Исследование характеристик акселерометра. Исследование точности прецизионных акселерометров и повышение их качества измайлов андрей евгеньевич. Южный федеральный университет

-- [ Страница 1 ] --

На правах рукописи

УДК 531. 781. 2

Вавилов Иван Владимирович

РАЗРАБОТКА МИКРОСИСТЕМНОГО АКСЕЛЕРОМЕТРА

кандидата технических наук

Нижний Новгород - 2006

Работа выполнена на кафедре «Авиационные приборы и устройства» Арзамасского филиала Нижегородского государственного технического университета.

Научный руководитель: к.т.н., доцент. Поздяев В.И.

Официальные оппоненты: д.т.н., профессор Распопов В.Я.

д.т.н., главный научный сотрудник

ФГУП "НПП "Полет" Кейстович А.В.

Ведущее предприятие: ОАО "Арзамасский приборостроительный завод",

г.Арзамас.

Защита состоится 11 октября 2006 г, в 15:00 в ауд. 1258 на заседании диссертационного Совета Д 212.165.12 при Нижегородском государственном техническом университете по адресу: 603600, ГСП-41, Нижний Новгород, ул. Минина, д. 24

С диссертацией можно ознакомиться в библиотеке Нижегородского государственного технического университета

Ученый секретарь диссертационного Совета

к.т.н., доцент______________ В.В. Петров

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Стимулирующим фактором развития интегральных датчиков служит нарастающая потребность в информации в различных управляемых технических системах. В основе микроэлектромеханических систем (МЭМС) лежит концепция от “датчика к системе”, формулировка сущности которой может быть представлена в виде следующих положений:

  • разработка, исследование и создание интегрированных датчиков прямого измерения, объединяющих первичный чувствительный элемент и вторичный электронный преобразователь, при условии их исполнения в рамках единого технологического процесса
  • разработка, исследование и создание интегрированных компенсационных датчиков, объединяющих первичный чувствительный элемент, вторичный электронный преобразователь и преобразователь обратной связи для управления чувствительным элементом, при условии их исполнения в рамках единого технологического процесса
  • разработка, исследование и создание интегрированных датчиков с вычислительными возможностями, например, реализующих многофакторность измерений, аналого-цифровое и цифро-аналоговое преобразования, адаптацию к оптимальным условиям, выполнение контрольно-диагностических функций и др., при условии их исполнения в рамках единого технологического процесса
  • разработка, исследование и создание беспроводных интегрированных датчиков с малым потреблением электроэнергии и обладающих свойствами первых трех групп.

Одной из первых систематизирующих работ по микросистемным датчикам была статья Петерсена К. “Кремний как механический материал для интегральных конструкций”, опубликованная в журнале IEEE № 5 за 1982 год. Период развития интегральных датчиков составляет немногим более тридцати лет. За это время разработан широкий спектр датчиков: от интегрального тензорезистора до компенсационного акселерометра. Наиболее успешным разработчиком в области микросистемных приборов навигации в настоящее время является фирма Analog Devices (США). В нашей стране микросистемные датчики разрабатывают: Арзамасское НПП “ТЕМП-АВИА” (к.т.н. Былинкин С.Ф.), Пензенский НИИФИ (д.т.н. Мокров Е.А.), Зеленоградский НИИЭТ (д.т.н. Тимошенков С.П.), Тульский ГТУ (д.т.н. Распопов В.Я.), МВТУ (д.т.н. Коновалов С.Ф.) и др. Однако нельзя сказать, что данный период находится в своей завершающей стадии. Особенно слабым звеном является разработка интегральных датчиков параметров движения, таких, как линейные и угловые акселерометры. До сих пор отсутствуют акселерометры со стопроцентной интеграцией, а реальная точность известных разработок не превзошла рубеж 12 % от измеряемого диапазона. Под интеграцией понимается объединение функциональных узлов и блоков в единый конструктив, представляющий одну монолитную “деталь”. Повысить точность измерения интегральных акселерометров более чем на порядок возможно введением в контур отработки цепи отрицательной обратной связи, однако это связано с усложнением схемы.



Актуальность работы . Характерной чертой мирового развития информационных технологий конца XX и начала ХХI века является выделение интегрально образующихся (комплексных) технологий, к которым относятся и технологии микромеханических систем. Как в нашей стране, так и за рубежом наблюдается устойчивый рост интереса к разработкам интегральных датчиков, что связано с возможностью эффективного решения с их помощью ряда задач контроля и управления. С 30 марта 2002 года в России микросистемная техника официально объявлена критической технологией. В перечне критических технологий, утвержденном Президентом России, формулировка определена следующим образом: “Сверхминиатюрные механизмы, приборы, машины с ранее не достижимыми массогабаритами, энергетическими показателями и функциональными параметрами, создаваемые интегрально-групповыми экономически эффективными процессами микро- и нанотехнологии.” Возможности измерительных систем, таких как инерциальные навигационные системы (ИНС), инклинометры, курсовертикали и т. д., всегда определялись характеристиками первичных преобразователей. Существующие конструкции интегральных датчиков ускорений не удовлетворяют современным требованиям из-за высокого уровня трудоемкости изготовления, а также временной нестабильности метрологических характеристик и малого ресурса.

Данная работа проводилась в соответствии с тематикой научных исследований предприятия Арзамасского НПП “ТЕМП-АВИА”, а также планом основных научных работ Арзамасского политехнического института (филиала НГТУ) по проблеме “Разработка и исследование интегральных датчиков первичной информации”.

Цель работы. Целью диссертации является исследование и разработка нового микросистемного датчика ускорений и его узлов, а также построение математических моделей датчика и расчетных соотношений для теоретического определения его статических, динамических и точностных характеристик.

Задачи диссертационной работы:

1. Исследование структуры нового микросистемного акселерометра и его составляющих механических и электрических узлов с использованием полупроводниковых материалов и микромашинной технологии.

2. Разработка математических моделей датчика для анализа на стадиях НИР и ОКР всех характеристик микросистемного акселерометра: статической, амплитудно-частотной, фазо-частотной, переходной, точностной и характеристик его отдельных узлов.

3. Проведение экспериментальных исследований статических и динамических характеристик новых микросистемных датчиков ускорений, результаты которых позволяют судить о точности и преимуществах интегральных конструкций перед традиционными не интегральными.

4. Сравнение экспериментальных и теоретических результатов диссертации.

Объект исследования. Объектом исследования являются следующие устройства:

  1. Кремниевые маятниковые чувствительные элементы.
  2. Емкостные преобразователи перемещений в электрический сигнал.
  3. Устройства для испытаний линейных акселерометров.
  4. Микроэлектронные преобразователи и узлы, встраиваемые в интегральные датчики ускорений.

Методы исследования. При решении поставленных задач использованы методы математического и компьютерного моделирования характеристик акселерометра, натурный эксперимент, методы теоретической механики, теории упругости и автоматического управления.

Научная новизна работы заключается в следующем:

1. Исследована структура и разработан новый чувствительный элемент (патент РФ № 2231795) имеющий в два раза меньшую погрешность измерения, чем аналоги и разработана математическая модель нового микросистемного акселерометра с уточнением влияния характеристик составляющих элементов, в результате чего расчетные данные совпали с экспериментальными.

2. Разработан оригинальный емкостный преобразователь (патенты: № 2231796 и № 2272298). Получены теоретические соотношения для расчетов микроэлектронных преобразователей, предназначенных для совместной работы с микромеханическими ЧЭ, что дало разработчикам новый эффективный инструмент проектирования..

3. Проведены экспериментальные исследования и компьютерное моделирование статических и динамических характеристик микросистемных акселерометров на макетах и на готовых изделиях и сравнены с теоретическими результатами, что подтвердило адекватность теоретических положений.

Практическая ценность работы:

1. Теоретические решения доведены до практического использования в расчетах характеристик, в оптимизации параметров разрабатываемых интегральных датчиков ускорений и явились основой разработки схем и конструкций, защищенных патентами РФ.

2. Результаты теоретических и экспериментальных исследований в виде рекомендаций и расчетных соотношений для определения важнейших характеристик датчиков использованы для проектирования и построения интегральных датчиков ускорений типа АТ1105 и АТ1112 на диапазоны от 0,5 g до 50 g.

3. Разработанные методики определения статических характеристик интегральных датчиков ускорений и их погрешностей с помощью испытательного оборудования позволяют получить основные метрологические параметры приборов.

4. Результаты диссертационной работы внедрены в серийно выпускаемые изделия АНПП "ТЕМП-АВИА" и в учебный процесс в Арзамасском филиале НГТУ на кафедре “Авиационные приборы и устройства” по специальностям 190300 и 190900.

Реализация в промышленности. Выводы, рекомендации и результаты, полученные в диссертационной работе, внедрены на предприятии АНПП "ТЕМП-АВИА" (г. Арзамас), что подтверждается документами, приведенными в приложении.

Апробация работы. Диссертация и отдельные ее разделы обсуждались и получили положительную оценку на следующих конференциях и совещаниях:

  1. На региональной научно-технической конференции "Методы и средства измерений физических величин", Н. Новгород, 1997, 1998, 2002, 2003 г.
  2. На Всероссийских научных конференциях «Прогрессивные технологии в машино- и приборостроении». 2002, 2003, 2004 г.
  3. На расширенном заседании кафедры "Авиационные приборы и устройства" Арзамасского филиала НГТУ в 1998, 2000, 2001, 2002, 2003 и 2004 г.г.

Публикации. По результатам выполненных исследований опубликовано 17 работ, из них 13 статей и четыре патента на изобретения.

Объем работы. Диссертация состоит из введения, четырех глав, заключения, приложения, списка литературы, списка принятых обозначений и содержит 153 страниц машинописного текста: иллюстраций - 39 (рисунки, схемы, графики), таблиц - 15, список литературы - 83 наименований.

НА ЗАЩИТУ ВЫНОСЯТСЯ

1. Структурная схемотехника и математическая модель нового маятникового чувствительного элемента имеющего компенсацию от влияния температурных напряжений.

2. Оригинальный микросистемный емкостный преобразователь перемещений с тестированием акселерометра, меньших габаритов при той же стоимости.

3. Математическая модель микросистемного акселерометра, позволяющая оценить его параметры еще на стадиях НИР и ОКР.

4.Соотношения для выбора оптимальных параметров микросистемного акселерометра по критерию минимума погрешностей измерений, которые позволяют для акселерометров прямого измерения получить точность, эквивалентную точности компенсационного акселерометра с электростатической обратной связью.

5. Структурные схемы установок для экспериментальных исследований статических и динамических характеристик микросистемных акселерометров и результаты экспериментальных исследований.

6. Соотношения для теоретических расчетов: жесткостей упругих подвесов, абсолютных коэффициентов газодинамического демпфирования, упругих подвесов на продольную устойчивость и элементов электрической схемы.

Во введении обоснована актуальность выбранной темы и на основе анализа современного состояния интегральных датчиков первичной информации сформулированы цель и задачи исследований.

Первая глава диссертации посвящена обзору современного состояния микросистемных акселерометров, в которой сделан сравнительный анализ их характеристик. Рассмотрены как отечественные, так и зарубежные решения и выявлены положительные и отрицательные стороны конструкций с точки зрения получения максимальной точности. В результате анализа предпочтение отдано микросистемному акселерометру с местной обратной связью.

Вторая глава соде р жит теоретическое обоснование построения микромеханического чувствительного элемента и электрической схемы. Проведена оценка числа степеней свободы маятникового подвижного узла на основе анализа жесткостей упругих подвесов в различных направлениях. Из анализа следует, что угловое движение маятника относительно оси y (рис. 1) и линейные относительно осей x и y отсутствуют, так как их жесткости являются бесконечно большими. Сравнивая угловые жесткости относительно осей x и z, можно заключить, что угловая жесткость относительно оси z превосходит угловую жесткость относительно оси x на множитель . Численно это составляет, как минимум, пять порядков, что при допущении одинаковых усилий, действующих по сравниваемым осям, позволяет пренебречь бесконечно малым угловым перемещением относительно оси z.

Осевые жесткости подвеса вдоль положительного и отрицательного направления оси z в общем случае не одинаковы. В положительном направлении подвес работает на растяжение, а в отрицательном - на сжатие. При этом при больших нагрузках в отрицательном направлении необходимо проводить проверку подвеса на продольную устойчивость. Здесь следует отметить, что для подвесов с кривизной по ширине и толщине сжатию подвергается короткий участок в минимальном сечении подвеса и при сохранении его характеристик в пределах упругости подвес всегда является устойчивым.

Таким образом, рассмотренная конструкция маятникового ЧЭ интегрального акселерометра, при введенных допущениях, имеет две степени свободы: угловое перемещение относительно оси x и линейное перемещение вдоль оси y. Соответственно микромеханический подвижный узел имеет передаточную функцию четвертого порядка. При использовании для анализа динамики уравнения Лагранжа второго рода, передаточная функция подвижного узла была определена в виде:

, (1)

где коэффициенты передаточной функции выражаются через параметры подвижного узла:

(2)

где - момент инерции маятника относительно оси z; m - масса маятника; Kд и Kду - осевой и угловой абсолютные коэффициенты демпфирования; G и Gу - осевая и угловая жесткости упругого подвеса; lц - расстояние от центра тяжести до оси качания маятника.

Крутизну статической характеристики чувствительного элемента определим из (1) с учетом (2) при :

(3)

Для обработки перемещений маятника разработан специализированный электрический преобразователь. В качестве исходных предпосылок при разработке преобразователя были приняты следующие требования: 1 - обеспечение линейности статической характеристики во всем диапазоне измерений; 2 – в преобразователе должно быть полностью исключено влияние диэлектрической проницаемости среды, заполняющей пространство между измерительными электродами преобразователя; 3 - в передаточные соотношения величины резисторов должны входить в виде отношений; 4 - минимум температурной ошибки при изменении параметров; 5 - достаточная фильтрация выходного сигнала от несущей частоты генератора, питающего емкостный мост; 6 - исключение тяжения между подвижным и неподвижным электродами емкостного моста; 7 - в динамическом отношении преобразователь перемещений должен представлять собой, без учета фильтра нижних частот, безынерционное звено; 8 - независимость крутизны статической характеристики и нулевого сигнала преобразователя от частоты питающего генератора и сведение к минимуму ошибки от нестабильности источников питания.

Наиболее полно сформулированным требованиям отвечает схема, представленная на рис. 2, а. Для достижения необходимых характеристик по статической и динамической точности в схеме осуществлялась проработка нескольких вариантов решений того или иного узла и выбор оптимальных. Схема содержит в своем составе: дифференциальную цепь измерительных емкостей C1 - C2; устройство переключения опорных напряжений Кл1-Кл4; усилитель на ОУ1, синхронный (демодулятор) детектор (Кл5 и Кл8); генератор тактовой частоты (рис. 2, b) на логическом элементе типа триггера Шмидта; источники опор­ных напряжений и фильтр нижних частот (ФНЧ) на ОУ2. Электрическая схема описывается следующей передаточной функцией:

(4)

где - коэффициент крутизны статической характеристики преобразователя;

Постоянная времени фильтра;

Полная передаточная функция микросистемного акселерометра состоит из произведения передаточных функций механической и электрической частей:

(5)

Коэффициенты передаточной функции находятся через параметры подвижного узла: .

Коэффициент наклона статической характеристики микросистемного акселерометра с местной единичной обратной связью получен из передаточной функции (5) в следующем виде:

В качестве альтернативной схемы были разработаны и исследованы схемы с силовой электростатической отработкой и с широтно-импульсной модуляцией (ШИМ). После сравнения предпочтение отдано схеме по рис. 2.

В работе были исследованы ЧЭ с внутренним и внешним креплением несущей пластины. Из исследований установлено, что внутреннее крепление по одной точке предпочтительнее с точки зрения меньшего влияния контактных напряжений, передаваемых от корпуса.

Подробности Опубликовано 27.12.2019

Дорогие читатели! Коллектив библиотеки поздравляет вас с Новым годом и Рождеством! От всей души желаем счастья, любви, здоровья, успехов и радости вам и вашим семьям!
Пусть грядущий год подарит вам благополучие, взаимопонимание, гармонию и хорошее настроение.
Удачи, процветания и исполнения самых заветных желаний в новом году!

Тестовый доступ к ЭБС Ibooks.ru

Подробности Опубликовано 03.12.2019

Уважаемые читатели! До 31.12.2019 нашему университету предоставлен тестовый доступ к ЭБС Ibooks.ru , где вы сможете ознакомиться с любой книгой в режиме полнотекстового чтения. Доступ возможен со всех компьютеров сети университета. Для получения удалённого доступа необходима регистрация.

«Генрих Осипович Графтио - к 150 - летию со дня рождения»

Подробности Опубликовано 02.12.2019

Уважаемые читатели! В разделе "Виртуальные выставки" размещена новая виртуальная выставка «Генрих Осипович Графтио». В 2019 году исполняется 150 лет со дня рождения Генриха Осиповича - одного из основателей гидроэнергетической отрасли нашей страны. Ученый-энциклопедист, талантливый инженер и выдающийся организатор, Генрих Осипович внес огромный вклад в развитие отечественной энергетики.

Выставка подготовлена сотрудниками отдела научной литературы библиотеки. На выставке представлены труды Генриха Осиповича из фонда истории ЛЭТИ и публикации о нём.

Ознакомиться с выставкой Вы можете

Тестовый доступ к Электронно-библиотечной системе IPRbooks

Подробности Опубликовано 11.11.2019

Уважаемые читатели! C 08.11.2019 г. по 31.12.2019 г. нашему университету предоставлен бесплатный тестовый доступ к крупнейшей российской полнотекстовой базе данных - Электронно-библиотечной системе IPR BOOKS . ЭБС IPR BOOKS содержит более 130 000 изданий, из которых более 50 000 - уникальные учебные и научные издания. На платформе Вам доступны актуальные книги, которые невозможно найти в открытом доступе в сети Интернет.

Доступ возможен со всех компьютеров сети университета.

Для получения удаленного доступа необходимо обратиться в отдел электронных ресурсов (ауд. 1247) к администратору ВЧЗ Склеймовой Полине Юрьевне или по электронной почте [email protected] с темой "Регистрация в IPRbooks".

1. Цель и содержание работы

Цель работы - изучение пьезоэлектрических акселерометров и особенностей их эксплуатации. В процессе выполнения лабора­торной работы студенты знакомятся с методом определения амплитудных характеристик пьезоакселерометров и приобретают практические навыки в измерении параметров вибрации.

Описание лабораторной установки

На рис. 1 приведена схема лабораторной установки.

Все эксперименты проводятся на камертонном вибростенде, снабженном оптической системой для прямого измерения амплитудного значения перемещения. Камертонный вибростенд возбуждается переменным током от лабораторного автотрансформатора, питающегося от сети 220В, 50Гц. Колебания поверхности вибростенда происходят по гармоническому закону:

,

где - амплитуда виброперемещения;

Частота колебаний камертона, Гц.

Рис.1. Схема лабораторной установки:

1 - камертонный вибростенд;

2 - лабораторный автотрансформатор;

3 - блок питания осветительной лампы;

4 - исследуемые датчики;

5 - электронный вольтметр;

6 - электронный осциллограф;

7 - генератор синусоидального сигнала;

8 - универсальный мост;

9 - усилитель заряда;

10 - магазин емкостей;

11 - соединительные кабели.

Виброускорение поверхности, выраженное в единицах ускоре­ния свободного падения , определяется формулой

где - вторая производная от функции по времени.

Регулируя величину напряжения питания камертонного вибростенда, можно менять величину .

Виброперемещение определяется на экспериментальной установке с помощью измерительного микроскопа. Принцип действия измерителя виброперемещения поясняет рис. 2а. Световой поток от лампочки попадает в объектив микроскопа. В окуляре микроскопа при неподвижной поверхности камертона наблюдается вертикальная линия - след риски, нанесенном на стеклянном круге небольшого радиуса, укрепленном жестко на поверхности камертона (рис. 2б). Резкость изображения регулируется ГРУБО - смещением окуляра микроскопа в направлении светового потока и ПЛАВНО - вращением окуляра вокруг своей оси симметрии. При колебаниях поверхности камертона изображение риски расплывается в полосу (рис. 2в), ширина которой равна двойной амплитуде виброперемещения .



Рис. 2. Принцип действия измерительного микроскопа.

Электронный вольтметр необходим для измерения сигналов с датчиков. При пользовании этим прибором необходимо помнить, что он измеряет действующее значение переменного напряжения и, следовательно, чувствительность должна определятся по формуле:

,

где - выходной сигнал с датчика по показаниям вольтметра, мВ;

Амплитуда виброперемещения, мкМ;

Частота вибрации, Гц.

Для уменьшения влияния случайных погрешностей при определении чувствительности измерения проводят раз, а значение определяют по формуле:

,

где и - значения выходного напряжения и виброперемещения для каждого измерения.

Универсальный мост и измерительный генератор предназначены для измерения емкости . Мост используется в режиме измерения от внешнего источника питания (генератора), имеющего частоту выходного напряжения в пределах 4-8 кГц.

Электронный осциллограф необходим для контроля выходных сигналов с используемых датчиков и измерения частоты вибрации по методу фигур Лиссажу.

Порядок выполнения работы

Лабораторная работа выполняется в следующем порядке:

1. Определение амплитудной характеристики пьезоакселерометра:

а) подключить пьезоаксерометр к милливольтметру и магазину емкостей. На магазине емкостей выставить ;

б) включить вибростенд и снять зависимость выходного напряжения с пьезоакселерометра от вибросмещения поверхности стола. Величины вибросмещений контролировать измерительным микроскопом. Результаты измерений занести в табл. 1 (п.1);

,

где - частота вибрации, определяемая по методу фигур Лиссажу (рис. 3).

,

Таблица 1

№№ п/п , пФ величины
, мкМ ,
=0 , мВ U 11 U 21 U 31 U 41 U 51
=500 , мВ U 12 U 22 U 32 U 42 U 52
=2500 , мВ U 13 U 23 U 33 U 43 U 53
=10000 , мВ U 14 U 24 U 34 U 44 U 54

Рис.3. Схема измерения частоты методом фигур Лиссажу:

1 – электронный осциллограф;

2 – измерительный генератор.

2. Расчет амплитудно-частотной характеристики пьезоакселерометра в области низких частот:

а) подключить к входу универсального моста кабель от испытуемого преобразователя и произвести измерения величин и на частоте 4-8 кГц;

,

где - частота напряжения, питающего мост;

;

.

3. Определение нижней граничной частоты частотного диапазона пьезопреобразователя, исходя из условия

,

где - относительная погрешность амплитудно-частотной характеристики на граничной частоте .

Принять равным (по указанию преподавателя) 0,02; 0,03; 0,05.

4. Определение влияния емкости кабельной линии на амплитудную и амплитудно-частотную характеристику пьезоакселерометра:

.

Значения , и взять из данных пунктов 1в), 2а) и 2б);

б) на магазине емкостей выставить рассчитанное значение емкости и повторить процедуру получения амплитудной характеристики пьезоакселерометра при емкостных нагрузках =2500 пФ, =10000 пФ. Результаты измерений свести в табл.1 (п.3 и п.4 соответственно).

5. Построение графиков амплитудных характеристик при различных значениях емкостной нагрузки:

а) амплитудные характеристики аппроксимировать линейными зависимостями вида

( =1,2,3,4,5; =1,2,3,4)

б) на этих же графиках нанести остальные результаты измерений.

6. Построение графиков амплитудно-частотных характеристик при различных емкостях нагрузки и по заданной величине определение нижней граничной частоты для каждого случая.

7. Определение амплитудной характеристики системы «пьезоакселерометр – усилитель заряда»:

а) собрать схему системы (рис.4);

Рис.4. Схема системы «датчик – усилитель заряда»:

1- датчик;

2- магазин емкостей;

3- усилитель заряда;

4- универсальный вольтметр.

б) для каждого значения емкости нагрузки определить чувствительность системы по методике, изложенной в пунктах 1б) и 1г). Результаты измерений свести в табл.2;

в) построить графики амплитудных характеристик системы

при различных значениях емкостной нагрузки.

8. Построение графиков зависимости чувствительности пьезоакселерометра от емкостной нагрузки по данным табл.1 и зависимости чувствительности системы от емкостной нагрузки по данным табл.2.

Таблица 2

№№ п/п , пФ величины
, мкМ ,
=0 , мВ U 11 U 21 U 31 U 41 U 51
=2500 , мВ U 12 U 22 U 32 U 42 U 52
=10000 , мВ U 13 U 23 U 33 U 43 U 53

9. Расчет погрешности определения чувствительности датчика и системы по следующей методике:

Заключение

Результатом бакалаврской работы является создание семи лабораторных работ: лабораторной работы № 20 «Исследование проволочных тензорезисторов и схем их включения»; лабораторной работы № 21 «Реостатные преобразователи»; лабораторной работы № 22 «Терморезистивные преобразователи»; лабораторной работы № 23 «Измерительные цепи терморезисторов»; лабораторной работы № 24 «Термоэлектрические преобразователи»; лабораторной работы № 25 «Индукционный импульсный тахометр»; лабораторной работы № 26 «Исследование пьезоэлектрического акселерометра».

Каждая работа включает в себя принцип действия, общие технические сведения, схемы экспериментальной установки, методику проведения экспериментов и описание лабораторной установки, методы расчета физических параметров, а также порядок проведения работы и содержание отчета.

Описания к данным работам удовлетворяют уровню подготовки студентов 2 х - 3 х курсов, а стенды соответствуют условиям лабораторий МГУЛ.


Литература

1. «Датчики теплофизических и механических параметров». Справочник в трех томах. Т.1 (кн.1) / Под общ. ред. Ю. Н. Коптева; Под ред. Е. Е. Багдатьева, А. В. Гориша, Я. В. Малкова. - М.: ИПРЖР, 1998г.

2. «Первичные преобразователи телеметрических систем». Лабораторный практикум. Е. Е. Багдатьев, В. Е. Николаев, В. Н. Гилевский. - М.: 1986г.

3. Методические указания к лабораторным работам по дисциплине «Первичные преобразователи телеметрических систем». Е. Е. Багдатьев, А. Р. Глушко. - М.: 1987г.

Особенностью микромеханических акселерометров является преимущественное изготовление чувствительных элементов этих устройств из материалов на основе кремниевой технологии, что определяет: малые габариты и вес акселерометра, возможность применения групповой технологии изготовления и, следовательно, дешевизну изготовления при массовом производстве, высокую надежность в эксплуатации.

Одной из основных причин, вызывающих погрешность измерений микромеханического акселерометра, является изменение температуры окружающей среды. Дополнительное смещение нуля из-за вариации температуры окружающей среды:

где k T - тепловой дрейф сдвигов нулей акселерометров; ?T - изменение температуры за время испытания, T-скорость изменения температуры; t - время испытания.

Известно, что точность измерений ограничена не только систематической погрешностью, но и спектральным составом шума измерений. Например, в измерениях MEMS-датчиков присутствует фликкер-шум, окрашивающий шумы измерений.

Фликкер-шум (избыточный шум) - аномальные флуктуации, для которых характерна обратно пропорциональная зависимость спектральной плотности мощности от частоты в отличие от белого шума, у которого спектральная плотность постоянна. Фликкер-шум был обнаружен как медленные хаотичные изменения термоэмиссии катодов электронных ламп, получившие название "фликкер-эффект". В дальнейшем флуктуации с такими же свойствами были обнаружены во множестве физико-химических, биологических и даже социальных систем. В настоящее время термин "фликкер-шум", наряду с менее удобным, но более адекватным термином "1/f-шум", а также термином "макрофлуктуации" используется для обозначения аномальных флуктуаций в сложных системах. Разновидностью фликкер-шума является наблюдаемый в полупроводниках импульсный (взрывной) шум ступенчатые изменения уровня сигнала со случайно распределенными интервалами времени между изменениями уровня. Его спектральная плотность мощности растет с понижением частоты, ограничивает возможность увеличения точности путем усреднения и не позволяет снизить случайную составляющую погрешности до нуля. Кроме того, в цифровых датчиках всегда присутствует помеха с частотой тактового генератора, также придающая окраску белому шуму.

Акселерометры, как и гироскопы, страдают от смещения и дрейфов смещения, ошибок невыравнивания, дрейфов под воздействием температуры и ускорений, нелинейности (так называемой ошибки VRE), а также дрейфа чувствительности. Важнейшими характеристиками акселерометров для их сравнительного анализа являются смещение и его дрейфы, нестабильность смещения, а также шум. Также могут приниматься во внимание дрейф чувствительности, коэффициент нелинейности VRE и другие параметры.

Любое смещение акселерометра в отсутствие ускорения при двойном интегрировании вызывает ошибку скорости, пропорциональную времени интегрирования, и ошибку в вычисленном положении, растущую со временем квадратично. Неконтролируемое смещение нуля вызывает смещение вектора ускорения относительно его истинного направления, и это касается не только датчиков линейного ускорения, но и гравитационного, которое должно вычитаться из общего выхода акселерометра. В системах инерциальной навигации дрейф смещения акселерометра привносит существенный вклад в погрешность вычисления скорости и положения. При измерении ориентации наиболее существенными являются угловые ошибки вычислений наклонов продольном и поперечном направлениях.

Нестабильность смещения датчика представляет собой случайные вариации смещения, вычисленные в определенный временной интервал как усредненные значения. Этот параметр вычисляется по методу Аллана для стационарного датчика. При увеличении времени усреднения выходной шум снижается, и наклон достигает минимальной точки, а затем увеличивается вновь. Минимальная точка на кривой Аллана представляет собой нестабильность смещения, приводимую в спецификациях акселерометров в мg или мкg. Чем ниже значение этого параметра, тем меньше ошибка вычисления скорости, положения и ориентации. Нестабильность смещения акселерометра в большинстве спецификаций определяется производителями как наилучшая характеристика, достигнутая в лабораторных условиях (при 20 °C и отсутствии механических воздействий). Стабильность смещения в реальных условиях представляет собой максимальный дрейф остаточной ошибки смещения после компенсации воздействия внешних факторов - температуры, ударов, вибраций, старения.

Как было сказано выше, MEMS разделяют на два типа: сенсоры и актюаторы. Одним из самых используемых видов сенсоров являются датчики движения, которые в свою очередь делятся на акселерометры (датчики ускорения) и гироскопы (датчики поворота). Применение данных устройств на сегодняшний день очень широко: телефоны, коммуникаторы, игровые приставки, фотокамеры и ноутбуки все чаще и чаще снабжаются подобными сенсорами. В мобильных телефонах и видеоприставках чувствительность к движениям пользователя используется в основном для развлечения. А вот в портативных компьютерах акселерометры выполняют очень даже полезную функцию: улавливают момент, когда жесткий диск может подвергнуться повреждению из-за удара и паркуют головки диска. В фототехнике использование датчиков движения не менее актуально - именно на их основе работают честные системы стабилизации изображения.

Автопроизводители (из массовых индустрий они первыми опробовали данного рода устройства) уже несколько десятилетий активно эксплуатируют датчики движения, например, в подушках безопасности и антиблокировочных системах тормозов. Так что соответствующие чипы давно разработаны, выпускаются целым рядом крупных и сравнительно мелких компаний и производятся в таких количествах, что цены давно и надежно сбиты до минимума. Типичный MEMS-акселерометр сегодня обходится в несколько долларов за штуку.

При наличии ускорения грузик смещается относительно неподвижной части акселерометра. Обкладка конденсатора, прикрепленная к грузику, смещается относительно обкладки на неподвижной части. Емкость меняется, при неизменном заряде меняется напряжение - это изменение можно измерить и рассчитать смещение грузика. Откуда, зная его массу и параметры подвеса, легко найти и искомое ускорение. На практике, MEMS-акселерометры устроены таким образом, что отделить друг от друга составные части - грузик, подвес, корпус и обкладки конденсатора - не так-то просто. Собственно, изящество MEMS в том и заключается, что в большинстве случаев в одной детали здесь удается (а вернее, попросту приходится) комбинировать сразу несколько предметов.

В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов.

Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung) - литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала, в результате чего на пластине остаются только необходимые механизмы. Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы "выращиваются" на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.

Понравилась статья? Поделиться с друзьями: