Импульсный источник питания для умзч на ir2153. Схема импульсного блока питания на IR2151-IR2153. Внешний вид импульсного блока питания на IR2153

Четыре импульсных блока питания на IR2153. Импульсный Источник Питания на IR2153

Здравствуйте дорогие читатели, это мой первый блог так что не судите строго да и не писал я никогда статей.Если честно очень надоели в сети сырые схемы блоков питания,так как я лет 15 уже занимаюсь импульсными блоками питания и сразу вижу косяк на схеме,а ведь люди собирают эти схемы!!! тратят время и деньги а они не работают или работают но с косяками.Ну и вот у меня появилось немного времени и я решил создать блог по блокам питания которые действительно работают как надо.
Ну начнем пожалуй с этой очень популярной схемы которая валяется чуть ли не в каждом форуме или сайте посвященному электронике.

Вот эта схема. На вид нечего необычного,имеет право на жизнь,так но не так!!!Еще замечу что в этой схеме хоть поставили конденсатор 1МФ250В, а то в большинстве случаев его нет вообще и как он работает без него можно только представить или ждать когда же он все таки взорвется! Хотя и так в принципе если собрать эту схему то надо ждать когда она взорвется! Другими словами ее надо доработать и этот блок питания прослужит вам долгие годы. На многих сайтах на которых я побывал ее в основном используют для шуруповёртов у которых сели аккумуляторы и его монтируют в отсек от аккумуляторов. Ну вот и у меня тоже померли аккумуляторы в дорогом шуруповерте который уже давно снят с производства и я их просто не найду. Вот и решил я собрать простой компактный блок питания из старого завалявшегося БП ATX и соответственно его доработать.Ну что же приступим к вскрытию)))

Ну давайте по порядку первое что бросается в глаза это 1МФ250В(как он еще у людей не взрывался я не понимаю) после диодного моста напряжение становится 310 вольт значит он должен быть как минимум 1МФ400В.

Дальше еще один конденсатор 220мф 16в,это напряжение впритык совсем, если почитать даташит то внутри этой схемы стоит стабилитрон на 15,6 вольт,это значит в запасе всего 0,4 вольта, этого мало.Меняем на 220мф 35в или можно 100мф 35в,эта цепь не критична к емкости,просто дополнительный фильтр для питания микросхемы,я сюда ставил от 47 до 220мкф и на работу это никак не влияло.

И еще SF38 3А 600В, но например сколько я встречал шуруповертов там пиковый ток в среднем 7-8 ампер,а в моем аж 10-11 ампер,так что эти диоды здесь совсем не к месту да и на радиатор их не закрепишь,а греться они будут.Так что смело меняем их на диодную сборку MBR2040 она 20 ампер 40 вольт (с запасом).
Далее на выходе выпрямителя стоит 100мкф 100в,для чего такая маленькая емкость и такое большое напряжение я не понимаю!(у автора этой схемы явно какое то странное представление о электронике) Тут надо поставить 1000мкф 16в,а лучше два параллельно. У нас все таки индуктивная нагрузка будет,мы двигатель крутить будем.
Почти закончили)) еще пару мелочей. Стоит на выходе дроссель 100uH, ЗАЧЕМ?!!!Типа пусть будет?он там вообще не нужен, мы не для усилителя блок питания собираем, да и индуктивность от "фонаря" написана и усилителей нормальных я с одно полярным питанием не видел,смело выкидываем его со схемы это лишний элемент.
Ну и напоследок чтоб так скажем поставить жирную точку))Расчетная частота преобразователя в этой схеме получается 66,7 кГц,а завод рассчитал трансформатор на 100 кГц,так что он будет греться и работать нестабильно да и не только он,а еще и полевики.Честно говоря я вообще сомневаюсь что можно больше 4-5 ампер выжать с этого трансформатора закорачивая обмотки как показано на рисунке выше да еще и с 5 вольтовой обмотки,а нам нужно 12 вольт. Вообще лучше же конечно перемотать самому трансформатор,так будет надежней и уверенней что все будет работать как надо. Не доверяю я если честно сказать этим китайцам,у них все работает на пределе возможного.
И так начнем собирать наш блок питания

Из всего вышеперечисленного делаем выводы и заменяем детали на те которые должны быть в действительности.Вот и получилась у нас вот такая схема.

И так что же мы можем взять из блока питания, так как у нас блок должен получится бюджетным мы много чего возьмем из ненужного БП ATX.

1) D1-D4 - RL205 или RL207
2) C1-C2 - 220u200v или 330u200v
3) NTC - любой который там стоит
4) D5 - HER108 или FR107
5) C5 - 1u50v
6) D6 - MBR2040 или подобная сборка стоящая там
7) C7-C8 - 1000u16v
8) C9 - 100n
9) Tr1 - трансформатор (самый большой из трех стоящих на плате)
10) F1 - тоже можно выгрызть если он остался живой))

Я в своей схеме использовал самый маленький трансформатор из семейства ATX, 3 на фото.

Ну и остается докупить (или найти у себя на полочках) совсем немного деталей))
Кстати очень советую IR2151 заменить на IR2153 ,будут конечно работать обе эти микросхемы, но IR2153 более живучая,да и слишком много мне брака попадалось IR2151 и горели они по неизвестным причинам,а с ней следом и полевики за компанию)) Я уже давно отказался от IR2151 печатаем и сразу под утюг(открывается любой программой)

фото платы, верх печатаем и сразу под утюг(открывается любой программой)

На плате есть одна перемычка про нее не забудьте и настоятельно рекомендую вам первый запуск проводить через лампочку 60-100W чтобы избежать взрывов и салютов)))

Ну на этом пожалуй закончим, удачной сборки вам и всех благ)))

IR2161 VS IR2153. Импульсный блок питания на IR 2161

Эта статья будет интересна тем кто собирал ИИП на основе IR2153. На самом деле IR2153 плохо подходит для создания ИИП, из-за отсутствия штатной системы защиты от КЗ и перегрузок, невозможность при необходимости «димированния» и создания обратной связи по напряжению и току.

Более подходит для создания ИИП IR2161. Это полумостовой импульсный преобразователь для питания галогеновых ламп. Особенности 2161 - защита от перегрузок и КЗ с автоматическим сбросом, мягкий старт, возможность димирования (несколькими способами), возможность построения обратной связи. После построения входных и выходных каскадов получается импульный источник питания.
Вот схема ИИП на 2161.

Напряжение питания и ток у этих микросхем примерно одинаковые, значит можно использовать для 2161 схему питания как у 2153 на резисторах R2 и R3 по 2 Вт, можно использовать китайский «кирпичь» 5 Вт на 18-30 кОм.

На борту 2161 присутствует функция мягкого старта (софтстарт). Работает примерно так: сразу же после запуска, частота внутреннего тактового генератора микросхемы составляет около 125 кГц, что значительно выше рабочей частоты выходного контура С13С14Тr1 (около 36 кГц), в результате напряжение на вторичной обмотке Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С7. Сразу же после включения, С7 начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нем будет уменьшаться частота генератора микросхемы. При достижении 5В (около 1сек.) частота уменьшится до рабочего значения, около 36кГц, а напряжение на выходе схемы соответственно достигнет номинального значения. Таким образом и реализован мягкий старт, после его завершения IC1 переходит в рабочий режим.

Вывод CS (выв.4) IC1 является входом внутреннего усилителя ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании , падение напряжения на токоизмерительном резисторе R7 превысит 0,56В, а следовательно и на выв.4 IC1, внутренний компаратор переключится и остановит тактовый генератор. . В апнот и даташит присутствуют расчеты резсистора-токового датчика R7. Вывод можно сделать сразу 0,33 Ом - 100Вт, 0,22 Ом - 200Вт 0,1 Ом-300Вт, не испытывал, но можно попробовать 2 резистора параллельно по 0,1 Ом - тогда максимальная нагрузка составит 400Вт. Испытание защиты от КЗ я показал а видео. Более подробно режимы работы микросхемы IR2161 рассмотрены в даташит.
Конденсатор C3 емкостью не менее 1мкФ на 1Вт выходной мощности. С таким конденсатором обязательно применение термистора NTC1, например от компьютерного блока питания.

Импульсный Источник Питания на IR2153.

О статье.
В глобальной помойке много схем с использованием этой микросхемы и описанием делайте вот таки так... А как так и почему? Будет ли работать? Н а последний вопрос очень часто ответ - нет!! Очень много "Чудодейственных" печаток и советов применить именно 1000мкф х500В конденсатор, который не найти или стоить будет ползарплаты.
Постараюсь описать с чем пришлось столкнуться при построении устройства, как решалось, свести все к простым и понятным принципам, применяя которые каждый может определится с тем, что ему нужно.

О самой " ирке " - IR2153.
Микросхема разработана для применения в электронных балластах экономичных ламп, это устройства микроскопической мощности, работает на частотах порядка 30КГц, не имеет специально предусмотренных цепей защиты и управления. Это дает повод для размышлений!
IR2153 имеет малое потребление и может питаться просто через гасящий резистор, также имеется разделение для верхнего и нижнего ключей полумоста, поэтому не требуется мотать трансформаторы или применять оптическое разделение сигналов управления ключами.
Это делает микросхему привлекательной не только для любителей, но и для серьезных брендов выпускающих продукцию серийно!

И так, сам проект.

Целью было построить простой, как можно более универсальный, модуль питания мощностью порядка 200Вт.
Область применения от питания галогеновых ламп до УМЗЧ и тп. , как ни странно по стоимости материалов этот модуль может конкурировать с заводскими трансформаторами для галогеновых ламп , в других сферах при менения тем более.

Принципиальная электрическая схема электронного балласта, выполненного на основе IR2153, изображена на рис. 3.15.

IR2153 - это драйвер мощных полевых транзисторов с изолированным затвором (MOSFET), с внутренним генератором. Он представляет собой точную копию генератора, использующегося в таймере серии 555, отечественный аналог - КР1006ВИ1. Работает непосредственно от шины постоянного напряжения через гасящий резистор R1.

Внутренняя стабилизация напряжения предотвращает превышение напряжения V cc выше 15,6 В. Блокировка по пониженному напряжению блокирует оба выхода управления затворами VT1 и VT2, когда напряжение V cc ниже 9 В.

DA1 имеет два управляющих выхода :

  • нижний 5 для управления VT2;
  • верхний 7 выход для управления VT1, "плавающий", т. к. формирователь импульсов управления полевым транзистором VT1 питается от плавающего источника питания, который образуют элементы VD2, С7).


Рис. 3.15. Принципиальная схема электронного балласта, выполненного на основе IR2153

При управлении силовыми ключами (VT1, VT2) микросхема IR2151 обеспечивает задержку коммутации продолжительностью 1,2 мкс для предотвращения ситуации, когда транзисторы VT1 и VT2 одновременно открыты и через них протекает сквозной ток, который моментально выводит оба транзистора из строя.

Данный балласт рассчитан на питание одной или двух ламп мощностью 40 (36) Вт (ток лампы- 0,43 А) от сети переменного тока 220 В 50 Гц. При использовании двух ламп по 40 Вт необходимо добавить элементы, выделенные пунктиром (EL2, L3, C11, RK3). Следует заметить, что для устойчивой работы номиналы элементов в параллельных ветвях должны быть равными (L3, С11 = L2, C10), а длина проводов, подводимых к лампам, - одинаковой.

Совет . При работе одного драйвера на две лампы предпочтительнее использовать частотный прогрев электродов (без позисторов). Об этом способе будет рассказано ниже (при описании ЭПРА на микросхеме IR53HD420).

При использовании ламп другой мощности (18-30 Вт) следует изменить номиналы L2 = 1,8-1,5 мГн (соответственно); при использовании ламп мощностью 60-80 Вт - L2 = 1-0,85 мГн, a R2 - из условия выполнения F г ~ F б (формулы расчета этих частот приведены ниже).

Напряжение сети 220 В поступает на сетевой фильтр (фильтр электромагнитной совместимости), образованный элементами C1, L1, С2, СЗ. Необходимость его применения вызвана тем, что ключевые преобразователи являются источниками электромагнитных радиочастотных помех, которые сетевые провода излучают в окружающее пространство как антенны.

Действующие российские и зарубежные стандарты нормируют уровни радиопомех, создаваемых этими устройствами. Хорошие результаты дают двухзвенные LC-фильтры и экранировка всей конструкции.

На входе сетевого фильтра включен традиционный узел защиты от сетевых перенапряжений и импульсных помех, включающий варистор RU1 и предохранитель FU1. Терморезистор RK1 с отрицательным температурным коэффициентом (NTC) ограничивает бросок входного тока, обусловленный зарядом емкостного фильтра С4 на входе инвертора при подключении электронного балласта к сети.

Далее напряжение сети выпрямляется диодным мостом VD1 и сглаживается конденсаторам С4. Цепочка R1C5 питает микросхему DAI - IR2153. Частота внутреннего генератора FT микросхемы задается элементами R2 = 15 кОм; С6 = 1 нФ в соответствии с формулой

Резонансная частота балластной схемы F6 задается элементами L2 = 1,24 мГн; C10 = 10 нФ в соответствии с формулой

Для обеспечения хорошего резонанса требуется выполнение следующего условия: частота внутреннего генератора должна быть примерно равна резонансной частоте балластной схемы, т. е. Fг ~ Fб.

Конструкция и детали . Дроссель сетевого фильтра L1 намотан на ферритовом кольце К32х20х6 М2000НМ двухжильным сетевым проводом до полного заполнения окна. Возможна замена на дроссель от ПФП блока питания телевизора, видеомагнитофона, компьютера.

Хорошие результаты помехоподавления дают специализированные фильтры EPCOS: B8414-D-B30; В8410-В-А14.

Дроссель электронного балласта L2 выполнен на Ш-образном магнитопроводе из феррита М2000НМ. Типоразмер сердечника Ш5х5 с зазором 8 = 0,4 мм. Величина зазора в нашем случае- это толщина прокладки между соприкосающимися поверхностями половинок магнитопровода. Возможна замена магнитопровода на Ш6х6 с зазором δ = 0,5 мм; Ш7х7 с зазором

δ = 0,8 мм.

Для изготовления зазора необходимо проложить прокладки из немагнитного материала (нефольгированный стеклотекстолит или гетинакс) соответствующей толщины между соприкосающимися поверхностями половинок магнитопровода и скрепить эпоксидным клеем.

От величины немагнитного зазора зависит величина индуктивности дросселя (при постоянном количестве витков). При уменьшении зазора индуктивность возрастает, при увеличении - уменьшается. Уменьшать величину зазора не рекомендуется, т. к. это приводит к насыщению сердечника.

При насыщении сердечника его относительная магнитная проницаемость резко уменьшается, что влечет за собой пропорциональное уменьшение индуктивности. Снижение индуктивности вызывает ускоренный рост тока через дроссель и его нагрев. Возрастает и ток, проходящий через ЛЛ, что отрицательно сказывается на сроке ее службы. Ускоренно нарастающий ток через дроссель также вызывает ударные токовые перегрузки силовых ключей VT1, VT2, повышенные омические потери в ключах, их перегрев и преждевременный выход из строя.

Обмотка L2 - 143 витка провода ПЭВ-2 диаметром 0,25 мм. Межслойная изоляция - лакоткань. Намотка - виток к витку. Основные размеры Ш-образных сердечнико в (состоят из двух одинаковых Ш-образных сердечников) из магнитомягких ферритов (по ГОСТ 18614-79) приведены в табл. 3.2.

Таблица 3.2. Основные размеры Ш-образных сердечников


Транзисторы VT1, VT2 - IRF720 , мощные полевые транзисторы с изолированным затвором. MOSFET- это Metal Oxide Semiconductor Field Effect Transistor; в отечественном варианте МОП ПТ - полевые транзисторы структуры металл-окисел-полупроводник.

Рассмотрим их параметры:

  • постоянный ток стока (I D) - 3,3 А;
  • импульсный ток стока (I DM)-13 А;
  • максимальное напряжение сток-исток (V DS) - 400 В;
  • максимальная рассеиваемая мощность (P D) - 50 Вт;
  • диапазон рабочих температур (Tj) - от -55 до +150 °С;
  • сопротивление в открытом состоянии -1,8 Ом;
  • общий заряд затвора (Q G) - 20 нКл;
  • входная емкость (C ISS) - 410 пФ.

При выборе и замене транзисторов (сравнение в табл. 3.3) для электронных балластов следует помнить , что на сегодняшний день количество фирм, производящих полевые транзисторы, довольно велико (IR, STMicro, Toshiba, Fairchild, Infineon и т. д.). Ассортимент транзисторов постоянно расширяется, появляются более совершенные с улучшенными характеристиками. Параметры, на которые следует обращать повышенное внимание:

  • постоянный ток стока (ID);
  • максимальное напряжение сток-исток (VDS);
  • сопротивление в открытом состоянии, RDS(on);
  • общий заряд затвора (QG);
  • входная емкость CISS.

Возможные замены транзисторов для электронного балласта : IRF730, IRF820, IRFBC30A (International Rectifier); STP4NC50, STP4NB50, STP6NC50, STP6NB50 (STMicroelectronics); полевые транзисторы фирмы Infineon (http:// www.infineon.com) серии LightMos, CoolMOS, SPD03N60C3, ILD03E60, STP03NK60Z; PHX3N50E фирмы PHILIPS и т. п.

Транзисторы установлены на небольшие пластинчатые радиаторы. Длина проводников между выходами драйвера 5, 7, резисторами в цепях затворов R3, R4 и затворами полевых транзисторов должна быть минимальной.

Таблица 3.3. Сравнительная таблица с параметрами некоторых транзисторов для электронных балластов



Рис. 3.16. Основные размеры сердечника (к табл. 3.2)

Диодный мост VD1 - импортный RS207; допустимый прямой ток 2 А; обратное напряжение 1000 В. Можно заменить на четыре диода с соответствующими параметрами.

Диод VD2 класса ultra-fast (сверхбыстрый) - обратное напряжение не менее 400 В; допустимый прямой постоянный ток - 1 А; время обратного восстановления - 35 нс. Подойдут 11DF4, BYV26B/C/D, HER156, HER157, HER105-HER108, HER205-HER208, SF18, SF28, SF106-SF109, BYT1-600. Этот диод должен располагаться как можно ближе к микросхеме.

Микросхема DAI - IR2153, она заменима на IR2152, IR2151, IR2153D, IR21531, IR2154, IR2155, L6569, МС2151, MPIC2151. При использовании IR2153D диод VD2 не требуется, т. к. он установлен внутри микросхемы.

Резисторы R1-R5 - ОМЛТ или МЛТ.

Конденсаторы С1-СЗ - К73-17 на 630 В; С4 - электролитический (импортный) на номинальное напряжение не менее 350 В; С5 - электролитический на 25 В; С6 - керамический на 50 В; С7 - керамический или К73-17 на напряжение не менее 60 В; С8, С9 - К73-17 на 400 В; СЮ - полипропиленовый К78-2 на 1600 6.

Варистор RU1 фирмы EPCOS - S14K275, S20K275, заменим на TVR (FNR) 14431, TVR (FNR) 20431 или отечественный СН2-1а-430 В.

Терморезистор (термистор) RK1 с отрицательным температурным коэффициентом (NTC - Negative Temperature Coefficient) - SCK 105 (10 Ом, 5 А) или фирмы EPCOS - B57234-S10-M, B57364-S100-M.

Термистор можно заменить на проволочный резистор 4,7 Ом мощностью 3-5 Вт.

Позистор RK2 - термистор РТС (Positive Temperature Coefficient) с положительным температурным коэффициентом. Разработчики IR2153 рекомендуют использовать позистор фирмы Vishay Cera-Mite - 307С1260. Его основные параметры :

  • номинальное сопротивление при +25 °С - 850 Ом;
  • мгновенное (максимально допустимое) среднеквадратичное напряжение, прикладываемое к позистору при зажигании лампы - 520 В;
  • постоянное (максимально допустимое) среднеквадратичное напряжение, прикладываемое к позистору при нормалной работе лампы, -175 В;
  • максимальный допустимый ток переключения (переводящий позистор в высокоомное состояние) -190 мА;
  • диаметр позистора - 7 мм.

Возможная замена позистора RK2 - импульсные позисторы фирмы EPCOS (число циклов переключения 50000-100000): В59339-А1801-Р20, В59339-А1501-Р20, B59320-J120-A20, В59339-А1321-Р20.

Позисторы с необходимыми параметрами в количестве, достаточном, для восьми электронных балластов, можно изготовить из широко распространенного позистора СТ15-2-220 от системы размагничивания телевизора ЗУСЦТ. Разобрав пластмассовый корпус, извлекают две "таблетки". Алмазным надфилем делают на каждой два надпила крест-накрест, как показано на рис. 3.17, и разламывают ее по надпилам на четыре части.

Совет . К металлизированным поверхностям изготовленного таким образом позистора очень трудно припаять выводы. Поэтому, как показано на рис. 3.18, делают в печатной плате (поз. 3) прямоугольное отверстие и зажимаю обломок "таблетки" (поз. 1) между упругими контактами (поз. 2), припаянными к печатным проводникам. Подбирая размер обломка, можно добиться желаемой продолжительности прогрева лампы.


Рис. 3.17. "Таблетка" позистора с надпилами

Рис. 3.18. Крепление самодельного позистора на плате

Совет . Если люминесцентную лампу предполагается использовать в режиме нечастого включения-выключения, то позистор можно исключить.

Настройка . Разброс параметров элементов С6, L2, СЮ может потребовать подстройки частоты драйвера. Равенства частоты задающего генератора микросхемы IR2153 резонансной частоте контура L2C10 проще всего добиваться подборкой частотозадающего резистора R2. Для этого его удобно временно заменить парой последовательно соединенных резисторов: постоянного (10-12 кОм) и подстроечного (10-15 кОм). Критерием правильной настройки служат надежный запуск (зажигание) и устойчивое горение лампы.

Балласт собран на печатной плате из фольгированного стеклотекстолита и помещен в алюминиевый экранирующий кожух. Печатная плата и расположение элементов показана на рис. 3.19.

Рис. 3.19. Печатная плата и расположение элементов

Всем здравствуйте!

Предыстория:

На сайте есть схема усилителей мощности звуковой частоты(УНЧ) 125, 250, 500, 1000 Ватт, я выбрал 500 Ватт вариант, так как кроме радиоэлектроники, немного увлекаюсь еще музыкой и поэтому хотелось что то по качественнее из УНЧ. Схема на TDA 7293 меня не как не устраивала, поэтому решил вариант на полевых транзисторах 500 ватт. С начала почти собрал один канал УНЧ, но работа остановилась по разным причинам (время, деньги и недоступность некоторых компонентов). В итоге докупил не достающие компоненты и закончил один канал. Также через определенное время и второй канал собрал, все это настроил и протестировал на блоке питания от другого усилителя, все работало на высшем уровне и качество очень понравилось, даже не ожидал что так будет. Отдельное, огромное спасибо радиолюбителям Boris, AndReas, nissan которые на протяжении всего времени пока собрал, помогли в его настройке и в других нюансах. Далее дело стало за блоком питания. Конечно хотелось бы сделать на обычном трансформаторе блок питания, но опять же все останавливается на доступности материалов для трансформатора и их стоимости. Поэтому решил все-таки остановиться на ИБП.

Ну а теперь о самом ИБП:






Транзисторы я использовал IRFP 460, так как не нашел указанных на схеме. Пришлось транзисторы ставить наоборот развернув на 180 градусов, просверлить дырки под ножки больше и проводками спаять (на фото видно). Когда сделал печатную плату, то позже только понял что нужных как на схеме транзисторов мне не найти, поставил те что были (IRFP 460). Транзисторы и выходные выпрямительные диоды обязательно установить на теплоотвод через изолирующие тепло проводящие прокладки, а так же нужно охлаждать кулером радиаторы, иначе могут перегреться транзисторы и выпрямительные диоды, но нагрев транзисторов конечно зависит и от типа примененных транзисторов. Чем ниже внутреннее сопротивление полевика, тем меньше будут греться.


Также пока не установил Варистор 275 Вольт по входу, так как нет не в городе и у меня тоже, а через интернет дорого заказывать одну деталь. У меня будут стоять отдельно вынесенные электролиты по выходу, потому что нет в наличии на нужное напряжение и типоразмер не подходит. Решил поставить 4 электролита по 10000 Мкф * 50 Вольт по 2 последовательно в плечо, в сумме в каждом плече получится по 5000 Мкф *100 вольт, что будет в полне достаточно для блока питания, но лучше поставить по 10000 мкф * 100 вольт в плечо.

На схеме указан резистор R5 47 кОм 2 W по питанию микросхемы, его следует заменить на 30 кОм 5 W (лучше 10 W) для того что бы при большой нагрузке, хватило тока микросхеме IR2153, иначе может уйти в защиту от недостатка тока или будет пульсировать напряжение что отразится на качестве. В схеме автора стоит 47 кОм, это много для такой мощности блока питания. Кстати, резистор R5 будет греться очень сильно, не переживайте, тип этих схем на IR2151, IR2153, IR2155 по питанию сопровождается сильным нагревом R5.

В моем случае я использовал ферритовый сердечник ETD 49 и он у меня очень тяжело влез на плату. При частоте 56 КГц, он по расчетам может отдать на этой частоте до 1400 ватт, что в моем случае имеет запас. Можно использовать и тороидальный или другой формы сердечник, главное что бы подходил по габаритной мощности, проницаемости и естественно что бы хватило место его расположить на плате.



Намоточные данные для ETD 49: 1-ка=20 витков проводом 0.63 в 5 проводов (обмотка 220 вольт). 2-ка= основная силовая двуполярная 2*11 витков проводом 0.63 в 4 провода (обмотка 2*75-80) вольт. 3-ка= 2.5 витка проводом 0.63 в 1 провод (обмотка 12 вольт, для софт старт). 4-ка= 2 витка проводом 0.63 в 1 провод (обмотка дополнительная для питания предварительных схем (темброблок и т.п.). Каркас трансформатора нужно вертикального исполнения, у меня горизонтального, поэтому пришлось городить. Можно намотать в бескаркасном исполнении. На остальных типах сердечником вам придется рассчитывать самому, можно с помощью программы которую я оставлю в конце статьи. В моем случае я использовал двуполярное напряжение 2*75-80 вольт для усилителя 500 ватт, почему меньше, потому что нагрузка усилителя будет не 8 Ом а 4 Ом.

Настройка и первый запуск:

При первом запуске ИБП обязательно установите в разрыв сетевого кабеля и ИБП лампочку 60-100 ватт. При включении если лампочка не горит, значит уже хорошо. При первом пуске может включиться защита от КЗ и загорится светодиод HL1, так как электролиты большой емкости и в момент включения берут огромный ток, в случае если это произошло, то надо многооборотный резистор перекрутить по часовой стрелке до упора, а потом ждать пока погаснет светодиод в выключенном состоянии и пробовать включать заново что бы удостовериться в работоспособности ИБП, а потом регулировать защиту. Если все правильно спаяли и использовали правильные номиналы деталей, ИБП запустится. Далее когда удостоверились что ИБП включается и есть все напряжения на выходе, нужно установить порог срабатывания защиты. При настройке защиты обязательно нагрузите ИБП между двумя плечами основной выходной обмотки (которая для питания УНЧ) лампочкой 100 ватт. Когда при включении ИБП под нагрузкой (лампочка 100 ватт) загорается светодиод HL1, нужно по не многу крутить переменный многооборотный резистор R9 2.2 кОм против часовой стрелки пока не будет срабатывать защита при включении. Когда при включении будет загораться светодиод, нужно выключить и дождаться пока он погаснет и по понемногу подкручивая по часовой стрелке в выключенном состоянии и включая опять его пока не перестанет срабатывать защита,
только нужно крутить понемногу например 1 оборот и не сразу на 5-10 оборотов, т.е. выключил подкрутил и включил, сработала защита - опять такая же процедура в несколько раз пока не достигнете нужного результата. Когда вы установите нужный порог, то в принципе блок питания готов к использованию и можно убрать лампочку по сетевому напряжению и пробовать нагрузить блок питания активной нагрузкой ну например ватт 500. Там конечно можно поиграться с защитой уже кому как нравится, но не рекомендую устраивать тесты с КЗ, так как это может привести к неисправности хоть есть и защита, емкость некая не успеет разрядится, реле не отреагирует мгновенно или залипнет и может быть неприятность. Хотя я делал случайно и не случайно некоторое количество замыканий, защита работает. Но ничего вечного нет.

Измерения после сборки ИБП:

Измерения между плечами:
U вх - 225 вольт, нагрузка - 100 ватт, U вых +- = 164 вольта
U вх - 225 вольт, нагрузка - 500 ватт, U вых +- = 149 вольта
U вх - 225 вольт, нагрузка - 834 ватт, U вых +- = 146 вольта

Проседание есть конечно. При нагрузке 834 ватт перед входным выпрямителем напряжение проседает с 225 вольт до 220 вольт, после выпрямителя проседает аж на 20 вольт с 304 вольт на 284 вольт при нагрузке 834 ватт. Но в принципе проседание на выходе на каждое плечо получается 9 вольт, что в принципе допустимо, так как ИБП не стабилизированный.

Спасибо всем за внимание.

Долго меня волновала тема того, как можно использовать блок питания от компьютера в качестве питания усилителя мощности. Но переделывать блок питания - то ещё развлечение, особенно импульсный с таким плотным монтажом. Хоть я и привычный ко всяким фейерверкам, но домашних пугать очень не хотелось, да и опасненько это и для самого.

В общем, изучение вопроса привело к довольно простому решению, не требующему никаких особенных деталей и практически никакого налаживания. Собрал-включил-работает. Да и хотелось попрактиковаться в вытравливании печатных плат с помощью фоторезиста, так как в последнее время современные лазерные принтеры стали жадными до тонера, и привычная лазеро-утюжная технология не задалась. Результатом работы с фоторезистом я остался очень доволен, - для эксперимента на плате вытравил надпись линией толщиной 0,2мм. И она прекрасно получилась! Итак, довольно прелюдий, опишу схему и процесс сборки-наладки блока питания.

Блок питания на самом деле очень прост, собран практически весь из деталей, оставшихся после разборки не самого хорошего импульсника от компьютера, - из тех, в которые «не докладывают» деталей. Одна из этих деталей - импульсный трансформатор, который можно использовать без перемотки в блоке питания на 12В, или пересчитать, что тоже очень просто, на любое напряжение, для чего я использовал программу Москатова.

Схема блока импульсного блока питания:


В качестве компонентов были использованы следующие:
драйвер ir2153 - микросхема, используется в импульсных преобразователях для питания люминесцентных ламп, её более современный аналог - ir2153D и ir2155. В случае использования ir2153D диод VD2 можно исключить, так как он уже встроен в микросхему. У всех микросхем серий 2153 в цепи питания уже стоит встроенный стабилитрон на 15,6В, поэтому не стоит сильно заморачиваться с устройством отдельного стабилизатора напряжения для питания самого драйвера;
VD1 - любой выпрямительный с обратным напряжением не ниже 400В;
VD2-VD4 - «быстродействующие», с малым временем восстановления (не больше 100нс) например - SF28; На самом деле VD3 и VD4 можно исключить, я их не ставил;
в качестве VD4, VD5 - использован сдвоенный диод от компьютерного блока питания «S16C40? - это диод «Шоттки», можно поставить любой другой, менее мощный. Нужна эта обмотка для питания драйвера ir2153 после того, как запустится импульсный преобразователь. Можно исключить и диоды и обмотку, если не планируется снимать мощность более 150Вт;
[i]Диоды VD7-VD10 - мощные диоды «Шоттки», на напряжение не ниже 100В и ток не меньше 10 А, например - MBR10100, или другие;
транзисторы VT1, VT2 - любые мощные полевые, от их мощности зависит выходная, но сильно тут увлекаться не стоит, как и снимать с блока более 300Вт;
L3 - намотан на ферритовом стержне и содержит 4-5 витков провода 0,7мм; Эту цепочку (L3, C15, R8) можно вообще исключить, она нужна, чтобы немного облегчить режим работы транзисторов;
Дроссель L4 намотан на кольце от старого дросселя групповой стабилизации того же блока питания от компьютера, и содержит по 20 витков, мотается сдвоенным проводом.

Конденсаторы на входе можно поставить и меньшей ёмкости, их ёмкость можно примерно подобрать исходя и снимаемой мощности блока питания, примерно как 1-2мкФ на 1 Вт мощности. Не стоит увлекаться конденсаторами и ставить на выход блока питания ёмкости больше 10000 мкФ, так как это может привести к «салюту» при включении, так как они при включении требуют значительного тока для зарядки.

Теперь пару слов о трансформаторе. Параметры импульсного трансформатора определены в программе Москатова и соответствуют Ш-образному сердечнику со следующими данными: S0 = 1,68 кв.см; Sc = 1,44 кв.см; Lср.л. = 86см; Частота преобразования - 100кГц;

Получившиеся расчётные данные:
Обмотка 1 - 27 витков 0,90мм; напряжение - 155В; Намотана в 2 слоя проводом, состоящим из 2 жил по 0,45мм; Первый слой - внутренний содержит 14 витков, второй слой - наружний содержит 13 витков;
обмотка 2 - 2 половины по 3 витка проводом 0,5мм; это - «обмотка самопитания» на напряжение около 16В, мотается проводом так, чтобы направления намотки были в разную сторону, средняя точка выводится наружу и подключается на плате;
обмотка 3 - 2 половины по 7 витков, намотана так же многожильным проводом, сначала - одна половина в одну сторону, потом через слой изоляции - вторая половина, в противоположную сторону. Концы обмоток выведены наружу в «косу» и подключаются в общую точку на плате. Обмотка рассчитана на напряжение около 40В.

Таким же образом можно рассчитать трансформатор на любое нужное напряжение. У меня собраны 2 таких блока питания, - один - для усилителя на TDA7293, второй - на 12В для питания всяческих поделок, - используется в качестве лабораторного.

Блок питания для усилителя на напряжение 2х40В:

Импульсный блок питания на 12В:

Блок питания в сборе в корпусе:

Фото испытаний импульсного блока питания, - того, что для усилителя с помощью эквивалента нагрузки из нескольких резисторов МЛТ-2 по 10Ом, включаемых в разной последовательности. Целью было получить данные о мощности, падении напряжения и разности напряжений в плечах +/- 40В. По итогам у меня получились такие параметры:
Мощность - около 200Вт (больше не стал пытаться снимать);
напряжение , в зависимости от загрузки - 37,9-40,1В во всём диапазоне от 0 до 200Вт

Температура на максимальной мощности 200Вт после тестового прогона в течение получаса:
трансформатора - около 70град.цельсия, радиатора диодов без активного обдува - около 90 град.цельсия. С активным обдувом - быстро приближается к комнатной и практически не греется. В итоге радиатор был заменён, и на следующих фото блок питания уже с другим радиатором.
При разработке блока питания были использованы материалы сайта vegalab и radiokot, на форуме «Веги» очень подробно описан этот блок питания, так же есть варианты блока с защитой от КЗ, что есть неплохо. У меня например при случайном КЗ мгновенно сгорела дорожка на плате во вторичной цепи.

Внимание!
Первое включение блока питания следует производит через лампу накаливания мощностью не более 40Вт. При первом включении в сеть она должна на короткое время вспыхнуть и погаснуть. Светиться она практически не должна! При этом можно проверить выходные напряжения и попробовать несильно нагрузить блок (не больше 20Вт!). Если всё в порядке, - лампочку можно убирать и приступать к испытаниям.

При сборке и наладке блока питания ни одного животного не пострадало, хотя один раз-таки был словлен «фейерверк» с искрами и спецэффектами при взрыве силовых ключей. После их замены блок заработал как ни в чём не бывало;

Внимание! Этот блок питания имеет цепи, связанные с сетью высокого напряжения! Если вы не понимаете, что это такое и к чему может привести, - лучше отказаться от идеи собрать этот блок. Кроме того, в цепи высокого напряжения имеется действующее напряжение около 320В!

У вас нет доступа к скачиванию файлов с нашего сервера

Собирая какое нибудь очередное устройство, все больше мучает вопрос чем же его питать. Да хорошо когда навалом разной аппаратуры где есть подходящие трансформаторы, а если перематывать??? Перемотать трансформатор занятие не из приятных, пусть даже в расчетах помогает приложения для для расчета трансформатора, сам процесс перемотки часто напрягает.

Помню как то был ТСШ-180, хороший анодно-накальный транс, да и пришлось перематывать. Мотал дня два наверное, плюс проливал лаком что бы была изоляция лучше и не гудел… Собрал его, здоровый такой. Сам весом 3 кг да чуть на ногу не упал. Подумал я об этом всем и решил перейти на импульсные блоки питания и на это масса причин.

Причины выбора импульных блоков питания:

1. П ервая и не маловажная причина, это финансовая. Вот у нас тот же ТСШ-180 а.-накальный стоит 150-180 грн. В то время как ИИП 200Вт на IR2153 в сборе стоит будет 130-160 грн. Да разница не велика, зато у вас же дома полно нужных деталей. К примеру я докупил только IRF740 и IR2153 и заплатил 40грн. Как разница?? А еще и от хлама немного избавился)) А еще незабываем что в расчет уже и мост и банки, а к трансу это тоже надо покупать. А хорошие баночки о как хорошо стоят. А на ИИП вместо 22 000мФ, можно поставить 3300мФ и разницы в фильтрации даже не заметиш

2. В торая причина габаритность. Трансы тяжелые, ватт так на 200 весом 3-4кг, заменяется ИИП массой 300г и размером платы гдето 120*120мм. Удобно в коробке DVD собрать что то мощное, Ланзар например…

3. Э то низкий уровень помех в пределах 20-20 000Гц. Это для усилителя низких частот очень хорошо, даже великолепно. Не помех, не фона нет.

На схеме видем силивую часть в которой присутствует: защитные цепи (R1,R2,FU1)фильтр C-R-C(C1,L1,C1), выпрямитель с фильтр-делителем(VD1(400В 3A),C3,C4,C6,C7, R44,R6) и ключевую часть в которую входят два мосфета(VT1,VT2), трансформатор(T1) и две помехо подавляющие цепи(R8C9,C8R7)

Ничего сложного и в управляющей части. Питающая часть микросхемы состоит из баластного резистора R9, стабилитрона VD2. фильтра C10C11, и еще одного баластного резистора R10. В ходе работы возможно прийдется подобрать R9R10.
Частота работы ШИМ задается R11C13. И расчитывается по формуле f=1/1.4*(R11+75Ом)*С13. В нашем случае выходит f=1/1.4*(10000+75)*0.000000001=70896 Гц= 70.9кГц. Будте внимательны с ноликами

Ну тут толком нечего рассказывать: Сдвоеный диод VD4, фильтр-выпрямитель C14-L3-C15-C16 и все. Помните при расчете, что это не стабилизированный БП и напряжение может плавать. Поэтому лучше при расчетах введите на пару вольт меньше

По расчету трансформатора вам поможет приложение для расчета Импульсных трансформаторов. Совет вторичку мотать косой из более тонкого провода, дабы избежать скин-эфекта.

Кстати у одного моего знакомого от такой схемы питается 2.1 собранны на TDA2030A сумарной мощью 65Вт. Это небольшая часть от того что выдает ИИП на IR2153, зато работает который год. Да опять же трансформатор на 70Вт щас стоит так же как и блок ИИП на IR2153, так в ИИП еще и запаса 130Вт…

На этом все, всем спасибо за внимание и удачи в сборке…

Внимание! Данная схема не рекомендуется к сборке! Есть более совершенная и надежная схема:

Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.

Схема импульсного блока питания представляет собой стандартную схему из даташита. Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

Защита от перегрузок и КЗ выполнена на паре транзисторов 2N5551/5401. В качестве датчика тока в данной схеме используются резисторы включенные в исток нижнего плеча преобразователя. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. С помощью R6 настраивается порог срабатывания защиты.

При КЗ или перегрузке, когда падение напряжения на R10 R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 - 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. Светодиод HL1 сигнализирует о срабатывании защиты.

Защита настраивается так. К выходу каждого плеча блока питания подключаются мощные 10 Ом"ные резисторы. Включается блок питания в сеть. Вращением движка R6 добиваемся того чтобы HL1 погас, а затем выставляем движок в такое положение, чтобы HL1 еще не горел, но при минимальном повороте движка в сторону уменьшения тока срабатывания защиты, светодиод загорался. При такой настройке защиты, она будет срабатывать при выходной мощности приблизительно 300Вт. Такой режим работы безопасен для данных ключей (IRF740) и драйвера.

Трансформатор намотан на сердечнике ER35/21/11. Первичная обмотка намотана в два провода 0,63мм2 и содержит 33 витка. Вторичная обмотка состоит из двух половинок, намотанных в три провода 0,63мм2 и каждая половинка содержит по 9 витков.

Печатная плата выполнена в формате . Распечатке на лазерном принтере зеркалить ее не нужно.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153

1 В блокнот
VT1 Биполярный транзистор

2N5551

1 В блокнот
VT2 Биполярный транзистор

2N5401

1 В блокнот
VT3, VT4 MOSFET-транзистор

IRF740

2 В блокнот
VD1, VD2 Выпрямительный диод

HER108

2 В блокнот
VDS1 Диодный мост

RS405L

1 Или другой до 1000В В блокнот
VDS2 Выпрямительный диод

FR607

4 Или Шоттки с похожими характеристиками В блокнот
VDR1 Термистор 250В 1 В блокнот
R1, R5 Резистор

10 кОм

2 0.25 Вт В блокнот
R2 Резистор

18 кОм

1 2 Вт В блокнот
R3, R9 Резистор

100 Ом

2 0.25 Вт В блокнот
R4 Резистор

15 кОм

1 0.25 Вт В блокнот
R6 Переменный резистор 10 кОм 1 В блокнот
R7, R8 Резистор

33 Ом

2 2 Вт В блокнот
R10, R11 Резистор

0.2 Ом

2 Можно цементный аксиальный В блокнот
С1-С3, С15, С16 Конденсатор 100 нФ 1000В 5 Пленочный В блокнот
С4 Электролитический конденсатор 220 мкФ х 16В 1 В блокнот
С5, С6 Конденсатор 1 нФ х 50В 2 Керамический В блокнот
C7 Конденсатор 680 нФ 50В 1 Керамический

Доброго дня всем! Вот смотрю схемы в Интернете блоков питания импульсных и... И не понимаю! Толи авторы не читают "Datasheet" на компоненты, толи специально отбивают охоту собирать ИБП??? . Смотрим описание IR2153 : "улучшенная версия IR2153 -2155, перечень улучшений сводится к защите от помех. .. Читаем: рекомендуемая емкость нагрузки 1000 пф, мощность 0,650 вт (кратковременно)! Так это данные на IR2151 !!! И так имеем: IR2153 может управлять ключами с емкостной нагрузкой в 1n=1000пф! Смотрим "datasheet" ключей. IR740 - 1450 пф. В полтора раза превышает рекомендованное. Теперь напряжение. Рекомендовано максимальное напряжение ключей 600 v(в) ! А ключи имеют 400 в. Ну да, это больше 310 в! Однако всем, кто сталкивался с промышленными схемами ИБП, хорошо известно, что ключи ставятся на напряжение не меньше 600 в. Только в Китайских схемах иногда появляются сгоревшие на 500 в. Надеюсь объяснил понятно?! Что касается тока ключа, и сопротивления ключа в открытом состоянии. Это мало влияет на мощность ИБП. Объясню. Для импульсного блока питания ток ограничен прохождением через нагрузку и как правило в импульсе не превышает 2-3 а. В импульсе! Смотрим "datasheet" ключей и видим: при температуре кристалла 100 гр. ток с большим запасом у IR740. Однако в данном случае это для ключа минус! Чем больше ток ключа - тем больше время переключения (см. график там же) и уж конечно меньше крутизна импульса, а значит КПД меньше максимального (75%). Соответственно данный ключ работать будет, но плохо!!! В результате перечисленного: такое сочетание влечет выгорание как ключей так и драйвера! Кто хочет повторить эту схему - обречен на горсть сгоревших деталей! Я не прав? Почитайте комментарии к подобным схемам. Следует вопрос: ты такой умный, так что посоветуешь? Посоветую, всем кто хочет иметь простую сборку ИБП, взять схему из описания и рекомендации Компании "IR" - драйвер IR2153 с ключами на ток 4-5 а и макс. напряжением 600-900 в с емкостью управляющего электрода не более 1000 пф. Пример STP5NK600C и подобные MOSFET триоды. Теперь про сопротивление в открытом состоянии для ключа: действительно чем оно больше - тем сильнее нагрев ключа. Кто то скажет и меньше КПД. В данном случае КПД не 100% и влияние сопротивления очень мало. Так что влияет на КПД? На КПД влияет сама схема ИБП, для КПД до 94% собираем резонансный ИБП. КПД до 75% - с правильными ключами на IR2153 !. вам мало такого КПД? Хм. А как насчет трансформатора импульсного? Он как ограничит КПД? Кто то посчитал уже? Потери при частотах с выше 50 Кгц возрастают в разы, хотя и до 50 Кгц потери не нулевые. Смотрим промышленные схемы: намотка импульсных трансформаторов очень капризное занятие, два, одинаково намотанных, трансформатора имеют различную индуктивность! Что это? А это то и есть! Каждый ИТ имеет всою оптимальную рабочую частоту. А это как Вам? Всё - дальше читайте и смотрите схемы ИБП телевизоров, мощных усилителей, и прочих заводских электроприборов. Успеха Вам!

Понравилась статья? Поделиться с друзьями: