protocol, SMTP), протокол передачи Ипертекста (HyperText Transfer Protocol, HTTP} и многие другие. Протоколы прикладного уровня развертываются на хостах.

Архитектура стека TCP/IP

Транспортный уровень стека TCP/IP может предоставлять вышележащему уровню два типа сервиса:

□ гарантированную доставку обеспечивает протокол управления передачей (Transmission Control Protocol, TCP);

□ доставку по возможности, или с максимальными усилиями, обеспечивает протокол пользовательских дейтаграмм (User Datagram Protocol, UDP).

Для того чтобы обеспечить надежную доставку данных протокол TCP предусматривает установление логического соединения, что позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты, доставлять прикладному уровню пакеты в том порядке, в котором они были отправлены. Этот протокол позволяет объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP дает возможность без ошибок доставить сформированный на одном из компьютеров поток байтов в любой другой компьютер, входящий в составную сеть. TCP делит поток байтов на фрагменты и передает их нижележащему уровню межсетевого взаимодействия. После того как эти фрагменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байтов.

Второй протокол этого уровня - UDP - является простейшим дейтаграммным протоколом, который используется в том случае, когда задача надежного обмена данными либо вообще не ставится, либо решается средствами более высокого уровня - прикладным уровнем или пользовательскими приложениями.

В функции протоколов транспортного уровня TCP и UDP входит также исполнение роли связующего звена между прилегающими к ним прикладным уровнем и уровнем межсетевого взаимодействия. От прикладного протокола транспортный уровень принимает задание на передачу данных с тем или иным качеством, а после выполнения рапортует ему об этом. Нижележащий уровень межсетевого взаимодействия протоколы TCP и UDP рассматривают как своего рода инструмент, не очень надежный, но способный перемещать пакет в свободном и рискованном путешествии по составной сети.

Программные модули, реализующие протоколы TCP и UDP, подобно модулям протоколов прикладного уровня, устанавливаются на хостах.

Сетевой уровень , называемый также уровнем интернета , является стержнем всей архитектуры TCP/IP. Именно этот уровень, функции которого соответствуют сетевому уровню модели OSI, обеспечивает перемещение пакетов в пределах составной сети, образованной объединением множества сетей. Протоколы сетевого уровня поддерживают интерфейс с вышележащим транспортным уровнем, получая от него запросы на передачу данных по составной сети, а также с нижележащим уровнем сетевых интерфейсов, о функциях которого мы расскажем далее.

Основным протоколом сетевого уровня является межсетевой протокол (Internet Protocol, IP). В его задачу входит продвижение пакета между сетями - от одного маршрутизатора до другого до тех пор, пока пакет не попадет в сеть назначения. В отличие от протоколов прикладного и транспортного уровней протокол IP развертывается не только на хостах, но и на всех шлюзах. Протокол IP - это дейтаграммный протокол, работающий без установления соединений по принципу доставки с максимальными усилиями.

К сетевому уровню TCP/IP часто относят протоколы, выполняющие вспомогательные функции по отношению к IP. Это, прежде всего, протоколы маршрутизации RIP и OSPF, занимающиеся изучением топологии сети, определением маршрутов и составлением таблиц маршрутизации, на основании которых протокол IP перемещает пакеты в нужном направлении. По этой же причине к сетевому уровню могут быть отнесены еще два протокола: протокол межсетевых управляющих сообщений (Internet Control Message Protocol, ICMP), предназначенный для передачи маршрутизатором источнику информации об ошибках, возникших при передаче пакета, и протокол групповой адресации (Internet Group Management Protocol, IGMP), использующийся для направления пакета сразу по нескольким адресам.

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов .

Нижние уровни модели OSI (канальный и физический) реализуют большое количество функций доступа к среде передачи, формированию кадров и согласованию уровней электрических сигналов, кодированию и синхронизации и некоторые другие. Все эти весьма конкретные функции составляют суть таких протоколов обмена данными, как Ethernet, Token Ring, PPP, HDLC и многих других.

У нижнего уровня стека TCP/IP задача существенно проще - он отвечает только за организацию взаимодействия с технологиями сетей, входящих в составную сеть. TCP/IP рассматривает любую сеть, входящую в составную сеть, как средство транспортировки пакетов до следующего на пути маршрутизатора.

Задачу обеспечения интерфейса между технологией TCP/IP и любой другой технологией промежуточной сети упрощенно можно свести:

    к определению способа упаковки (инкапсуляции) IP-пакета в единицу передаваемых данных промежуточной сети;

    к определению способа преобразования сетевых адресов в адреса технологии данной промежуточной сети.

Такой подход делает составную сеть TCP/IP открытой для включения любой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Для каждой новой технологии должны быть разработаны собственные интерфейсные средства. Следовательно, функции этого уровня нельзя определить раз и навсегда.

Уровень сетевых интерфейсов в стеке TCP/IP не регламентируется. Он поддерживает все популярные технологии; для локальных сетей - это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, для глобальных сетей - протоколы двухточечных соединений SLIP и РРР, технологии Х.25, Frame Relay, ATM.

Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP путем разработки соответствующего документа RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (например, спецификация RFC 1577, определяющая работу протокола IP через сети ATM, появилась в 1994 году вскоре после принятия основных стандартов ATM).

Каждый коммуникационный протокол оперирует некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 4.15).

Потоком данных , или просто потоком, называют данные, поступающие от приложений на вход протоколов транспортного уровня - TCP и UDP.

Протокол TCP «нарезает» из потока данных сегменты.

Рис. 4.15. Названия PDU в TCP/IP

Единицу данных протокола UDP часто называют дейтаграммой , или датаграммой . Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол IP, поэтому его единицу данных также называют дейтаграммой. Однако очень часто используется и другой термин - пакет.

В стеке TCP/IP принято называть кадрами, или фреймами, единицы данных любых технологий, в которые упаковываются IP-пакеты для последующей переноски их через сети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в технологии составляющей сети. Для TCP/IP фреймом является и кадр Ethernet, и ячейка ATM, и пакет Х.25, так как все они выступают в качестве контейнера, в котором IP-пакет переносится через составную сеть.

Понравилась статья? Поделиться с друзьями: