Какие устройства выводят информацию. Альтернативные устройства ввода. Микропроцессоры и цифровая обработка сигналов. Ввод и вывод информации через параллельные порты

Монитор PC является важнейшим устройством отображения текстовой и графической информации. Мониторы бывают цветными и монохромными. Они могут работать в двух режимах: текстовом или графическом.

Цифровые ( TTL ) мониторы

Термин TTL (Transistor Transistor Logic - транзисторно-транзисторная логика) обозначает стандартную серию цифровых микросхем, применяемых в электронной технике. И как всегда, когда речь идет о цифровой технике, читается, что сигналы имеют только два состояния: логической 1 и логического 0 ("да" и "нет").

Монохромные мониторы

Когда речь идет о TTL-мониторах, то чаще всего подразумевают монохромные мониторы, сигналы управления которыми формируются графическими картами стандартов MDA или Hercules. Уже из самого понятия монохромный ясно, что точка на экране может быть только светлой или темной. В лучшем случае точки могут различаться еще и своей яркостью. Hercules-монитор способен отображать изображение только в виде светлых и темных точек с разрешением 728х348 и может работать в комплексе со всей системой только при наличии видеокарты. Другие мониторы формируют изображение (аналогично телевизорам) в результате высокой частоты смены кадров изображения при минимальном его мерцании. Этот принцип не реализован в мониторе типа Hercules. TTL-монитор можно отличить от аналогового также по количеству контактов разъема для подключения к PC. Монитор Hercules имеет 9-контактный штекер типа D (вилка). Однако будьте внимательны: такой же разъем имеет и описанный далее RGB-монитор.

RGB -мониторы

Цифровые RGB-мониторы (Red/Green/Blue - красный/зеленый/синий), в основном, предназначены для подключения к карте стандарта EGA. Подобные устройства поддерживают и монохромный режим с разрешением, позволяющим отображать 16 цветов. RGB-мониторы по сравнению с мониторами Hercules имеют меньшее разрешение. Такие мониторы можно узнать по характерной цветовой маркировке на передней панели.

Аналоговые мониторы

В данном случае речь пойдет о мониторах, которые работают с видеокартами стандарта VGA и выше. Они способны поддерживать разрешение стандарта VGA 640х480 пикселов и более высокое.

Название "аналоговый" означает не возможности разрешения, а, в отличие от TTL-мониторов, способ передачи информации о представляемых цветах от видеокарты к монитору. При работе в режиме True Color должно иметься соответствующее число линий для передачи палитры цветов с 24 степенями глубины. Поэтому на цифровых мониторах передача подобной информации не производится. Это единственная небольшая область PC, где аналоговый принцип обработки информации остался до сегодняшнего времени. Аналоговая передача сигналов осуществляется в виде напряжения различных уровней. VGA-мониторы могут работать не только в цветном, но и в монохромном режиме. В последнем случае цвета и их оттенки заменяются оттенками серого цвета.

Принцип формирования изображения в мониторах на базе электронно-лучевой трубки (все выше перечисленные) мало чем отличается от принципа действия телевизора. Испускаемый электронной пушкой (катодом) пучок электронов, попадая на экран, покрытый люминофором, вызывает его свечение.

Жидкокристаллические дисплеи ( LCD )

В конце 80-х годов были представлены первые модели PC типа notebook (laptop). Основным фактором, повлекшим снижение их веса, было, в первую очередь применение в качестве устройства отображения информации жидкокристаллических дисплеев (Liquid Crystal Display, LCD). Экран такого дисплея состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, которые могут изменять свою оптическую структуру и свойства в зависимости от приложенного к ним электрического заряда. Это означает, что кристалл под воздействием электрического поля изменяет свою ориентацию, тем самым кристаллы по-разному отражают свет и делают возможным отображение информации. Поскольку сопротивление относительно велико, кристаллы могут двигаться только с определенной скоростью. Это свойство ярко проявлялось при перемещении курсора мыши по LCD-экрану первых дисплеев. При быстром перемещении курсор просто исчезал. Жидкие кристаллы получали электрический импульс, но не успевали среагировать, когда курсор уже переместился на другое место. Для уменьшения смазанности и увеличения контрастности изображения были разработаны жидкокристаллические дисплеи, выполненные по технологии DSTN (Dual-scan Super-Twisted Nematic). Фирмой Toshiba был разработан жидкокристаллический дисплей с активной матрицей на тонкопленочных транзисторах, так называемая технология TFT (Thin Film Translator). В TFT-дисплее, в отличие от DSTN-дисплея, нет никакого замедления. Разновидностью DSTN-технологии явилась технология MLA (Multiline Addressing). Один из недостатков таких дисплеев может быть вам знаком по наручным часам, калькуляторам и т. д., которые работают с LCD-индикаторами. Если посмотреть на экран под углом, то можно увидеть только серебристую поверхность. Изображение и резкость LCD-экранов зависят от угла наблюдения. Хорошее качество изображения достигается при угле наблюдения 90°. Жидкие кристаллы сами не светятся, поэтому подобные мониторы нуждаются в подсветке или во внешнем освещении.

Газоплазменные мониторы

Для газоплазменных мониторов нет таких ограничений, как для LCD-дисплеев. Они также имеют две стеклянные пластины, между которыми находятся не кристаллы, а газовая смесь, которая высвечивается в соответствующих местах под действием электрических импульсов. Недостатком таких мониторов является невозможность их использования в переносных компьютерах с аккумуляторным и батарейным питанием из-за большого потребления тока.

Основные характеристики мониторов:

Частота вертикальной (кадровой) и горизонтальной (строчной) развертки

Разрешающая способность экрана, т.е. число точек (пикселов) отраженных на экране

Диагональ экрана, т.е. расстояние между правым нижним и верхним левым углами

Размер зерна монитора, т.е. размер точки люминофора на внутренней поверхности экрана

Тип электронно-лучевой трубки, от которого зависит качество люминофорного покрытия

Скорость переключения из текстового в графический режим, т.е. смена разрешения

Наличие и качество антибликового покрытия (экран приобретает голубой оттенок)

Уровень излучения (вместе с монитором желательно приобрести защитный экран)

Монитор является устройством для визуального отображения информации. Сигналы, которые получает монитор (числа, символы, графическую информацию и сигналы синхронизации), формируются видеокартой. Таким образом, монитор и видеокарта представляют собой своеобразный тандем, который для оптимальной работы должен быть настроен соответствующим образом. В целях обеспечения эффективной работы оба компонента должны оптимальным образом подходить друг к другу. В настоящее время насчитывается более 30 модификаций различных типов видеокарт, различающихся конструкцией, параметрами и стандартами. Естественно, описать все многообразие этих типов не представляется возможным. В связи с этим решено классифицировать видеокарты по принятым стандартам. Возможно, при таком разделении будут рассмотрены стандарты, которые больше не играют значительной роли в РС и морально устарели, но о них стоит упомянуть для полноты картины.

Стандарт Цвет Текстовой режим Графический режим
MDA Монохромный 80*25, 2 цвета Не поддерживается
CGA Цветной 80*25, 16 цветов 640*200, 2 цвета 320*200, 4 цвета
HGC Монохромный 80*25, 2 цвета 720*348, 2 цвета
EGA Цветной 80*25, 16 цветов 640*350, 16 цветов
VGA Цветной 80*25, 16 цветов 640*480, 256 цветов
SVGA Цветной 80*25, 16 цветов 1600*1200, True color (32 бита)

Обозначения:

MDA - Monochrome Display Adapter (адаптер монохромного дисплея)

CGA - Color Graphics Adapter (адаптер цветовой графики)

HGC - Hercules Graphics Card (графическая карта Hercules)

EGA - Enhanced Graphics Adapter (усовершенствованный графический адаптер)

VGA - Video Graphics Adapter (видео графический адаптер)

SVGA - Super Video Graphics Adapter (супер видео графический адаптер)

В настоящее время мониторы стандарта MDA, CGA, Hercules и EGA не используются, т.к. они не обладают надлежащей разрешающей способностью, что приводит к быстрому утомлению глаз. Кроме того, они не имеют возможности программной загрузки шрифтов кириллицы (русских букв). В последнее время наибольшее распространение получили мониторы стандарта SVGA.

Принтер

Принтер (или печатающее устройство) предназначен для вывода информации на бумагу. Все принтеры могут выводить также рисунки и графики, цветные или черно-белые изображения. Существует несколько тысяч моделей принтеров, которые могут использоваться с IBM PC. Рассмотрим основные типы.

Матричные (игольчатые) принтеры

Игольчатый принтер (Dot-matrix-Printer, он же матричный) долгое время являлся стандартным устройством вывода для РС. В недавнем прошлом, когда струйные принтеры работали еще неудовлетворительно, а цена лазерных была достаточно высока, повсеместно использовались игольчатые принтеры. Они еще часто применяются и сегодня. Достоинства этих принтеров определяются, в первую очередь скоростью печати и их универсальностью, которая заключается в способности работать с любой бумагой, а также низкой стоимостью печати. При выборе принтера вы всегда должны исходить из задач, которые будут перед ним поставлены. Если необходим принтер, который должен целый день без перерыва печатать различные формуляры, или скорость печати важнее, чем качество, то дешевле использовать игольчатый принтер. Если вы хотите получать на бумаге качественное изображение, то используйте струйный или лазерный принтер, однако при этом, естественно, себестоимость каждого листа существенно возрастет. Игольчатые принтеры имеют существенное преимущество – возможность печатать сразу несколько копий документа “под копирку”. А недостатком таких принтеров является, производимый ими при работе, шум. Принцип, которым игольчатый принтер печатает знаки на бумаге, очень прост. Игольчатый принтер формирует знаки несколькими иголками, расположенными в головке принтера. Механика подачи бумаги проста: бумага втягивается с помощью вала, а между бумагой и головкой принтера располагается красящая лента. При ударе иголки по этой ленте на бумаге остается закрашенный след. Иголки, расположенные внутри головки, обычно активизируются электромагнитным методом. Головка двигается по горизонтальной направляющей и управляется шаговым двигателем. Существуют головки: 9*9 иголок, 9*18, 18*18, 24*37. Иголки расположены в один или два ряда. С помощью многоцветной красящей ленты реализована возможность цветной печати.

Монитор

Монитор является устройством визуального отображения всех видов информации, которое подключается к видеокарте ПК.

Различают монохромные и цветные мониторы, алфавитно-цифровые и графические мониторы, мониторы на электронно-лучевой трубке и жидкокристаллические мониторы.

Электронно-лучевые мониторы ($CRT$)

Изображение создается с помощью пучка электронов, которые выпускает электронная пушка. Высокое электрическое напряжение разгоняет пучок электронов, который падает на внутреннюю поверхность экрана, покрытую люминофором (вещество, которое светится под действием пучка электронов). Система управления пучком прогоняет его построчно по всему экрану (создает растр) и регулирует его интенсивностью (яркостью свечения точки люминофора).

$CRT$-монитор излучает электромагнитные и рентгеновские волны, высокий статический электрический потенциал, которые оказывают неблагоприятное воздействие на здоровье человека.

Рисунок 1. Электронно-лучевой монитор

Жидкокристаллические мониторы ($LCD$) на базе жидких кристаллов

Жидкокристаллические мониторы (ЖК) сделаны из жидкого вещества, которое обладает некоторыми свойствами кристаллических тел. При воздействии электрического напряжения молекулы жидких кристаллов могут изменять свою ориентацию и изменять свойства светового луча, который проходит сквозь них.

Преимуществом жидкокристаллических мониторов перед $CRT$-мониторами является отсутствие вредных для человека электромагнитных излучений и компактность.

Изображение в цифровом виде хранится в видеопамяти, которая размещена на видеокарте. Изображение на экран монитора выводится после считывания содержимого видеопамяти и отображения его на экран.

Стабильность изображения на экране монитора зависит от частоты считывания изображения. Частота обновления изображения современных мониторов $75$ и более раз в секунду, что делает незаметным мерцание изображения.

Рисунок 2. Жидкокристаллический монитор

Принтер

Определение 2

Принтер - периферийное устройство, предназначенное для вывода числовой, текстовой и графической информации на бумажный носитель. По принципу действия различают лазерный, струйный и матричный принтер.

Обеспечивает практически бесшумную печать, которая формируется за счет эффектов ксерографии. Страница печатается сразу целиком, что обеспечивает высокую скорость печати (до $30$ страниц в минуту). Высокое качество печати лазерных принтеров обеспечивается за счет высокой разрешающей способности принтера.

Рисунок 3. Лазерный принтер

Обеспечивает практически бесшумную печать достаточно высокой скорости (до нескольких страниц в минуту). В струйных принтерах печать выполняет чернильная печатающая головка, выбрасывающая под давлением чернила из мельчайших отверстий на бумагу. Печатающая головка, перемещаясь вдоль бумаги, оставляет строку символов или полоску изображения. Качество печати струйного принтера зависит от разрешающей способности, которая может достигать фотографического качества.

Рисунок 4. Струйный принтер

Является принтером ударного действия, который формирует знаки с помощью нескольких иголок, расположенных в головке принтера. Бумагу втягивает крутящийся вал, а между бумагой и головкой принтера проходит красящая лента.

На печатающей головке матричного принтера расположен вертикальный столбец маленьких стержней (обычно $9$ или $24$), которые магнитное поле «выталкивает» из головки и они ударяют по бумаге (через красящую ленту). Печатающая головка, перемещаясь, оставляет на бумаге строку символов.

Скорость печати матричных принтеров низкая, производят много шума и качество печати не высокое.

Рисунок 5. Матричный принтер

Графопостроитель (плоттер)

Определение 3

Устройство, предназначенное для сложных и широкоформатных графических объектов (плакатов, чертежей, электрических и электронных схем и пр.) под управлением ПК.

Изображение наносится пером. Используется для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем.

Рисунок 6. Плоттер

Проектор

Определение 4

Мультимедийный проектор (мультимедиапроектор) – автономный прибор, который обеспечивает передачу (проецирование) на большой экран информации от внешнего источника, которым может быть компьютер (ноутбук), видеомагнитофон, DVD-проигрыватель, видеокамера, документ-камера, телевизионный тюнер и т.п.

$LCD$-проекторы. Изображение формируется с помощью просветной жидкокристаллической матрицы, которых у $3LCD$ моделей три (по одной для каждого из трех основных цветов). $LCD$-технология является сравнительно недорогой, поэтому часто используется в моделях различного класса и назначения.

Рисунок 7. LCD-проектор

$DLP$-проекторы. Изображение формируется отражающей матрицей и цветовым колесом, которое позволяет использовать одну матрицу для последовательного отображения всех трех основных цветов.

Рисунок 8. DLP-проектор

$CRT$-проекторы. Изображение формируется с помощью трех электронно-лучевых трубочек базовых цветов. Сейчас практически не используются.

Рисунок 9. CRT-проектор

$LED$-проекторы. Формирование изображения происходит с помощью светодиодного излучателя света. К преимуществам относится длительный срок службы, который в разы превышает срок службы проекторов с лампой, возможность создания сверхпортативных моделей, которые могут поместиться даже в карман.

Рисунок 10. LED-проектор

$LDT$-проекторы. В моделях используется несколько лазерных генераторов света. Технология позволяет создавать компактные проекторы с очень высокой яркостью.

Устройства вывода звуковой информации

Встроенный динамик

Определение 5

Встроенный динамик - простейшее устройство, предназначенное для воспроизведения звука в ПК. Встроенный динамик являлся основным устройством воспроизведения звука до тех пор, пока не появились недорогие звуковые платы.

В современных ПК динамик используется для подачи сигналов об ошибках, в частности при работе программы POST. Некоторые программы (например, Skype) всегда дублируют вызывной сигнал на динамик, но не выводят через него звук разговора.

64-битная Windows не поддерживает работу встроенного динамика, что связано с конфликтом средств реабилитации и управления питанием звуковой платы.

Устройства для вывода звуковой информации, которые подключаются к выходу звуковой платы.

Рисунок 11. Колонки и наушники

После введения пользователем исходных данных компьютер должен их обработать в соответствии с имеющейся программой и вывести полученные результаты для восприятия их оператором или для использования автоматическими устройствами. Выводимая информация может отображаться на экране монитора, печататься на бумаге (с помощью принтера или плоттера), воспроизводиться в виде звуков (с помощью акустических колонок или головных телефонов), регистрироваться в виде тактильных ощущений (технология виртуальной реальности), распространяться в виде управляющих сигналов (устройства автоматики), передаваться в виде электрических сигналов по сети.

Наиболее распространенными устройствами вывода информации являются мониторы (дисплеи) . Подавляющее большинство мониторов для формирования изображения используют электронно-лучевые трубки (ЭЛТ) или жидкокристаллические матрицы. Причем в настоящее время происходит постепенное вытеснение мониторов с ЭЛТ мониторами, использующими жидкие кристаллы.

Существуют мониторы, основанные на других физических принципах: плазменные, люминесцентные и др.

Например, мониторы, изготовленные по технологии FED (Field Emission Display) базируются на эффекте создания эмиссии по всей поверхности экрана. В отличие от ЭЛТ источником электронов является не отдельная точка (электронная пушка), а целая излучающая поверхность. Облучение производится через маску, в которой число отверстий равно числу пикселей. За счет такой конструкции удается получить яркость изображения такую же, как у мониторов с ЭЛТ, а габариты (толщину) - как у жидкокристаллических мониторов.

Перспективной считается новая технология изготовления мониторов — OLED (Organic Light Emitting Diodes). Их конструкция основана на использовании органических светоизлучающих диодов.

Принтеры , в зависимости от порядка формирования изображения, подразделяются на последовательные, строчные и страничные. Принадлежность принтера к той или иной группе зависит от того, формирует ли он на бумаге символ за символом или сразу всю строку, а то и целую страницу.

По физическому принципу действия принтеры делятся на следующие типы: термографические, лепестковые (ромашковые), матричные (игольчатые), струйные и лазерные.

Конструкция первых двух типов принтеров морально устарела, и они практически уже не используются.

В матричных принтерах изображение формируется из точек ударами иголок по красящей ленте. Под действием управляющих сигналов, поступающих на электромагниты, иголки «выколачивают» краску из ленты, оставляя следы на бумаге. В зависимости от конструкции печатающая головка матричного принтера может иметь 9, 18 или 24 иголки. Все символы формируются из отдельных точек.

Печатающие головки струйных принтеров вместо иголок содержат тонкие трубочки — сопла, через которые на бумагу выбрасываются капельки чернил. Печатающая головка струйного принтера содержит от 12 до 64 сопел, диаметры которых тоньше человеческого волоса.

Известно несколько принципов действия струйных печатающих головок.

В одной из конструкций на входном конце каждого сопла расположен маленький резервуар с чернилами. Позади резервуара располагается нагреватель (тонкопленочный резистор). Когда резистор нагревается проходящим по нему током до температуры 500°С, окружающие его чернила закипают, образуя пузырек пара. Этот расширяющийся пузырек выталкивает из сопла капли чернил диаметром 50...85 мкм со скоростью около 700 км/ч.

В другой конструкции печатающей головки источником давления служит мембрана, приводимая в движение пьезоэлектрическим элементом. Подача электрического напряжения на пьезоэлемент вызывает его деформацию, которая используется для распыления чернил.

Во всех конструкциях принтеров электромеханические устройства перемещают печатающие головки и бумагу таким образом, чтобы печать происходила в нужном месте.

В лазерных принтерах используется электрографический принцип создания изображения. Процесс печати включает в себя формирование невидимого рельефа электростатического потенциала в слое полупроводника с последующей его визуализацией. Визуализация (проявление) осуществляется с помощью частиц сухого порошка - тонера, наносимого на бумагу. Тонер представляет собой кусочки железа, покрытые пластиком. Наиболее важными частями лазерного принтера являются полупроводниковый барабан, лазер и прецизионная оптико-механическая система, перемещающая луч (рис. 10.5).

Лазер генерирует тонкий световой луч, который, отражаясь от вращающегося зеркала, формирует электронное изображение на светочувствительном полупроводниковом барабане.

Поверхности барабана предварительно сообщается некоторый статический заряд. Для создания электростатического заряда используется сетка или тонкий провод. При подаче на провод высокого напряжения возникает коронный разряд, в результате которого вокруг провода появляется светящаяся ионизированная область пространства. За счет коронного разряда поверхность барабана равномерно заряжается. Для получения изображения на барабане лазер должен включаться и выключаться в соответствии с формируемым изображением, что обеспечивается схемой управления. Управляющие сигналы поступают из ЭВМ в соответствии с хранящимся в памяти изображением. Вращающееся зеркало служит для разворота луча лазера в строку, формируемую на поверхности барабана.

Когда луч лазера попадает на предварительно заряженный барабан, заряд «стекает» с освещенной поверхности. Таким образом, освещаемые и неосвещаемые лазером участки барабана имеют разный заряд. В результате сканирования всей поверхности полупроводникового барабана на нем создается скрытое (электронное, не видимое для человека) изображение.

Поворот барабана на новую строку осуществляет прецизионный шаговый двигатель. Это смещение определяет разрешающую способность принтера и может составлять, например, 1/300, 1/600 или 1/1200 дюйма. Процесс развертки изображения на барабане во многом напоминает построение изображения на экране монитора (создание растра).

Рис. 10.5. Процесс печати лазерного принтера

На следующем этапе работы принтера происходит проявление изображения, т. е. превращение скрытого электронного изображения в видимое. При проявлении изображения используется следующее физическое явление: заряженные частицы тонера притягиваются только к тем местам барабана, которые имеют противоположный заряд по отношению к заряду тонера.

Когда видимое изображение на барабане построено и он покрыт тонером в соответствии с оригиналом, подаваемый лист бумаги заряжается таким образом, что тонер с барабана притягивается к бумаге. Прилипший порошок закрепляется на бумаге за счет нагрева частиц тонера до температуры плавления. В результате этого формируется водоупорный отпечаток. Цветные лазерные принтеры формируют изображение, последовательно накладывая голубой, пурпурный, желтый и черный тонеры на фоточувствительный барабан.

В четырехпроходном цветном принтере скорость печати существенно меньше, чем у черно-белого принтера. В однопроходном цветном принтере четыре картриджа с тонером установлены в одной плоскости друг за другом, каждый рядом со своим бараном. Все цвета наносятся за один проход вместо четырех, поэтому скорость формирования изображения повышается.

Кроме лазерных принтеров, существуют так называемые LED-принтеры (Light Emitting Diode), которые получили свое название из-за того, что полупроводниковый лазер в них заменен «гребенкой» (линейкой) светодиодов. В этом случае не нужна сложная механическая система вращения зеркала. Изображение одной строки на полупроводниковом барабане формируется одновременно.

В табл. 10.1. приведены характеристики принтеров различной конструкции.

Таблица 10.1. Характеристики принтеров

Плоттеры (или графопостроители) - устройства вывода графической информации, которые используются при оформлении больших плакатов, чертежей, географических карт, эскизов печатных плат, диаграмм, гистограмм.

Работа плоттера основана на механических и немеханических способах вывода графической информации. При механическом способе применяются карандаши, перья с чернилами. Аналогично принтерам в немеханических графопостроителях применяются термический, матричный, струйный и лазерный способы печати.

В качестве устройств, способных выполнять функции ввода и вывода информации, могут использоваться коммуникационные адаптеры . С их помощью осуществляют связь между ЭВМ по телефонной линии. Поскольку пока еще телефонные сети работают чаще не с цифровыми, а с аналоговыми электрическими сигналами звукового диапазона, необходимо преобразовать цифровые сигналы, поступающие от ЭВМ, в аналоговые сигналы и передать их в телефонную сеть. На другом конце телефонной линии необходимо осуществить обратное преобразование. Эти преобразования выполняются специальным устройством — модемом (от слов МОдулятор — ДЕМодулятор).

Модем выполняется либо в виде внешнего устройства, которое одним выходом подсоединяется к телефонной линии, а другим — к стандартному порту компьютера, либо в виде обыкновенной платы (карты), которая устанавливается на системную шину компьютера (внутренний модем).

Вывод звуковой информации осуществляется с помощью акустических колонок и головных телефонов (рис. 10.6), которые подключаются через специальный адаптер (контроллер, звуковую плату).

Рис. 10.6. Наушники

Существует несколько способов воспроизведения звуков (в частности, музыкальных произведений). Частотный способ (FM-синтез) воспроизведения звука основан на имитации звука реальных инструментов, а табличный способ (wave-table-синтез) оперирует записанными в памяти звуками реальных инструментов.

Частотный синтез основывается на том, что для получения какого-либо звука используются математические формулы (модели), которые описывают спектр частот конкретного музыкального инструмента. Звуки, получаемые по этой технологии, характеризуются металлическим оттенком.

Волновой синтез основан на использовании цифровой записи реальных инструментов, так называемых семплов (samples). Семплы - это образцы звучания различных реальных инструментов, хранящиеся в памяти звуковой карты. При воспроизведении звуков по технологии волнового синтеза пользователь слышит звуки реальных инструментов, поэтому создаваемая звуковая картина ближе к естественному звучанию инструментов.

Семплы могут храниться двумя способами: либо постоянно в находиться ПЗУ, либо загружаться в оперативную память звуковой карты перед их использованием. Существует большой набор разнообразных семплов, что позволяет формировать практически бесконечное разнообразие звуков.

Дисплей (монитор) является наиболее популярным устройством вывода информации. Существуют монохромные (черно-белые) и цветные дисплеи . Вначале рассмотрим принцип действия черно-белых мониторов.

Рис. 10.7. Электронно-лучевая трубка

Основным узлом дисплея является электронно-лучевая трубка (ЭЛТ) . Порой для обозначения ЭЛТ используют аббревиатуру CRT — Cathode Ray Tube. Одна из возможных конструкций ЭЛТ показана на рис. 10.7.

Перечислим основные детали, из которых состоит ЭЛТ: катод, анод, модулятор, горизонтальные отклоняющие пластины, вертикальные отклоняющие пластины, экран, колба.

Катод, анод и модулятор образуют электронный прожектор, который иногда называют электронной пушкой. Горизонтальные и вертикальные отклоняющие пластины образуют отклоняющую систему. Такая отклоняющая система называется электростатической. Существуют магнитные отклоняющие системы, в которых для изменения траектории движения электронного потока вместо пластин используют катушки.

В ЭЛТ используется поток электронов, сфокусированных в узкий пучок, управляемый по интенсивности и по положению в пространстве и взаимодействующий с экраном трубки. Электронный пучок испускается электронным прожектором (точнее, катодом), а изменение положения пучка на экране производится отклоняющей системой.

Перемещение электронного луча по экрану ЭЛТ в соответствии с определенным законом называется разверткой, а рисунок, прочерченный следом пучка электронов на экране, — растром. Развертка осуществляется подачей на отклоняющую систему ЭЛТ периодически изменяющихся напряжений. В ходе развертки электронный пучок последовательно обегает по строчкам поверхность экрана ЭЛТ.

В процессе формирования растра поток электронов движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому углу. На рис. 10.8 сплошными линиями показан растр, штриховыми — траектория движения электронного луча, на которой он «гасится» (делается невидимым).


Рис. 10.8. Растр и траектория движения электронного луча

Экран покрыт люминофором, поэтому в местах падения электронного пучка появляется свечение, яркость которого пропорциональна интенсивности пучка. Интенсивность потока электронов изменяется в соответствии с сигналами, подаваемыми на управляющий электрод - модулятор. Именно эти сигналы формируют необходимое изображение на экране дисплея.


Рис. 10.9. Изображение буквы «И»

На рис. 10.9 показано в большом масштабе изображение буквы «И». В данном случае для ее изображения потребовалось восемь строк растра. На рис. 10.10. показаны временные диаграммы для управляющих сигналов, подаваемых на модулятор. Высокий потенциал соответствует белым участкам экрана, низкий - черным. С помощью отклоняющей системы модулированный пучок электронов развертывается в растр, высвечивая на экране строку за строкой, воспроизводя таким образом изображение кадр за кадром. Благодаря инерционности зрения человек видит на экране слитное, часто динамическое, изображение.


Рис. 10.10. Временные диаграммы для управляющих сигналов

Любое изображение на экране монитора состоит из множества дискретных точек, называемых пикселями (pixel — picture element).

Дисплей взаимодействует со своим адаптером, который может также называться видеокартой, видеоадаптером или контроллером. Дисплей и адаптер очень тесно связаны между собой и совместно определяют качество изображения — разрешение, количество воспроизводимых цветов, скорость регенерации (число кадров в единицу времени).

Разрешение зависит от размеров экрана и минимального элемента изображения (так называемого «зерна», равного для лучших мониторов 0,24...0,28 мм). Для 14-дюймовых мониторов разрешение обычно не более 800×600 элементарных точек (пикселей), для 15-дюймовых — 1024×768, для 21-дюймовых — 1280×1024 точек.

Способность адаптера выводить на экран монитора изображение с заданным разрешением и глубиной цвета (т. е. числом цветовых оттенков) определяется объемом установленной оперативной памяти на плате адаптера. Для отображения 16,7 млн оттенков цветов (24 бита на пиксель) нужно установить в адаптер не менее 1,37 Мбайт памяти при разрешении 800×600 элементарных точек, 3,75 Мбайт при разрешении 1280×1024 и 5,49 Мбайт при разрешении 1600×1200.

Для комфортного восприятия изображения, без утомляющего зрения мерцания, нужны достаточно высокие частоты кадровой развертки (рекомендуется не менее 85 Гц).

Принцип работы цветного монитора сходен с принципом действия монохромного монитора, однако конструкция цветного монитора существенно сложнее. Цветной дисплей содержит три электронные пушки с отдельными схемами управления. Экран выполняется в виде мозаичной структуры (прямоугольной матрицы), состоящей из зерен люминофора трех цветов свечения: красного (Red), зеленого (Green) и синего (Blue). Зерна расположены тройками (триадами) так, чтобы электроны каждой из трех пушек попадали только на зерна «своего» цвета. Для обеспечения этого на пути движения электронов устанавливают маски.

Принцип действия цветного дисплея базируется на физиологической особенности зрения человека. Так, при одинаковой интенсивности свечения трех разноцветных маленьких соседних зерен этот участок экрана воспринимается как белая точка. Свечение соседних красного и зеленого зерен воспринимается как желтая точка, а свечение синего и зеленого зерен дает голубую точку и т. д. Изменяя интенсивность свечения трех основных цветов (RGB), можно получить любой цвет или оттенок. Такой способ получения любых цветов является одной из систем цветопередачи и назван RGB-системой (по первым буквам соответствующих английских слов).

Жидкокристаллические мониторы (ЖКМ) обладают следующими достоинствами: малая потребляемая мощность (в 2-3 раза меньше, чем у ЭЛТ), отсутствие рентгеновского излучения, статической электризации, геометрических искажений. У ЖКМ малый вес и габариты: толщина монитора не превышает 5…6 см. Недостатками ЖКМ являются ограниченный угол обзора, меньшие, чем у ЭЛТ, контрастность и глубина цвета, существенная неравномерность яркости в различных местах экрана. У ЖКМ наблюдается большой процент брака при их производстве (наличие «мертвых» пикселей). В настоящее время это считается основной причиной более высокой стоимости ЖКМ по сравнению с мониторами на ЭЛТ.

В электронно-лучевых трубках люминофор размещается в определенных точках экрана, образуя матрицу. Поток электронов направляется в эти точки с помощью непрерывных (аналоговых) управляющих сигналов, поступающих на отклоняющую систему. Электронный луч последовательно строчка за строчкой «обегает» все точки (пиксели) экрана и поочередно изменяет интенсивность их свечения.

Полное изображение на экране ЭЛТ, полученное с участием всех пикселей, называется кадром. Чтобы получить иллюзию движущегося изображения, очередные кадры должны быстро сменять друг друга (не менее чем 25…30 раз в 1 с). В ЭЛТ за время движения электронного луча от начала кадра до его конца свечение первых возбужденных элементов матрицы (люминофора) успевает несколько ослабнуть. Для уменьшения мерцания экрана приходится увеличивать частоту смены (обновления) очередных кадров (говорят: увеличивать частоту кадровой развертки). Частота кадровой развертки ЭЛТ должна быть не менее 85 Гц.

Принцип действия жидкокристаллического монитора существенно отличается от принципа действия монитора с ЭЛТ. В ЖКМ используется физический эффект изменения пространственного положения молекул кристаллов под действием электрического поля. Так же, как в ЭЛТ, в ЖКМ изображение формируется из большого числа точек (пикселей), которые образуют прямоугольную матрицу. Однако в жидкокристаллической матрице управление процессом формирования изображения идет цифровым способом. В ЖКМ одновременно изменяется свечение всех элементов целой строки матрицы (экрана). Мерцание ЖКМ принципиально меньше, чем дисплеев с ЭЛТ, так как при формировании изображения обновляются только изменяющиеся пиксели. Изображение статических картинок не требует обновления, поэтому в этих случаях мерцаний экрана ЖКМ совсем нет. Матрица ЖКМ (Liquid Crystal Display, LCD) сделана из вещества, находящегося в жидком агрегатном состоянии, но обладающего свойствами кристаллов. Под действием электрического поля жидкие кристаллы изменяют свою пространственную ориентацию (поворачиваются) и этим варьируют интенсивность проходящего света.


Рис. 10.11. Многослойная конструкция монитора

Монитор представляет собой многослойную конструкцию (рис. 10.11), которая содержит поляризаторы, матрицу управляющих транзисторов, цветные фильтры, стеклянные пластины, между которыми размещены жидкие кристаллы.

Принцип действия ЖКМ (рис. 10.12) основан на эффекте поляризации. Вначале свет проходит через первый поляризационный фильтр (Поляризатор 1), который характеризуется определенным углом поляризации. В ЖКМ установлен еще один поляризатор (Поляризатор 2). В зависимости от угла поляризации второго фильтра, свет будет либо полностью им поглощаться (если угол поляризации второго фильтра перпендикулярен углу поляризации первого фильтра), либо беспрепятственно проходить (если углы совпадают). Плавное изменение угла поляризации проходящего света позволяет регулировать интенсивность видимого (проходящего) света. Угол поляризации проходящего света изменяют с помощью жидких кристаллов. Их ориентация в пространстве зависит от величины управляющего напряжения, подаваемого на матрицу транзисторов.


Рис. 10.12. Принцип действия ЖКМ

Таким образом, изменяя управляющее напряжение на каждом транзисторе матрицы, можно варьировать пространственное положение жидких кристаллов в данной точке. Изменение пространственного положения кристаллов приводит к изменению угла поляризации света в данной точке экрана (а, значит, и к изменению интенсивности свечения данной точки экрана).

Дискретная конструкция ЖКМ позволяет, в принципе, обходиться без аналого-цифрового преобразования, т. е. работать непосредственно с цифровыми сигналами. Очевидно, что такая конструкция более перспективна по сравнению с устройствами, работающими с аналоговыми сигналами. Напомним, что ЭЛТ — аналоговое устройство. Сигналы на отклоняющих пластинах и модуляторе являются непрерывными. Для управления работой ЭЛТ приходится трансформировать цифровой сигнал, сформированный ЭВМ, в аналоговый сигнал. Однако всякое цифро-аналоговое преобразование сопряжено с возникновением искажений и помех, усложнением конструкции контроллеров.

Сегодня мы расскажем вам о самых интересных устройствах ввода информации, которые разработаны и выпускаются лидерами отрасли, а также о наиболее перспективных прототипах.

Сейчас кажется, что клавиатура и мышь сопровождали компьютер на протяжении всей истории его существования. Однако это не совсем так: первые машины управлялись при помощи перфокарт, клавиатуру для этих целей стали использовать только в 1941 году, мышь была впервые продемонстрирована в 1968-м, а на массовом рынке появилась и того позже - в 1983-м. Стоит отметить, что первые устройства этого типа достаточно сильно отличались от современных как по внешнему виду, так и принципу работы. С момента своего появления и до наших дней мыши и клавиатуры постоянно эволюционировали, стандартизировались, меняли свой облик, пока не стали именно такими, какими мы привыкли их видеть. Однако не стоит думать, что этот процесс остановился: устройства ввода продолжают развиваться и сейчас.

Как и прежде, одни технологии приживаются, другие уходят в историю, а третьи проявят себя в полной мере только в будущем. Сегодня мы расскажем вам о самых интересных устройствах ввода, которые разработаны и выпускаются лидерами отрасли, а также о наиболее перспективных прототипах.



Apple Magic Mouse
Именно компания Apple предложила использовать мышь с домашними компьютерами, она же одной из первых оснастила свои устройства поддержкой распознавания нескольких касаний (Multitouch). Вся поверхность Magic Mouse представляет собой сенсорную панель, что позволяет управлять ПК жестами пальцев.

Сайт: www.apple.ru Средняя розничная цена, руб./грн.: 3300/1000

Microsoft Arc Touch Mouse
Прежде чем выпускать полностью сенсорную мышь, корпорация Microsoft запустила своеобразный пробный камень в виде модели Arc Touch Mouse, в которой сенсорной панелью заменено только колесо прокрутки.

Сайт: www.microsoft.com Средняя розничная цена, руб./грн.: 2500/850


Hillcrest Labs Loop Pointer
Компания Hillcrest Labs разработала технологию Freespace, позволяющую управлять курсором без контакта с какой-либо поверхностью, перемещая в воздухе сам контроллер, и выпустила на ее основе свой продукт. Это устройство прекрасно подойдет для работы с домашним медиацентром.

Сайт: www.hillcrestlabs.com Средняя розничная цена, руб./грн.:2900/нет данных

Apple Magic Trackpad
С каждым днем все больше производителей ноутбуков стремится оснастить свои продукты тачпадами с поддержкой технологии Multitouch. Первопроходец в этой области, компания Apple, позаботилась и о пользователях десктопных ПК, выпустив выносной тачпад.

Сайт: www.apple.ru Средняя розничная цена, руб./грн.: 3500/970

Kinect
Контроллер Kinect изначально предназначен для управления играми Xbox 360 с помощью жестов, однако корпорация Microsoft не препятствует разработке драйверов, позволяющих подключать это устройство к ПК. На сегодняшний день уже реализованы некоторые возможности управления интерфейсом ОС Windows через Kinect.

Сайт: www.xbox.com Средняя розничная цена, руб./грн.:6500/1900

Blobo
Шарик Blobo развивает идею трекбола, но вместо оптических датчиков использует датчики движения: управление курсором и выполнение различных действий осуществляется при помощи перемещения шарика в воздухе. Устройство предназначено в первую очередь для игр, но может использоваться и для решения повседневных рабочих задач.

Сайт: www.bloboshop.com Средняя розничная цена, руб./грн.: 3300/1050

Logitech MX Air
Мышь MX Air от Logitech, как и Loop Pointer, базируется на технологии Freespace, однако благодаря универсальной конструкции может использоваться не только при работе с медиацентром, но и с обычным ПК.

Сайт: www.logitech.ru Средняя розничная цена, руб./грн.: 5000/1100

Понравилась статья? Поделиться с друзьями: