Введение в OLAP и многомерные базы данных. Введение в OLAP

Информационные системы серьезного предприятия, как правило, содержат приложения, предназначенные для комплексного анализа данных, их динамики, тенденций и т.п. Соответственно, основными потребителями результатов анализа становится топ-менеджмент. Такой анализ, в конечном итоге, призван содействовать принятию решений. А чтобы принять любое управленческое решение необходимо обладать необходимой для этого информацией, обычно количественной. Для этого необходимо эти данные собрать из всех информационных систем предприятия, привести к общему формату и уже потом анализировать. Для этого создают хранилища данных (Data Warehouses).

Что такое хранилище данных?

Обычно - место сбора всей информации, представляющей аналитическую ценность. Требования для таких хранилищ соответствуют классическому определению OLAP, будут объяснены ниже.

Иногда Хранилище имеет еще одну цель – интеграция всех данных предприятия, для поддержания целостности и актуальности информации в рамках всех информационных систем. Т.о. хранилище накапливает не только аналитическую, а почти всю информацию, и может ее выдавать в виде справочников обратно остальным системам.

Типичное хранилище данных, как правило, отличается от обычной реляционной базы данных. Во-первых, обычные базы данных предназначены для того, чтобы помочь пользователям выполнять повседневную работу, тогда как хранилища данных предназначены для принятия решений. Например, продажа товара и выписка счета производятся с использованием базы данных, предназначенной для обработки транзакций, а анализ динамики продаж за несколько лет, позволяющий спланировать работу с поставщиками, - с помощью хранилища данных.

Во-вторых, обычные базы данных подвержены постоянным изменениям в процессе работы пользователей, а хранилище данных относительно стабильно: данные в нем обычно обновляются согласно расписанию (например, еженедельно, ежедневно или ежечасно - в зависимости от потребностей). В идеале процесс пополнения представляет собой просто добавление новых данных за определенный период времени без изменения прежней информации, уже находящейся в хранилище.

И, в-третьих, обычные базы данных чаще всего являются источником данных, попадающих в хранилище. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Как строят хранилище?

ETL – базовое понятие: Три этапа:
  • Извлечение – извлечение данных из внешних источников в понятном формате;
  • Преобразование – преобразование структуры исходных данных в структуры, удобные для построения аналитической системы;
Добавим еще один этап – очистка данных (Cleaning ) – процесс отсеивания несущественных или исправления ошибочных данных на основании статистических или экспертных методов. Чтобы не формировать потом отчеты типа «Продажи за 20011 год».

Вернемся к анализу.

Что такое анализ и для чего он нужен?

Анализ – исследование данных с целью принятия решений. Аналитические системы так и называют - системы поддержки принятия решений (СППР ).

Здесь стоит указать на отличие работы с СППР от простого набора регламентированных и нерегламентированных отчетов. Анализ в СППР практически всегда интерактивен и итеративен. Т.е. аналитик копается в данных, составляя и корректируя аналитические запросы, и получает отчеты, структура которых заранее может быть неизвестна. Более подробно к этому мы вернемся ниже, когда будем обсуждать язык запросов MDX .

OLAP

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде (таблицы, диаграммы и т.п.). Традиционный подход сегментирования исходных данных использует выделение из исходных данных одного или нескольких многомерных наборов данных (нередко называемый гиперкубом или метакубом), оси которых содержат атрибуты, а ячейки – агрегируемые количественные данные. (Причем храниться такие данные могут и в реляционных таблицах, но в данном случае мы говорим о логической организации данных, а не о физической реализации их хранения.) Вдоль каждой оси атрибуты могут быть организованы в виде иерархий, представляющих различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации традиционных хранилищ данных. Концепция OLAP была описана в 1993 году Эдгаром Коддом , известным исследователем баз данных и автором реляционной модели данных. В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information - быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

  • предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это - ключевое требование OLAP);
  • возможность обращаться к любой нужной информации независимо от ее объема и места хранения.
Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Т.е. OLAP - это не технология, а идеология .

Прежде чем говорить о различных реализациях OLAP, давайте подробнее рассмотрим, что же представляют собой кубы с логической точки зрения.

Многомерные понятия

Мы будем использовать для иллюстрации принципов OLAP базу данных Northwind, входящую в комплекты поставки Microsoft SQL Server и представляющую собой типичную базу данных, хранящую сведения о торговых операциях компании, занимающейся оптовыми поставками продовольствия. К таким данным относятся сведения о поставщиках, клиентах, список поставляемых товаров и их категорий, данные о заказах и заказанных товарах, список сотрудников компании.

Куб

Возьмем для примера таблицу Invoices1, которая содержит заказы фирмы. Поля в данной таблице будут следующие:
  • Дата Заказа
  • Страна
  • Город
  • Название заказчика
  • Компания-доставщик
  • Название товара
  • Количество товара
  • Сумма заказа
Какие агрегатные данные мы можем получить на основе этого представления? Обычно это ответы на вопросы типа:
  • Какова суммарная стоимость заказов, сделанных клиентами из определенной страны?
  • Какова суммарная стоимость заказов, сделанных клиентами из определенной страны и доставленных определенной компанией?
  • Какова суммарная стоимость заказов, сделанных клиентами из определенной страны в заданном году и доставленных определенной компанией?
Все эти данные можно получить из этой таблицы вполне очевидными SQL-запросами с группировкой.

Результатом этого запроса всегда будет столбец чисел и список атрибутов его описывающих (например, страна) – это одномерный набор данных или, говоря математическим языком, – вектор.

Представим себе, что нам надо получить информацию по суммарной стоимости заказов из всех стран и их распределение по компаниям доставщиков – мы получим уже таблицу (матрицу) из чисел, где в заголовках колонок будут перечислены доставщики, в заголовках строк – страны, а в ячейках будет сумма заказов. Это – двумерный массив данных. Такой набор данных называется сводной таблицей (pivot table ) или кросс-таблицей.

Если же нам захочется получить те же данные, но еще в разрезе годов, тогда появится еще одно изменение, т.е. набор данных станет трехмерным (условным тензором 3-го порядка или 3-х мерным «кубом»).

Очевидно, что максимальное количество измерений – это количество всех атрибутов (Дата, Страна, Заказчик и т.д.), описывающих наши агрегируемые данные (сумму заказов, количество товаров и т.п).

Так мы приходим к понятию многомерности и его воплощению – многомерному кубу . Такая таблица будет у нас называться «таблицей фактов ». Измерения или Оси куба (dimensions ) – это атрибуты, координаты которых – выражаются индивидуальными значениями этих атрибутов, присутствующих в таблице фактов. Т.е. например, если информация о заказах велась в системе с 2003 по 2010 год, то эта ось годов будет состоять из 8 соответствующих точек. Если заказы приходят из трех стран, то ось стран будет содержать 3 точки и т.д. Независимо от того, сколько стран заложено в справочнике Стран. Точки на оси называются ее «членами» (Members ).

Сами агрегируемые данные в данном случае буду назваться «мерами» (Measure ). Чтобы избежать путаницы с «измерениями», последние предпочтительней называть «осями». Набор мер образует еще одну ось «Меры» (Measures ). В ней столько членов (точек), сколько мер (агрегируемых столбцов) в таблице фактов.

Члены измерений или осей могут быть объединены одной или несколькими иерархиями (hierarchy ). Что такое иерархия, поясним на примере: города из заказов могут быть объединены в районы, районы в области, области страны, страны в континенты или другие образования. Т.е. налицо иерархическая структура – континент-страна-область-район-город – 5 уровней (Level ). Для района данные агрегируются по всем городам, которые в него входят. Для области по всем районам, которые содержат все города и т.п. Зачем нужно несколько иерархий? Например, по оси с датой заказа мы можем хотеть группировать точки (т.е. дни) по иерархии Год-Месяц-День или по Год-Неделя-День : в обоих случаях по три уровня. Очевидно, что Неделя и Месяц по-разному группируют дни. Бывают также иерархии, количество уровней в которых не детерминировано и зависит от данных. Например, папки на компьютерном диске.

Агрегация данных может происходить с использованием нескольких стандартных функций: сумма, минимум, максимум, среднее, количество.

MDX

Перейдем к языку запросов в многомерных данных.
Язык SQL изначально был спроектирован не для программистов, а для аналитиков (и поэтому имеет синтаксис, напоминающий естественный язык). Но он со временем все больше усложнялся и теперь мало кто из аналитиков хорошо умеет им пользоваться, если умеет вообще. Он стал инструментом программистов. Язык запросов MDX, разработанный по слухам нашим бывшим соотечественником Мойшей (или Мошей) Посуманским (Mosha Pasumansky) в дебрях корпорации Майкрософт, тоже изначально должен был ориентирован на аналитиков, но его концепции и синтаксис (который отдаленно напоминает SQL, причем совершенно зря, т.к. это только путает), еще сложнее чем SQL. Тем не менее его основы все же понять несложно.

Мы рассмотрим его подробно потому что это единственный язык, который получил статус стандартного в рамках общего стандарта протокола XMLA , а во вторых потому что существует его open-source реализация в виде проекта Mondrian от компании Pentaho . Другие системы OLAP-анализа (например, Oracle OLAP Option) обычно используют свои расширения синтаксиса языка SQL, впрочем, декларируют поддержку и MDX.

Работа с аналитическими массивами данных подразумевает только их чтение и не подразумевает запись. Т.о. в языке MDX нет предложений для изменения данных, а есть только одно предложение выборки - select.

В OLAP из многомерных кубов можно делать срезы – т.е. когда данные фильтруются по одной или нескольким осям, или проекции – когда по одному или нескольким осям куб «схлопывается», агрегируя данные. Например, наш первый пример с суммой заказов из стран – есть проекция куба на ось Страны. MDX запрос для этого случая будет выглядеть следующим образом:

Select ...Children on rows from
Что здесь что?

Select – ключевое слово и в синтаксис входит исключительно для красоты.
– это название оси. Все имена собственные в MDX пишутся в квадратных скобках.
– это название иерархии. В нашем случае – это иерархия Страна-Город
– это название члена оси на первом уровне иерархии (т.е. страны) All – это мета-член, объединяющий все члены оси. Такой мета-член есть в каждой оси. Например в оси годов есть «Все года» и т.п.
Children – это функция члена. У каждого члена есть несколько доступных функций. Таких как Parent. Level, Hierarchy, возвращающие соответственно предка, уровень в иерархии и саму иерархию, к которой относится в данном случае член. Children – возвращает набор членов-потомков данного члена. Т.е. в нашем случае – страны.
on rows – Указывает как расположить эти данные в итоговой таблице. В данном случае – в заголовке строк. Возможные значении здесь: on columns, on pages, on paragraphs и т.п. Возможно так же указание просто по индексам, начиная с 0.
from – это указание куба, из которого производится выборка.

Что если нам не нужны все страны, а нужно только пара конкретных? Для этого можно в запросе указать явно те страны которые нам нужны, а не выбирать все функцией Children.

Select { ..., ... } on rows from
Фигурные скобки в данном случае – обявление набора (Set ). Набор – это список, перечисление членов из одной оси .

Теперь напишем запрос для нашего второго примера – вывод в разрезе доставщика:

Select ...Children on rows .Members on columns from
Здесь добавилось:
– ось;
.Members – функция оси, которая возвращает все члены на ней. Такая же функция есть и у иерархии и у уровня. Т.к. в данной оси иерархия одна, то ее указание можно опустить, т.к. уровень и иерархии тоже один, то можно выводить все члены одним списком.

Думаю, уже очевидно, как можно продолжить это на наш третий пример с детализацией по годам. Но давайте лучше не детализировать по годам, а фильтровать – т.е. строить срез. Для этого напишем следующий запрос:

Select ..Children on rows .Members on columns from where (.)
А где же тут фильтрация?

where – ключевое слово
– это один член иерархии . Полное имя с учетом всех терминов было бы таким: .. , но т.к. имя этого члена в рамках оси уникально, то все промежуточные уточнения имени можно опустить.

Почему член даты в скобках? Круглые скобки – это кортеж (tuple ). Кортеж – это один или несколько координат по различным осям. Например для фильтрации сразу по двум осям в круглых скобках мы перечислим два члена из разных измерений через запятую. Т. е. кортеж определяет «срез» куба (или «фильтрацию», если такая терминология ближе).

Кортеж используется не только для фильтрации. Кортежи могут быть и в заголовках строк/колонок/страниц и т.п.

Это нужно, например, для того чтобы вывести в двумерную таблицу результат трехмерного запроса.

Select crossjoin(...Children, ..Children) on rows .Members on columns from where (.)
Crossjoin – это функция. Она возвращает набор (set) кортежей (да, набор может содержать кортежи!), полученный в результате декартового произведения двух наборов. Т.е. результирующий набор будет содержать все возможные сочетания Стран и Годов. Заголовки строк, таким образом, будут содержать пару значений: Страна-Год .

Вопрос, а где же указание какие числовые характеристики надо выводить? В данном случае используется мера по умолчанию, заданная для этого куба, т.е. Сумма заказа. Если мы хотим выводить другую меру, то мы вспоминаем, что меры – это члены измерения Measures . И действуем точно так же как и с остальными осями. Т.е. фильтрации запроса по одной из мер будет выводить именно эту меру в ячейках.

Вопрос: чем отличается фильтрация в where от фильтрации путем указания членов осей в on rows. Ответ: практически ничем. Просто в where указывается срез для тех осей, которые не участвуют в формировании заголовков. Т.е. одна и та же ось не может одновременно присутствовать и в on rows , и в where .

Вычисляемые члены

Для более сложных запросов можно объявлять вычисляемые члены. Члены как осей атрибутов, так и оси мер. Т.е. Можно объявить, например, новую меру, которая будет отображать вклад каждой страны в общую сумму заказов:

With member . as ‘.CurrentMember / ..’, FORMAT_STRING=‘0.00%’ select ...Children on rows from where .
Вычисление происходит в контексте ячейки, у которой известные все ее атрибуты-координаты. Соответствующие координаты (члены) могут быть получены функцией CurrentMember у каждой из осей куба. Здесь надо понимать, что выражение .CurrentMember / .. ’ не делит один член на другой, а делит соответствующие агрегированный данные срезов куба! Т.е. срез по текущей территории разделится на срез по всем территориям, т.е. суммарное значение всех заказов. FORMAT_STRING – задает формат вывода значений, т.е. %.

Другой пример вычисляемого члена, но уже по оси годов:

With member . as ‘. - .’
Очевидно, что в отчете будет не единица, а разность соответствующих срезов, т.е. разность суммы заказов в эти два года.

Отображение в ROLAP

Системы OLAP так или иначе базируются на какой-нибудь системе хранения и организации данных. Когда речь идет о РСУБД, то говорят о ROLAP (MOLAP и HOLAP оставим для самостоятельного изучения). ROLAP – OLAP на реляционной БД, т.е. описанная в виде обычных двумерных таблиц. Системы ROLAP преобразуют MDX запросы в SQL. Основная вычислительная проблема для БД – быстрая агрегация. Чтобы быстрее агрегировать, данные в БД как правило сильно денормализованы, т.е. хранятся не очень эффективно с точки зрения занимаемого места на диске и контроля целостности БД. Плюс дополнительно содержат вспомогательные таблицы, хранящие частично агрегированные данные. Поэтому для OLAP обычно создается отдельная схема БД, которая лишь частично повторяет структуру исходных транзакционных БД в части справочников.

Навигация

Многие системы OLAP предлагают инструментарий интерактивной навигации по уже сформированному запросу (и соответственно выбранным данным). При этом используется так называемое «сверление» или «бурение» (drill). Более адекватным переводом на русский было бы слово «углубление». Но это дело вкуса., в некоторых средах закрепилось слово «дриллинг».

Drill – это детализация отчета с помощью уменьшения степени агрегации данных, совмещенное с фильтрацией по какой-нибудь другой оси (или нескольким осям). Сверление бывает нескольких видов:

  • drill-down – фильтрация по одной из исходных осей отчета с выводом детальной информации по потомкам в рамках иерархии выбранного фильтрующего члена. Например, если имеется отчет по распределению заказов в разрезе Стран и Годов, то при щелчке на 2007-м году выведется отчет в разрезе тех же Стран и месяцев 2007 года.
  • drill-aside – фильтрация под одной или нескольким выбранным осям и снятие агрегации по одной или нескольким другим осям. Например, если имеется отчет по распределению заказов в разрезе Стран и Годов, то при щелчке на 2007-м году выведется другой отчет в разрезе, например, Стран и Поставщиков с фильтрацией по 2007 году.
  • drill-trough – снятие агрегации по всем осям и одновременная фильтрация по ним же – позволяет увидеть исходные данные из таблицы фактов, из которых получено значение в отчете. Т.е. при щелчке по значению ячейки выводится отчет со всеми заказами, которые дали эту сумму. Эдакое мгновенное бурение в самые «недра» куба.
На этом все. Теперь, если вы решили посвятить себя Business Intelligence и OLAP самое время приступать к чтению серьезной литературы.

Теги: Добавить метки

Аннотация: В настоящей лекции рассматриваются основы проектирования кубов данных для OLAP-хранилищ данных. На примере показана методика построения куба данных с помощью CASE-инструмента.

Цель лекции

Изучив материал настоящей лекции, вы будете знать:

  • что такое куб данных в OLAP-хранилище данных ;
  • как проектировать куб данных для OLAP-хранилищ данных ;
  • что такое измерение куба данных ;
  • как факт связан с кубом данных ;
  • что такое атрибуты измерения ;
  • что такое иерархия ;
  • что такое метрика куба данных ;

и научитесь:

  • строить многомерные диаграммы ;
  • проектировать простые многомерные диаграммы .

Введение

Технология OLAP - это не отдельно взятый программный продукт , не язык программирования . Если постараться охватить OLAP во всех его проявлениях, то это совокупность концепций, принципов и требований, лежащих в основе программных продуктов, облегчающих аналитикам доступ к данным.

Аналитики являются основными потребителями корпоративной информации. Задача аналитика состоит в том, чтобы находить закономерности в больших массивах данных. Поэтому аналитик не будет обращать внимания на отдельно взятый факт , что в определенный день покупателю Иванову была продана партия шариковых авторучек, - ему нужна информация о сотнях и тысячах подобных событий. Одиночные факты в ХД могут заинтересовать, к примеру, бухгалтера или начальника отдела продаж, в компетенции которого находится сопровождение определенного контракта. Аналитику одной записи недостаточно - ему, например, может понадобиться информация обо всех контрактах точки продажи за месяц, квартал или год. Аналитика может не интересовать ИНН покупателя или его телефон, - он работает с конкретными числовыми данными, что составляет сущность его профессиональной деятельности.

Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого ХД, лишены, однако, определенной гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить необходимое представление данных. Чем больше "срезов" и "разрезов" данных аналитик может исследовать, тем больше у него идей, которые, в свою очередь , для проверки требуют все новых и новых "срезов". В качестве такого инструмента для исследования данных аналитиком выступает OLAP .

Хотя OLAP и не представляет собой необходимый атрибут ХД, он все чаще и чаще применяется для анализа накопленных в этом ХД сведений.

Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в ХД. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP -анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном ХД. Важнейшим элементом использования OLAP являются метаданные , т. е. информация о структуре, размещении и трансформации данных . Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

Таким образом, OLAP можно определить как совокупность средств многомерного анализа данных, накопленных в ХД . Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям. Однако при этом существует риск подвергнуть анализу данные, которые для этого анализа не пригодны.

OLAP на клиенте и на сервере

В основе OLAP лежит многомерный анализ данных . Он может быть произведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP -средства.

Клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся в кэше внутри адресного пространства такого OLAP-средства .

Если исходные данные содержатся в настольной СУБД , вычисление агрегатных данных производится самим OLAP -средством. Если же источник исходных данных - серверная СУБД , многие из клиентских OLAP -средств посылают на сервер SQL -запросы, содержащие оператор GROUP BY , и в результате получают агрегатные данные, вычисленные на сервере.

Как правило, OLAP -функциональность реализована в средствах статистической обработки данных (из продуктов этого класса на российском рынке широко распространены продукты компаний Stat Soft и SPSS) и в некоторых электронных таблицах. В частности, неплохими средствами многомерного анализа обладает Microsoft Excel 2000. С помощью этого продукта можно создать и сохранить в виде файла небольшой локальный многомерный OLAP -куб и отобразить его двух- или трехмерные сечения.

Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP -функциональность (такие, например, как компоненты Decision Cube в Borland Delphi и Borland C++Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.

Отметим, что клиентские OLAP -средства применяются, как правило, при малом числе измерений (обычно рекомендуется не более шести) и небольшом разнообразии значений этих параметров - ведь полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений . Поэтому даже самые примитивные клиентские OLAP -средства, как правило, позволяют произвести предварительный подсчет объема требуемой оперативной памяти для создания в ней многомерного куба.

Многие (но не все) клиентские OLAP -средства позволяют сохранить содержимое кэша с агрегатными данными в виде файла, что, в свою очередь , позволяет не производить их повторное вычисление . Отметим, что нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации. Типичным примером таких отчуждаемых агрегатных данных является статистика заболеваемости в разных регионах и в различных возрастных группах, которая является открытой информацией, публикуемой министерствами здравоохранения различных стран и Всемирной организацией здравоохранения. При этом собственно исходные данные, представляющие собой сведения о конкретных случаях заболеваний, являются конфиденциальными данными медицинских учреждений и ни в коем случае не должны попадать в руки страховых компаний и тем более становиться достоянием гласности.

Идея сохранения кэша с агрегатными данными в файле получила свое дальнейшее развитие в серверных OLAP-средствах, в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером . Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.

Преимущества применения серверных OLAP -средств по сравнению с клиентскими OLAP -средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходит на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением. Отметим, что средства анализа и обработка данных масштаба предприятия, как правило, базируются именно на серверных OLAP -средствах, например, таких как Oracle Express Server , Microsoft SQL Server 2000 Analysis Services, Hyperion Essbase, продуктах компаний Crystal Decisions, Business Objects, Cognos, SAS Institute. Поскольку все ведущие производители серверных СУБД производят (либо лицензировали у других компаний) те или иные серверные OLAP -средства, выбор их достаточно широк, и почти во всех случаях можно приобрести OLAP - сервер того же производителя, что и у самого сервера баз данных.

Отметим, что многие клиентские OLAP -средства (в частности, Microsoft Excel 2003, Seagate Analysis и др.) позволяют обращаться к серверным OLAP-хранилищам , выступая в этом случае в роли клиентских приложений, выполняющих подобные запросы. Помимо этого имеется немало продуктов, представляющих собой клиентские приложения к OLAP -средствам различных производителей.

Технические аспекты многомерного хранения данных

В многомерных ХД содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т.п. Цель хранения агрегатных данных - сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Поэтому при создании многомерной базы данных всегда вычисляются и сохраняются некоторые агрегатные данные.

Отметим, что сохранение всех агрегатных данных не всегда оправданно. Дело в том, что при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о "взрывном росте" объема данных). Если говорить более точно, степень роста объема агрегатных данных зависит от количества измерений куба и членов измерений на различных уровнях иерархий этих измерений . Для решения проблемы "взрывного роста" применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов.

Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных.

  • MOLAP ( Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах позволяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений . Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.
  • ROLAP (Relational OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных.
  • HOLAP ( Hybrid OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных.

Некоторые OLAP -средства поддерживают хранение данных только в реляционных структурах, некоторые - только в многомерных. Однако большинство современных серверных OLAP -средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP -кубов.

Отметим также, что подавляющее большинство современных OLAP -средств не хранит "пустых" значений (примером "пустого" значения может быть отсутствие продаж сезонного товара вне сезона).

Основные понятия OLAP

Тест FAMSI

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации ХД. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных. В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information) - быстрый анализ разделяемой многомерной информации, включающий следующие требования к приложениям для многомерного анализа :

  • Fast (Быстрый) - предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • Analysis (Анализ) - возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • Shared (Разделяемый) - многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • Multidimensional (Многомерный) - многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это ключевое требование OLAP);
  • Information (Информация) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах.

Многомерное представление информации

Кубы

OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes) . Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей измерений (Dimensions) находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.

В качестве мер в трехмерном кубе, изображенном на рис. 26.1 , использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам. Чуть позже мы рассмотрим уровни группировки (иерархии ) подробнее.


Рис. 26.1.

"Разрезание" куба

Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений , большим трех. Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные представления, имеющие сложные иерархические заголовки строк и столбцов.

Двумерное представление куба можно получить, "разрезав" его поперек вдоль одной или нескольких осей (измерений ): мы фиксируем значения всех измерений , кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение , в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений : мы либо выбираем для показа одну меру (и тогда можем разместить в заголовках строк и столбцов два измерения ), либо показываем несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения ).

(levels). Например, метки, представленная на поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии , а в Microsoft OLAP Services 7.0 - только сбалансированные. Различными в разных OLAP-средствах могут быть и число уровней иерархии , и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений .

Архитектура OLAP-приложений

Все, что говорилось выше про OLAP, по сути, относилось к многомерному представлению данных. То, как данные хранятся, грубо говоря, не волнует ни конечного пользователя, ни разработчиков инструмента, которым клиент пользуется.

Многомерность в OLAP-приложениях может быть разделена на три уровня.

  • Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.
  • Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.
  • Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур; процессор многомерных запросов в этом случае транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

Конкретные OLAP-продукты, как правило, представляют собой либо средство многомерного представления данных (OLAP-клиент - например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys), либо многомерную серверную СУБД (OLAP-сервер - например, Oracle Express Server или Microsoft OLAP Services).

Слой многомерной обработки обычно бывает встроен в OLAP-клиент и/или в OLAP-сервер, но может быть выделен в чистом виде, как, например, компонент Pivot Table Service фирмы Microsoft.

В цикле статей «Введение в базы данных», публиковавшемся в последнее время (см. КомпьютерПресс №3’2000 - 3’2001), мы обсуждали различные технологии и программные средства, применяемые при создании информационных систем - настольные и серверные СУБД, средства проектирования данных, средства разработки приложений, а также Business Intelligence - средства анализа и обработки данных масштаба предприятия, которые в настоящее время становятся все более популярными в мире, в том числе и в нашей стране. Отметим, однако, что вопросы применения средств Business Intelligence и технологии, используемые при создании приложений такого класса, в отечественной литературе пока еще освещены недостаточно. В новом цикле статей мы попробуем восполнить этот пробел и рассказать о том, что представляют собой технологии, лежащие в основе подобных приложений. В качестве примеров реализации мы будем использовать в основном OLAP-технологии фирмы Microsoft (главным образом Analysis Services в Microsoft SQL Server 2000), но надеемся, что основная часть материала будет полезна и пользователям других средств.

Первая статья в данном цикле посвящена основам OLAP (On-Line Analytical Processing) - технологии многомерного анализа данных. В ней мы рассмотрим концепции хранилищ данных и OLAP, требования к хранилищам данных и OLAP-средствам, логическую организацию OLAP-данных, а также основные термины и понятия, применяемые при обсуждении многомерного анализа.

Что такое хранилище данных

Информационные системы масштаба предприятия, как правило, содержат приложения, предназначенные для комплексного многомерного анализа данных, их динамики, тенденций и т.п. Такой анализ в конечном итоге призван содействовать принятию решений. Нередко эти системы так и называются - системы поддержки принятия решений.

Принять любое управленческое решение невозможно не обладая необходимой для этого информацией, обычно количественной. Для этого необходимо создание хранилищ данных (Data warehouses), то есть процесс сбора, отсеивания и предварительной обработки данных с целью предоставления результирующей информации пользователям для статистического анализа (а нередко и создания аналитических отчетов).

Ральф Кимбалл (Ralph Kimball), один из авторов концепции хранилищ данных, описывал хранилище данных как «место, где люди могут получить доступ к своим данным» (см., например, Ralph Kimball, «The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses», John Wiley & Sons, 1996 и «The Data Webhouse Toolkit: Building the Web-Enabled Data Warehouse», John Wiley & Sons, 2000). Он же сформулировал и основные требования к хранилищам данных:

  • поддержка высокой скорости получения данных из хранилища;
  • поддержка внутренней непротиворечивости данных;
  • возможность получения и сравнения так называемых срезов данных (slice and dice);
  • наличие удобных утилит просмотра данных в хранилище;
  • полнота и достоверность хранимых данных;
  • поддержка качественного процесса пополнения данных.

Удовлетворять всем перечисленным требованиям в рамках одного и того же продукта зачастую не удается. Поэтому для реализации хранилищ данных обычно используется несколько продуктов, одни их которых представляют собой собственно средства хранения данных, другие - средства их извлечения и просмотра, третьи - средства их пополнения и т.д.

Типичное хранилище данных, как правило, отличается от обычной реляционной базы данных. Во-первых, обычные базы данных предназначены для того, чтобы помочь пользователям выполнять повседневную работу, тогда как хранилища данных предназначены для принятия решений. Например, продажа товара и выписка счета производятся с использованием базы данных, предназначенной для обработки транзакций, а анализ динамики продаж за несколько лет, позволяющий спланировать работу с поставщиками, - с помощью хранилища данных.

Во-вторых, обычные базы данных подвержены постоянным изменениям в процессе работы пользователей, а хранилище данных относительно стабильно: данные в нем обычно обновляются согласно расписанию (например, еженедельно, ежедневно или ежечасно - в зависимости от потребностей). В идеале процесс пополнения представляет собой просто добавление новых данных за определенный период времени без изменения прежней информации, уже находящейся в хранилище.

И в-третьих, обычные базы данных чаще всего являются источником данных, попадающих в хранилище. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Что такое OLAP

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный (и, следовательно, нереляционный) набор данных (нередко называемый гиперкубом или метакубом), оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные . Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных (см. E.F. Codd, S.B. Codd, and C.T.Salley, Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, 1993). В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information - быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

  • предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это - ключевое требование OLAP);
  • возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Но прежде чем говорить о различных реализациях этой функциональности, давайте рассмотрим, что же представляют собой кубы OLAP с логической точки зрения.

Многомерные кубы

В данном разделе мы более подробно рассмотрим концепцию OLAP и многомерных кубов. В качестве примера реляционной базы данных, который мы будем использовать для иллюстрации принципов OLAP, воспользуемся базой данных Northwind, входящей в комплекты поставки Microsoft SQL Server или Microsoft Access и представляющей собой типичную базу данных, хранящую сведения о торговых операциях компании, занимающейся оптовыми поставками продовольствия. К таким данным относятся сведения о поставщиках, клиентах, компаниях, осуществляющих доставку, список поставляемых товаров и их категорий, данные о заказах и заказанных товарах, список сотрудников компании. Подробное описание базы данных Northwind можно найти в справочных системах Microsoft SQL Server или Microsoft Access - здесь за недостатком места мы его не приводим.

Для рассмотрения концепции OLAP воспользуемся представлением Invoices и таблицами Products и Categories из базы данных Northwind, создав запрос, в результате которого получим подробные сведения о всех заказанных товарах и выписанных счетах:

SELECT dbo.Invoices.Country, dbo.Invoices.City, dbo.Invoices.CustomerName, dbo.Invoices.Salesperson, dbo.Invoices.OrderDate, dbo.Categories.CategoryName, dbo.Invoices.ProductName, dbo.Invoices.ShipperName, dbo.Invoices.ExtendedPrice FROM dbo.Products INNER JOIN dbo.Categories ON dbo.Products.CategoryID = dbo.Categories.CategoryID INNER JOIN dbo.Invoices ON dbo.Products.ProductID = dbo.Invoices.ProductID

В Access 2000 аналогичный запрос имеет вид:

SELECT Invoices.Country, Invoices.City, Invoices.Customers.CompanyName AS CustomerName, Invoices.Salesperson, Invoices.OrderDate, Categories.CategoryName, Invoices.ProductName, Invoices.Shippers.CompanyName AS ShipperName, Invoices.ExtendedPrice FROM Categories INNER JOIN (Invoices INNER JOIN Products ON Invoices.ProductID = Products.ProductID) ON Categories.CategoryID = Products.CategoryID;

Этот запрос обращается к представлению Invoices, содержащему сведения обо всех выписанных счетах, а также к таблицам Categories и Products, содержащим сведения о категориях продуктов, которые заказывались, и о самих продуктах соответственно. В результате этого запроса мы получим набор данных о заказах, включающий категорию и наименование заказанного товара, дату размещения заказа, имя сотрудника, выписавшего счет, город, страну и название компании-заказчика, а также наименование компании, отвечающей за доставку.

Для удобства сохраним этот запрос в виде представления, назвав его Invoices1. Результат обращения к этому представлению приведен на рис. 1 .

Какие агрегатные данные мы можем получить на основе этого представления? Обычно это ответы на вопросы типа:

  • Какова суммарная стоимость заказов, сделанных клиентами из Франции?
  • Какова суммарная стоимость заказов, сделанных клиентами из Франции и доставленных компанией Speedy Express?
  • Какова суммарная стоимость заказов, сделанных клиентами из Франции в 1997 году и доставленных компанией Speedy Express?

Переведем эти вопросы в запросы на языке SQL (табл. 1).

Результатом любого из перечисленных выше запросов является число. Если в первом из запросов заменить параметр ‘France’ на ‘Austria’ или на название иной страны, можно снова выполнить этот запрос и получить другое число. Выполнив эту процедуру со всеми странами, мы получим следующий набор данных (ниже показан фрагмент):

Country SUM (ExtendedPrice)
Argentina 7327.3
Austria 110788.4
Belgium 28491.65
Brazil 97407.74
Canada 46190.1
Denmark 28392.32
Finland 15296.35
France 69185.48
Germany 209373.6

Полученный набор агрегатных значений (в данном случае - сумм) может быть интерпретирован как одномерный набор данных. Этот же набор данных можно получить и в результате запроса с предложением GROUP BY следующего вида:

SELECT Country, SUM (ExtendedPrice) FROM invoices1 GROUP BY Country

Теперь обратимся ко второму из приведенных выше запросов, который содержит два условия в предложении WHERE. Если выполнять этот запрос, подставляя в него все возможные значения параметров Country и ShipperName, мы получим двухмерный набор данных следующего вида (ниже показан фрагмент):

ShipperName
Country Federal Shipping Speedy Express United Package
Argentina 1 210.30 1 816.20 5 092.60
Austria 40 870.77 41 004.13 46 128.93
Belgium 11 393.30 4 717.56 17 713.99
Brazil 16 514.56 35 398.14 55 013.08
Canada 19 598.78 5 440.42 25 157.08
Denmark 18 295.30 6 573.97 7 791.74
Finland 4 889.84 5 966.21 7 954.00
France 28 737.23 21 140.18 31 480.90
Germany 53 474.88 94 847.12 81 962.58

Такой набор данных называется сводной таблицей (pivot table) или кросс-таблицей (cross table, crosstab). Создавать подобные таблицы позволяют многие электронные таблицы и настольные СУБД - от Paradox для DOS до Microsoft Excel 2000. Вот так, например, выглядит подобный запрос в Microsoft Access 2000:

TRANSFORM Sum(Invoices1.ExtendedPrice) AS SumOfExtendedPrice SELECT Invoices1.Country FROM Invoices1 GROUP BY Invoices1.Country PIVOT Invoices1.ShipperName;

Агрегатные данные для подобной сводной таблицы можно получить и с помощью обычного запроса GROUP BY:

SELECT Country,ShipperName, SUM (ExtendedPrice) FROM invoices1 GROUP BY COUNTRY,ShipperName Отметим, однако, что результатом этого запроса будет не сама сводная таблица, а лишь набор агрегатных данных для ее построения (ниже показан фрагмент):

Country ShipperName SUM (ExtendedPrice)
Argentina Federal Shipping 845.5
Austria Federal Shipping 35696.78
Belgium Federal Shipping 8747.3
Brazil Federal Shipping 13998.26

Третий из рассмотренных выше запросов имеет уже три параметра в условии WHERE. Варьируя их, мы получим трехмерный набор данных (рис. 2).

Ячейки куба, показанного на рис. 2 , содержат агрегатные данные, соответствующие находящимся на осях куба значениям параметров запроса в предложении WHERE.

Можно получить набор двухмерных таблиц с помощью сечения куба плоскостями, параллельными его граням (для их обозначения используют термины cross-sections и slices).

Очевидно, что данные, содержащиеся в ячейках куба, можно получить и с помощью соответствующего запроса с предложением GROUP BY. Кроме того, некоторые электронные таблицы (в частности, Microsoft Excel 2000) также позволяют построить трехмерный набор данных и просматривать различные сечения куба, параллельные его грани, изображенной на листе рабочей книги (workbook).

Если в предложении WHERE содержится четыре или более параметров, результирующий набор значений (также называемый OLAP-кубом) может быть 4-мерным, 5-мерным и т.д.

Рассмотрев, что представляют собой многомерные OLAP-кубы, перейдем к некоторым ключевым терминам и понятиям, используемым при многомерном анализе данных.

Некоторые термины и понятия

Наряду с суммами в ячейках OLAP-куба могут содержаться результаты выполнения иных агрегатных функций языка SQL, таких как MIN, MAX, AVG, COUNT, а в некоторых случаях - и других (дисперсии, среднеквадратичного отклонения и т.д.). Для описания значений данных в ячейках используется термин summary (в общем случае в одном кубе их может быть несколько), для обозначения исходных данных, на основе которых они вычисляются, - термин measure, а для обозначения параметров запросов - термин dimension (переводимый на русский язык обычно как «измерение», когда речь идет об OLAP-кубах, и как «размерность», когда речь идет о хранилищах данных). Значения, откладываемые на осях, называются членами измерений (members).

Говоря об измерениях, следует упомянуть о том, что значения, наносимые на оси, могут иметь различные уровни детализации. Например, нас может интересовать суммарная стоимость заказов, сделанных клиентами в разных странах, либо суммарная стоимость заказов, сделанных иногородними клиентами или даже отдельными клиентами. Естественно, результирующий набор агрегатных данных во втором и третьем случаях будет более детальным, чем в первом. Заметим, что возможность получения агрегатных данных с различной степенью детализации соответствует одному из требований, предъявляемых к хранилищам данных, - требованию доступности различных срезов данных для сравнения и анализа.

Поскольку в рассмотренном примере в общем случае в каждой стране может быть несколько городов, а в городе - несколько клиентов, можно говорить об иерархиях значений в измерениях. В этом случае на первом уровне иерархии располагаются страны, на втором - города, а на третьем - клиенты (рис. 3).

Отметим, что иерархии могут быть сбалансированными (balanced), как, например, иерархия, представленная на рис. 3 , а также иерархии, основанные на данных типа «дата-время», и несбалансированными (unbalanced). Типичный пример несбалансированной иерархии - иерархия типа «начальник-подчиненный» (ее можно построить, например, используя значения поля Salesperson исходного набора данных из рассмотренного выше примера), представлен на рис. 4 .

Иногда для таких иерархий используется термин Parent-child hierarchy.

Существуют также иерархии, занимающие промежуточное положение между сбалансированными и несбалансированными (они обозначаются термином ragged - «неровный»). Обычно они содержат такие члены, логические «родители» которых находятся не на непосредственно вышестоящем уровне (например, в географической иерархии есть уровни Country, City и State, но при этом в наборе данных имеются страны, не имеющие штатов или регионов между уровнями Country и City; рис. 5).

Отметим, что несбалансированные и «неровные» иерархии поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии, а в Microsoft OLAP Services 7.0 - только сбалансированные. Различным в разных OLAP-средствах может быть и число уровней иерархии, и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений.

Заключение

В данной статье мы ознакомились с основами OLAP. Мы узнали следующее:

  • Назначение хранилищ данных - предоставление пользователям информации для статистического анализа и принятия управленческих решений.
  • Хранилища данных должны обеспечивать высокую скорость получения данных, возможность получения и сравнения так называемых срезов данных, а также непротиворечивость, полноту и достоверность данных.
  • OLAP (On-Line Analytical Processing) является ключевым компонентом построения и применения хранилищ данных. Эта технология основана на построении многомерных наборов данных - OLAP-кубов, оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные.
  • Приложения с OLAP-функциональностью должны предоставлять пользователю результаты анализа за приемлемое время, осуществлять логический и статистический анализ, поддерживать многопользовательский доступ к данным, осуществлять многомерное концептуальное представление данных и иметь возможность обращаться к любой нужной информации.

Кроме того, мы рассмотрели основные принципы логической организации OLAP-кубов, а также узнали основные термины и понятия, применяемые при многомерном анализе. И наконец, мы выяснили, что представляют собой различные типы иерархий в измерениях OLAP-кубов.

В следующей статье данного цикла мы рассмотрим типичную структуру хранилищ данных, поговорим о том, что представляет собой клиентский и серверный OLAP, а также остановимся на некоторых технических аспектах многомерного хранения данных.

КомпьютерПресс 4"2001

07.04.2011 Дерек Комингор

Если вам приходилось иметь дело с какой-либо областью, связанной с технологией, вы слышали, вероятно, термин «куб»; однако большинство обычных администраторов и разработчиков баз данных с этими объектами не работали. Кубы представляют собой действенную архитектуру данных для быстрого агрегирования многомерной информации. Если вашей организации требуется выполнить анализ больших объемов данных, то идеальным решением будет именно куб

Что такое куб?

Реляционные базы данных были спроектированы для осуществления тысяч параллельных транзакций, с сохранением производительности и целостности данных. По своей конструкции реляционные базы данных не дают эффективности в агрегировании и поиске при больших объемах данных. Чтобы агрегировать и возвратить большие объемы данных, реляционная база данных должна получить основанный на наборе запрос, информация для которого будет собрана и агрегирована «на лету». Такие реляционные запросы - очень затратные, поскольку опираются на множественные соединения и агрегатные функции; особенно малоэффективны агрегатные реляционные запросы при работе с большими массивами данных.

Кубы - это многомерные сущности, предназначенные для устранения указанного недостатка в реляционных базах данных. Применяя куб, вы можете предоставить пользователям структуру данных, которая обеспечивает быстрый отклик на запросы с большими объемами агрегации. Кубы выполняют это «волшебство агрегирования» путем предварительного агрегирования данных (измерений) по нескольким измерениям. Предварительная агрегация куба обычно осуществляется во время его обработки. При обработке куба вы порождаете вычисленные предварительно агрегаты данных, которые хранятся в бинарной форме на диске.

Куб - центральная конструкция данных в оперативной системе анализа данных OLAP аналитических служб SQL Server (SSAS). Кубы обычно строятся из основной реляционной базы данных, называемой моделью размерностей, но представляют собой отдельные технические сущности. Логически куб является складом данных, который составлен из размерностей (dimensions) и измерений (measures). Размерности содержат описательные признаки и иерархии, в то время как измерения - это факты, которые вы описываете в размерностях. Измерения объединены в логические сочетания, которые называются группами измерений. Вы привязываете размерности к группам измерений на основе признака - степени детализации.

В файловой системе куб реализован как последовательность связанных бинарных файлов. Бинарная архитектура куба облегчает быстрое извлечение больших объемов многомерных данных.

Я упомянул о том, что кубы построены из основной реляционной базы данных, называемой моделью размерностей. Модель размерностей содержит реляционные таблицы (факт и размерность), что связывает ее с сущностями куба. Таблицы фактов содержат измерения, такие как количество проданного продукта. Таблицы размерностей хранят описательные признаки, такие как названия продукта, даты и имена служащих. Как правило, таблицы фактов и таблицы размерностей связаны через ограничения первичного внешнего ключа, при том что внешние ключи находятся в таблице фактических данных (эта реляционная связь имеет отношение к признаку степени детализации куба, о котором говорилось выше). Когда таблицы размерности связаны непосредственно с таблицей фактов, формируется схема звезды. Когда таблицы размерности непосредственно не связаны с таблицей фактов, получается схема снежинки.

Обратите внимание, что модели размерностей классифицированы в зависимости от сферы применения. Витрина данных является моделью размерностей, которая предназначена для единичного бизнес-процесса, такого как продажи или управление запасами. Хранилище данных - модель размерностей, разработанная для того, чтобы охватить составные бизнес-процессы, так что она способствует перекрестной аналитике бизнес-процессов.

Требования к программному обеспечению

Теперь, когда у вас есть базовое понимание того, что такое кубы и почему они важны, я включу приборы и приглашу вас на пошаговый тур: построить свой первый куб, используя SSAS. Существуют некоторые основные компоненты программного обеспечения, которые вам понадобятся, поэтому, прежде чем приступать к строительству первого куба, убедитесь, что ваша система соответствует требованиям.

Мой пример куба «Продажи через Интернет» будет построен на основе тестовой базы данных AdventureWorksDW 2005. Я буду строить тестовый куб из подмножества таблиц, найденных в тестовой базе данных, которые будут полезны для анализа данных о сбыте через Интернет. На рисунке 1 представлена основная схема таблиц базы данных. Поскольку я использую версию 2005, вы можете следовать моим указаниям, применяя либо SQL Server 2005, либо SQL Server 2008.

Рисунок 1. Подмножество витрины данных Adventure Works Internet Sales

Учебную базу данных Adventure WorksDW 2005 можно найти на сайте CodePlex: msftdbprodsamples.codeplex.com. Найдите ссылку «SQL Server 2005 product sample databases are still available» (http://codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseId=4004). Учебная база данных содержится в файле AdventureWorksBI.msi (http://msftdbprodsamples.codeplex.com/releases/view/4004#DownloadId=11755).

Как уже упоминалось, необходимо иметь доступ к экземпляру SQL Server 2008 или 2005, в том числе SSAS и к компонентам Business Intelligence Development Studio (BIDS). Я буду использовать SQL Server 2008, так что вы можете увидеть некоторые тонкие различия, если используете SQL Server 2005.

Создание проекта SSAS

Первое, что вы должны сделать, - это создать проект SSAS, используя BIDS. Найдите BIDS в меню Start и далее в меню Microsoft SQL Server 2008/2005 подпункт SQL Server Business Intelligence Development Studio. При нажатии на эту кнопку запустится BIDS c экраном заставки по умолчанию. Создайте новый проект SSAS, выбрав File, New, Project. Вы увидите диалоговое окно New Project (новый проект), которое показано на экране 1. Выберите папку проекта Analysis Services Project и задайте описание этому проекту «SQLMAG_MyFirstCube». Нажмите кнопку ОК.

Когда проект будет создан, щелкните по нему правой кнопкой мыши в Solution Explorer и выберите в контекстном меню пункт свойств Properties. Теперь выберите раздел Deployment в левой части диалогового окна SQLMAG_MyFirstCube: Property Pages и проверьте установки значений для параметров Target Server и Database settings, как показано на экране 2. Если вы работаете в распределенной среде SQL Server, вам необходимо уточнить значение свойства Target Server именем сервера, на который вы собираетесь производить развертывание. Щелкните OK, когда вас устроят установленные значения параметров развертывания для данного проекта SSAS.

Определение источника данных

Первый объект, который нужно создать, - это источник данных. Объект источника данных обеспечивает схему и данные, используемые при построении связанных с кубом и расположенных в его основании объектов. Чтобы создать объект источника данных в BIDS, задействуйте мастер источников данных Data Source Wizard.

Начните работу мастера источника данных щелчком правой кнопкой мыши по папке Data Source на панели Solution Explorer, с выбора пункта New Data Source. Вы обнаружите, что создание объектов SSAS в BIDS имеет характер разработки. Сначала мастер проводит вас через процесс создания объекта и общие настройки. А затем вы открываете полученный объект SSAS в проектировщике и детально подстраиваете его, если нужно. Как только вы проходите экран приглашения, определите новое соединение с данными, нажимая кнопку New. Выберите и создайте новое соединение на основе Native OLEDB\SQL Server Native Client 10, указывающее на желательный для вас сервер SQL Server, который владеет нужным экземпляром базы данных. Вы можете использовать либо аутентификацию Windows, либо SQL Server, в зависимости от настроек окружающей среды SQL Server. Нажмите кнопку Test Connection, чтобы удостовериться, что вы правильно определили соединение с базой данных, а затем кнопку OK.

Далее следует Impersonation Infor­mation (информация о настрой­ке заимствования прав), которая, как и связь с данными, зависит от того, как устроена среда SQL Server. Заимствование прав - это контекст безопасности, на который полагается SSAS, обрабатывая свои объекты. Если вы управляете развертыванием на основном, единственном сервере (или ноутбуке), как, я полагаю, большинство читателей, вы можете просто выбрать вариант использования учетной записи службы Use the service account. Нажмите Next для завершения работы мастера источника данных и задайте AWDW2005 в качестве имени источника данных. Весьма удобно, что можно задействовать этот метод для целей тестирования, но в реальной производственной среде это не самая лучшая практика - использовать учетную запись службы. Лучше указать доменные учетные записи для заимствования прав подключения SSAS к источнику данных.

Представление источника данных

Для определенного вами источника данных на следующем шаге в процессе построения куба SSAS следует создать представление Data Source View (DSV). DSV обеспечивает возможность разделения схемы, которую ожидает ваш куб, от подобной схемы основной базы данных. В результате DSV можно использовать для того, чтобы расширить основную реляционную схему при построении куба. Некоторые из ключевых возможностей DSV для расширения схем источников данных включают именованные запросы, логические отношения между таблицами и именованные вычисляемые столбцы.

Пойдем дальше, щелкнем правой кнопкой мыши по папке DSV и выберем пункт New Data Source View, чтобы запустить мастер создания новых представлений DSV. В диалоговом окне, на шаге Select a Data Source, выберите соединение с реляционной базой данных и нажмите кнопку Next. Выберите таблицы FactInternetSales, DimProduct, DimTime, DimCustomer и щелкните кнопку с одиночной стрелкой направо, чтобы перенести эти таблицы в колонку Included. Наконец, кликните Next и завершите работу мастера, принимая имя по умолчанию и нажимая кнопку Finish.

На данном этапе у вас должно быть представление DSV, которое расположено под папкой Data Source Views в Solution Explorer. Выполните двойной щелчок по новому DSV, чтобы запустить конструктор DSV. Вы должны увидеть все четыре таблицы для данного DSV, как показано на рисунке 2.

Создание размерностей базы данных

Как я объяснил выше, размерности обеспечивают описательные признаки измерений и иерархий, которые используются для того, чтобы обеспечить агрегирование выше уровня деталей. Необходимо понять различие между размерностью базы данных и размерностью куба: размерности из базы данных предоставляют базовые объекты размерностей для нескольких размерностей куба, по которым его будут строить.

Размерности базы данных и куба обеспечивают изящное решение для концепции, известной как «ролевые размерности». Ролевые размерности применяются, когда вам необходимо использовать единственную размерность в кубе многократно. Дата - прекрасный пример в данном экземпляре куба: вы будете строить единственную размерность даты и ссылаться на нее один раз для каждой даты, для которой хотите анализировать продажи через Интернет. Календарная дата будет первой размерностью, которую вы создадите. Щелкните правой кнопкой мышки по папке Dimensions в Solution Explorer и выберите пункт New Dimension, чтобы запустить мастер размерностей Dimension Wizard. Выберите пункт Use an existing table и щелкните Next на шаге выбора метода создания Select Creation Method. На шаге определения источника информации Specify Source Information укажите таблицу DimTime в раскрывающемся списке Main table и нажмите кнопку Next. Теперь, на шаге выбора признака размерности Select Dimension Attributes, вам необходимо отобрать атрибуты размерности времени. Выберите каждый атрибут, как показано на экране 3.

Нажмите Next. На завершающем шаге введите Dim Date в поле Name и нажмите кнопку Finish для завершения работы мастера размерности. Теперь вы должны увидеть новую размерность даты Dim Date, расположенную под папкой Dimensions в Solution Explorer.

Затем используйте мастер размерности, чтобы создать размерности продукции и клиента. Выполните те же самые шаги для создания базовой размерности, что и прежде. Работая с мастером размерности, убедитесь, что вы выбираете все потенциальные признаки на шаге Select Dimension Attributes. Значения по умолчанию для других параметров настройки вполне подойдут для экземпляра тестового куба.

Создание куба продаж по Интернету

Теперь, подготовив размерности базы данных, вы можете приступить к строительству куба. В Solution Explorer щелкните правой кнопкой мыши на папке Cubes и выберите New Cube для запуска мастера создания кубов Cube Wizard. В окне Select Creation Method выберите вариант использования существующих таблиц Use existing tables. Выберите таблицу FactInternetSales для Measure Group на шаге выбора таблицы групп измерения Select Measure Group Tables. Удалите флажок рядом с измерениями Promotion Key, Currency Key, Sales Territory Key и Revision Number на шаге Select Measures и нажмите Next.

На экране Select Existing Dimensions убедитесь, что все существующие размерности базы данных выбраны, чтобы использовать их далее как размерности куба. Поскольку мне хотелось бы сделать данный куб настолько простым, насколько это возможно, отмените выбор размерности FactInternetSales на шаге Select New Dimensions. Оставляя размерность FactInternetSales выбранной, вы создали бы то, что называется размерностью факта или вырожденной размерностью. Размерности факта - это размерности, которые были созданы с использованием основной таблицы фактов в противоположность традиционной таблице размерностей.

Нажмите кнопку Next, чтобы перей­ти к шагу Completing the Wizard, и введите «Мой первый куб» в поле имени куба. Нажмите кнопку Finish, чтобы завершить процесс работы мастера создания куба.

Развертывание и обработка куба

Теперь все готово к развертыванию и обработке первого куба. Щелкните правой кнопкой мыши по значку нового куба в Solution Explorer и выберите пункт Process. Вы увидите окно с сообщением о том, что содержание представляется устаревшим. Щелкните Yes для развертывания нового куба на целевом сервере SSAS. При развертывании куба вы посылаете файл XML for Analisis (XMLA) на целевой сервер SSAS, который создает куб на самом сервере. Как уже упоминалось, обработка куба заполняет его двоичные файлы на диске данными из основного источника, а также дополнительными метаданными, которые вы добавили (размерности, измерения и настройки куба).

Как только процесс развертывания будет завершен, появляется новое диалоговое окно Process Cube. Нажмите кнопку Run, чтобы начать процесс обработки куба, который открывается окном Process Progress. При завершении обработки нажмите кнопку Close (два раза, чтобы закрыть оба диалоговых окна) для завершения процессов развертывания и обработки куба.

Теперь вы построили, развернули и обработали свой первый куб. Вы можете просматривать этот новый куб, щелкая по нему правой кнопкой мыши в окне Solution Explorer и выбирая пункт Browse. Перетащите измерения в центр сводной таблицы, а атрибуты размерностей на строки и столбцы, чтобы исследовать свой новый куб. Обратите внимание, как быстро куб отрабатывает различные запросы с агрегированием. Теперь вы можете оценить неограниченную мощь и, значит, ценность для бизнеса, куба OLAP.

Дерек Комингор ([email protected]) - старший архитектор в компании B. I. Voyage, имеющей статус Microsoft Partner в области бизнес-аналитики. Имеет звание SQL Server MVP и несколько сертификатов Microsoft



Главная Термины Статьи Курсы Опыт компаний Блог Советы Скачать Партнерам Контакты Акции

Статьи > Автоматизация бюджетирования и управленческого учета >

Александр Карпов, руководитель проекта bud-tech.ru, автор серии книг «100% практического бюджетирования» и книги «Постановка и автоматизация управленческого учета»

www.bud-tech.ru

Возможно, для кого-то использование OLAP-технологии (On-line Analytic Processing) при построении отчетности покажется какой-то экзотикой, поэтому применение OLAP-КУБа для них вовсе не является одним из важнейших требований при автоматизации бюджетирования и управленческого учета.

На самом деле очень удобно пользоваться многомерным КУБом при работе с управленческой отчетностью. При разработке форматов бюджетов можно столкнуться с проблемой многовариантности форм (подробнее об этом можно прочитать в Книге 8 «Технология постановки бюджетирования в компании» и в книге «Постановка и автоматизация управленческого учета»).

Это связано с тем, что для эффективного управления компанией требуется все более детализированная управленческая отчетность. То есть в системе используется все больше различных аналитических срезов (в информационных системах аналитики определяются набором справочников).

Естественно, это приводит к тому, что руководители хотят получать отчетность во всех интересующих их аналитических срезах. А это значит, что отчеты нужно как-то заставить «дышать». Иными словами можно сказать, что в данном случае речь идет о том, что по смыслу один и тот же отчет должен предоставлять информацию в различных аналитических разрезах. Поэтому статичные отчеты уже не устраивают многих современных руководителей. Им нужна динамика, которую может дать многомерный КУБ.

Таким образом, OLAP-технология уже сейчас стала обязательным элементом в современных и перспективных информационных системах. Поэтому при выборе программного продукта нужно обращать внимание на то, используется ли в нем OLAP-технология.

Причем нужно уметь отличать настоящие КУБы от имитации. Одной из таких имитаций являются сводные таблицы в MS Excel. Да, этот инструмент похож на КУБ, но на самом деле таковым не является, поскольку это статические, а не динамические таблицы. Кроме того, в них гораздо хуже реализована возможность построения отчетов, использующих элементы из иерархических справочников.

Для подтверждения актуальности использования КУБа при построении управленческой отчетности можно привести простейший пример с бюджетом продаж. В рассматриваемом примере для компании актуальными являются следующие аналитические срезы: продукты, филиалы и каналы сбыта. Если для компании важны эти три аналитики, то бюджет (или отчет) продаж можно выводить в нескольких вариантах.

Следует отметить, что если создавать строки бюджетов на основе трех аналитических срезов (как в рассматриваемом примере), это позволяет создавать достаточно сложные бюджетные модели и составлять детализированные отчеты с использованием КУБа.

Например, бюджет продаж можно составлять с использованием только одной аналитики (справочника). Пример бюджета продаж, построенного на основе одной аналитики «Продукты» представлен на рисунке 1 .

Рис. 1. Пример бюджета продаж, построенного на основе одной аналитики «Продукты» в OLAP-КУБе программного комплекса «ИНТЕГРАЛ»

Этот же бюджет продаж можно составлять с использованием двух аналитик (справочников). Пример бюджета продаж, построенного на основе двух аналитик «Продукты» и «Филиалы» представлен на рисунке 2 .

Рис. 2. Пример бюджета продаж, построенного на основе двух аналитик «Продукты» и «Филиалы» в OLAP-КУБе программного комплекса «ИНТЕГРАЛ»

.

Если есть необходимость строить более детальные отчеты, то можно тот же бюджет продаж составлять с использованием трех аналитик (справочников). Пример бюджета продаж, построенного на основе трех аналитик «Продукты», «Филиалы» и «Каналы сбыта» представлен на рисунке 3 .

Рис. 3. Пример бюджета продаж, построенного на основе трех аналитик «Продукты», «Филиалы» и «Каналы сбыта» в OLAP-КУБе программного комплекса «ИНТЕГРАЛ»

Нужно напомнить о том, что КУБ, используемый для формирования отчетов, позволяет выводить данные в различной последовательности. На рисунке 3 бюджет продаж сначала «разворачивается» по продуктам, затем по филиалам, а потом по каналам сбыта.

Те же самые данные можно представить в другой последовательности. На рисунке 4 тот же самый бюджет продаж «разворачивается» сначала по продуктам, затем по каналам сбыта, а потом по филиалам.

Рис. 4. Пример бюджета продаж, построенного на основе трех аналитик «Продукты», «Каналы сбыта» и «Филиалы» в OLAP-КУБе программного комплекса «ИНТЕГРАЛ»

На рисунке 5 тот же самый бюджет продаж «разворачивается» сначала по филиалам, затем по продуктам, а потом по каналам сбыта.

Рис. 5. Пример бюджета продаж, построенного на основе трех аналитик «Филиалы», «Продукты» и «Каналы сбыта» в OLAP-КУБепрограммного комплекса «ИНТЕГРАЛ»

На самом деле это не все возможные варианты вывода бюджета продаж.

Кроме того, нужно обратить внимание на то, что КУБ позволяет работать с иерархической структурой справочников. В представленных примерах иерархическими справочниками являются «Продукты» и «Каналы сбыта».

С точки зрения пользователя он в данном примере получает несколько управленческих отчетов (см. Рис. 1-5 ), а с точки зрения настроек в программном продукте – это один отчет. Просто с помощью КУБа его можно просматривать несколькими способами.

Естественно, что на практике возможно очень большое количество вариантов вывода различных управленческих отчетов, если их статьи строятся на одной или нескольких аналитиках. А уж сам набор аналитик зависит от потребности пользователей в детализации. Правда, при этом не следует забывать, что, с одной стороны, чем больше аналитик, тем более детализированные отчеты можно строить. Но, с другой стороны, значит, и финансовая модель бюджетирования будет более сложной. В любом случае при наличии КУБа компания будет иметь возможность просмотра необходимой отчетности в различных вариантах, в соответствии с интересующими аналитическими разрезами.

Необходимо упомянуть еще о нескольких возможностях OLAP-КУБа.

В многомерном иерархическом OLAP-КУБе есть несколько измерений: тип строки, дата, строки, справочник 1, справочник 2 и справочник 3 (см. Рис. 6 ). Естественно, в отчет выводится столько кнопок со справочниками, сколько есть в строке бюджета, содержащей максимальное количество справочников. Если ни в одной строке бюджета нет ни одного справочника, то в отчете не будет ни одной кнопки со справочниками.

Рис. 6. Измерения OLAP-КУБа программного комплекса «ИНТЕГРАЛ»

Изначально OLAP-КУБ строится по всем измерениям. По умолчанию при первоначальном построении отчета измерения расположены именно в тех областях, как показано на рисунке 6 . То есть такое измерение, как «Дата», располагается в области вертикальных измерений (измерения в области столбцов), измерения «Строки», «Справочник 1», «Справочник 2» и «Справочник 3» – в области горизонтальных измерений (измерения в области строк), а измерение «Тип строки» – в области «нераскрываемых» измерений (измерения в страничной области). Если измерение находится в последней области, то данные в отчете не будут «раскрываться» по этому измерению.

Каждое из этих измерений можно поместить в любую из трех областей. После переноса измерений отчет мгновенно перестраивается в соответствии с новой конфигурацией измерений. Например, можно поменять местами дату и строки со справочниками. Или можно в вертикальную область измерений перенести один из справочников (см. Рис. 7 ). Иными словами, отчет в OLAP-КУБе можно «крутить» и выбирать тот вариант вывода отчета, который является наиболее удобным для пользователя.

Рис. 7. Пример перестройки отчета после изменения конфигурации измерений программного комплекса «ИНТЕГРАЛ»

Конфигурацию измерений можно менять либо в основной форме КУБа, либо в редакторе карты изменений (см. Рис. 8 ). В этом редакторе также можно мышкой перетаскивать измерения из одной области в другую. Помимо этого, можно менять местами измерения в одной области.

Кроме того, в этой же форме можно настраивать некоторые параметры измерений. По каждому измерению можно настраивать расположение итогов, порядок сортировки элементов и названия элементов (см. Рис. 8 ). Также можно задавать, какое название элементов выводить в отчет: сокращенное (Name) или полное (FullName).

Рис. 8. Редактор карты измерений программного комплекса «ИНТЕГРАЛ»

Редактировать параметры измерений можно непосредственно в каждом из них (см. Рис. 9 ). Для этого нужно нажать на пиктограмму, расположенную на кнопке рядом с названием измерения.

Рис. 9. Пример редактирования справочника 1 Продукты и услуги в программном комплексе «ИНТЕГРАЛ»

С помощью этого редактора можно выбирать элементы, которые нужно показывать в отчете. По умолчанию в отчет выводятся все элементы, но при необходимости часть элементов или папок можно не показывать. Например, если нужно выводить в отчет только одну продуктовую группу, то у всех остальных необходимо убрать галочки в редакторе измерений. После чего в отчете будет только одна продуктовая группа (см. Рис. 10 ).

Также в этом редакторе можно сортировать элементы. Кроме того, элементы можно перегруппировывать различными способами. После такой перегруппировки отчет мгновенно перестраивается.

Рис. 10. Пример вывода в отчете только одной продуктовой группы (папки) в программном комплексе «ИНТЕГРАЛ»

В редакторе измерения можно оперативно создавать свои группы, перетаскивать туда элементы из справочников и т.д. По умолчанию автоматически создается только группа «Прочие», но можно создавать и другие группы. Таким образом, с помощью редактора измерений можно настраивать, какие элементы справочников и в каком порядке нужно выводить в отчет.

Следует отметить, что все такие перегруппировки не записываются. То есть после закрытия отчета или после его перерасчета в отчет будут выводиться все справочники в соответствии с настроенной методикой.

На самом деле все такие изменения можно было сделать изначально при настройке строк.

Например, с помощью ограничений также можно задавать, какие элементы или группы справочников нужно выводить в отчет, а какие – нет.

Примечание : более подробно тема данной статьи рассматривается на семинарах-практикумах «Бюджетное управление предприятием» и «Постановка и автоматизация управленческого учета» , которые проводит автор данной статьи — Александр Карпов.

Если пользователю практически регулярно нужно выводить в отчет только определенные элементы или папки справочников, то подобные настройки лучше заранее сделать при создании строк отчетов. Если же для пользователя важны различные комбинации элементов справочников в отчетах, тогда при настройке методики никакие ограничения ставить не нужно. Все такие ограничения можно будет оперативно настраивать с помощью редактора измерения.

Общие сведения

Microsoft Excel позволяет создать отчеты сводных таблиц, основанных на исходных данных интерактивной аналитической обработки (OLAP). При работе с отчетами сводных таблиц, основанных на исходных данных OLAP и отчетов, основанных на не OLAP исходных данных, можно заметить различия в возможностях и в работе средства. В этой статье рассматриваются некоторые из основных различий между отчетами сводных таблиц, основанных на исходных данных OLAP и отчеты сводных таблиц, основанных на не OLAP исходных данных.

Получение данных и обновить различия

Базы данных OLAP организованы для облегчения извлечения и анализа больших объемов данных. Прежде чем Excel отображает обобщенные данные в сводной таблице, сервер OLAP выполняет вычисления для обобщения данных. Только требуемые обобщенные данные возвращаются в Excel, по мере необходимости.

С внешними базами данных не OLAP возвращаются все отдельные записи, а Excel выполняет обобщение. Следовательно базы данных OLAP дают Excel возможность анализировать значительно большие объемы внешних данных.

Сервер OLAP передает новые данные в Excel при каждом изменении макета отчета сводной таблицы или сводная диаграмма или представления. При использовании не OLAP исходных данных, обновляются данные по-разному и различные параметры обновления доступны в диалоговом окне Параметры сводной таблицы.

Не-OLAP данные могут быть возвращены в Microsoft Excel как диапазон внешних данных или отчет сводной таблицы или сводная диаграмма. Данные OLAP могут быть возвращены в Excel только в виде отчета сводной таблицы или сводная диаграмма.

Фоновый запрос

Нельзя включить параметр фонового запроса в диалоговом окне Параметры сводной таблицы, когда отчет сводной таблицы основан на источнике данных OLAP.

Запросы с параметрами

Отчеты сводных таблиц, основанные на источнике данных OLAP не поддерживают использование запросов с параметрами.

Оптимизация памяти

Флажок « оптимизировать память » в диалоговом окне Параметры сводной таблицы недоступна, когда отчет сводной таблицы основан на источнике данных OLAP.

Параметры поля страницы

В отчетах сводных таблиц, основанных на не OLAP исходных данных можно использовать параметры поля страницы для извлечения данных для каждого элемента по отдельности или для всех элементов одновременно. Эти параметры поля страницы недоступны в отчетах, основанных на исходных данных OLAP. Исходные данные OLAP всегда извлекаются для каждого элемента по мере необходимости что позволяет отчеты для отображения информации из больших баз данных OLAP.

Различия в расчет

Параметры поля страницы

Невозможно изменить функцию, для суммирования поля данных в отчете сводной таблицы, основанный на исходных данных OLAP. Это ограничение возникает из-за того, что итоговые значения вычисляются на сервере OLAP. Итоговые функции

Не удается создать вычисляемое поле или вычисляемого элемента в сводной таблице на основе источника данных OLAP.

Вычисляемые поля и вычисляемые элементы

При работе с промежуточных итогов в отчете сводной таблицы, основанный на исходных данных OLAP, применяются следующие ограничения.

Невозможно изменить итоговую функцию для промежуточных итогов в отчете сводной таблицы.

OLAP-КУБ (динамическая управленческая отчетность)

Не удается отобразить промежуточные итоги для внутренних или внутренними полями столбцов в отчете сводной таблицы.

Потому, что итоговые значения вычисляются на сервере OLAP, нельзя изменитьЭлементы промежуточных скрытые страницывПараметры сводной таблицыдиалоговое окно.

Промежуточные итоги

Помечать Итого * параметр в диалоговом окне Параметры сводной таблицы можно использовать только в отчетах сводных таблиц, основанных на исходных данных OLAP. Этот параметр помечает все промежуточные и общие итоги звездочкой (*) для указания того, что эти значения содержат скрытые, а также отображаемых элементов.

Макет и Дизайн различия

Измерения и меры

При работе с отчетом сводной таблицы, основанный на исходных данных OLAP, аналитик может использоваться только как поля строк, столбцов или страницу. Меры могут использоваться только как поля данных. При перетаскивании измерение в область данных поля или измерения в строку, столбец или область полей страниц, появляется следующее сообщение об ошибке:

Поле, которое нужно переместить не может быть помещен в эту область сводной таблицы.

При активном отчете сводной таблицы, основанный на исходных данных OLAP панели инструментов Сводная таблица отображает значок рядом с каждой строкой поля. Значок показывает, где Excel позволит поместить поле в отчете сводной таблицы. Если значок в левом верхнем углу, поле является измерением, которое можно перетащить в строку, столбец или поле страницы областей. Если значок в правом нижнем углу, поле является мер, которые можно перетаскивать в область полей данных.

Измерения и меры

Microsoft Excel позволяет переименовывать поля, добавляемые в сводную таблицу. Когда отчет сводной таблицы основан на исходных данных OLAP, ваше пользовательское имя будут потеряны при удалении поля из сводной таблицы.

Группирование и разгруппирование элементов

В Excel 2000 нельзя группировать элементы в отчете сводной таблицы, основанный на исходных данных OLAP;

Переименование полей

Отчеты сводных таблиц, основанных на исходных данных OLAP позволяют отобразить самый нижний уровень данных, доступных на сервере OLAP.

Группировка и разгруппирование элементов

Для не OLAP исходных данных элементы в новом отчете сводной таблицы сначала появляются отсортированный в порядке возрастания по имени элемента.

Подробные данные

Команда Показать страницы не доступны в отчетах сводных таблиц, основанных на исходных данных OLAP.

Show Items With No Data

Параметр Показывать элементы без данных в диалоговом окне Поле сводной таблицы не доступны в отчетах сводных таблиц, основанных на исходных данных OLAP.

Ниже представлен список вопросов по предмету Информационные технологии в менеджменте МФПУ/МФПА «Синергия»

… – интерактивная автоматизированная система, которая помогает по…

OLAP в узком смысле слова трактуется как …

OLAP-системы (online analytical processing) – это …

OLTP-системы оказались мало пригодны потому что …

Автоматизированная система управления (автоматизированная информа…

В программе MS Project …

В системе OLTP обновления данных происходит…

Диаграмма, предназначенная для анализа плана работ с помощью мето…

Информационная система – это множество взаимосвязанных элементов …

Информационная технология – это …

Информационное обеспечение – это …

Информационные технологии на развитие общества влияют следующим о…

Информационный обмен в структуре органов управления организации о…

Исполнительские информационные системы (Executive Information Sys…

К признакам «малых» информационных систем относится …

К признакам информационных систем «среднего» масштаба относят …

Методы обработки информации представляют собой …

Модульный принцип построения бухгалтерских информационных систем …

На рисунке приведен фрагмент диаграммы типа …, выполненной в про…

На сетевом графике в программе MS Project задачу из внешнего прое…

На сетевом графике в программе MS Project задачу, не относящуюся …

На сетевом графике в программе MS Project задачу, являющуюся заве…

На сетевом графике в программе MS Project сводную задачу, объедин

На состав и количество автоматизированных рабочих мест, входящих …

Наука об информационной деятельности, ин¬формационных процессах и…

Организация информационной системы, при которой на удаленном серв…

Основное назначение системы OLAP заключается в …

Основным назначением ERP-систем является автоматизация …

Основным назначением методологии MPS является …

Основными характеристиками OLAP-систем является …

Подсистема технического обеспечения включает в себя …

Последовательность технологических этапов по модификации первично…

При сетевом объединении персональных компьютеров в виде внутрипро…

Прикладное программное обеспечение ЭВМ предназначено для …

Примером предметной информационной технологии является технология…

Процесс поддержки принятия решения подразумевает под собой …

Сеть Масштаба Предприятия или Корпоративная Сеть – это информацио…

Система искусственного интеллекта представляет собой …

Системы обработки трансакций – это системы предназначенные для …

Системы обработки трансакций соответствуют …

Системы поддержки принятия решений (Decision Support Systems – DS…

Современные методы и средства анализа и планирования процессов пр…

Создание интегрированной автоматизированной информационной систем…

Созданные информационные системы становятся не пригодными для исп…

Специфика информационной системы поддержки руководства проявляетс…

Средствами традиционных OLTP-систем можно …

Структура корпоративных информационных систем является …

Ускорить и упростить работу менеджеров по персоналу на фирме позв..

Ускорить и упростить работу менеджеров по персоналу на фирме позв…

Фиксируемые воспринимаемые факты окружающего мира представляют со…

Цепочка действий, наиболее точно отражающую процесс управления пр…

Экономические задачи, решаемые в диалоговом режиме, характеризуют…

Экспертные системы предназначены для обработки …

Является нарушением безопасности или относится к сфере безопаснос…

OLAP — это просто

Удивительное — рядом …

По ходу работы мне часто требовалось делать сложные отчеты, я все время пытался найти в них что-то общее, чтобы составлять их более просто и универсально, даже написал и опубликовал по этому поводу статью «Дерево Осипова». Однако мою статью раскритиковали и сказали, что все те проблемы, которые я поднял, давно уже решены в OLAP (www.molap.rgtu.ru) и порекомендовали посмотреть сводные таблицы в EXCEL.
Это оказалось настолько простым, что приложив к этому свои гениальные ручонки, у меня получилась очень простая схема для выгрузки данных из 1С7 или любой другой базы данных (в дальнейшем под 1С подразумевается любая база данных) и анализа в OLAP.
Я думаю, многие схемы выгрузки в OLAP слишком усложнены, я выбираю простоту.

Характеристики :

1. Для работы требуется только EXCEL 2000.
2. Пользователь сам может конструировать отчеты без программирования.
3. Выгрузка из 1С7 в простом формате текстового файла.
4. Для бухгалтерских проводок уже имеется универсальная обработка для выгрузки, работающая в любой конфигурации. Для выгрузки других данных имеются обработки-образцы.
5. Можно заранее сконструировать формы отчетов, а затем применять их к разным данным без их повторного конструирования.
6. Довольно хорошая производительность. На первом длительном этапе данные сначала импортируются в EXCEL из текстового файла и строится куб OLAP, а затем довольно быстро на основе этого куба может быть построен любой отчет. Например, данные о продажах товара по магазину за 3 месяца с ассортиментом 6000 товаров, загружаются в EXCEL 8 минут на Cel600-128M, рейтинг по товарам и группам (OLAP-отчет) пересчитывается за 1 минуту.
7. Данные выгружаются из 1С7 полностью за указанный период (все движения, по всем складам, фирмам, счетам). При импорте в EXCEL возможно использование фильтров, загружающих для анализа только нужные данные (например, из всех движений, только продажи).
8. В настоящее время разработаны способы анализа движений или остатков, но не движений и остатков вместе, хотя это в принципе возможно.

Что такое OLAP : (www.molap.rgtu.ru)

Предположим у вас есть торговая сеть. Пусть данные о торговых операциях выгружены в текстовый файл или таблицу вида:

Дата — дата операции
Месяц — месяц операции
Неделя — неделя операции
Вид — закуп, продажа, возврат, списание
Контрагент — внешняя организация, учавствующая в операции
Автор — человек, выписавший накладную

В 1С, например, одна строка этой таблицы будет соответствовать одной строке накладной, некоторые поля (Контрагент, Дата) при этом берутся из шапки накладной.

Данные для анализа обычно выгружаются в OLAP-систему за определенный период времени, из которого в принципе можно выделить другой период применением фильтров загрузки.

Эта таблица является исходной для OLAP-анализа.

Пользователь сам опрределяются, какие из полей таблицы будут Измерениями, какие Данными и какие Фильтры применять. Система сама строит отчет в наглядной табличной форме. Измерения можно размещать в заголовках строк или столбцов таблицы отчета.
Как видно, из одной простой таблицы можно получить множество данных в виде различных отчетов.


Как использовать у себя :

Данные из дистрибутива распаковать именно в каталог c:\fixin (для торговой системы возможно в c:\reports). Прочитайте readme.txt и выполните все инструкции в нем.

Сначала вы должны написать обработку, которая выгружает данные из 1С в текстовый файл (таблицу). Вам нужно определить состав полей, которые будут выгружаться.
Например, уже готовая универсальная обработка, которая работает в любой конфигурации и выгружает для OLAP-анализа проводки за период, выгружает для анализа следующие поля:

Дата|ДеньНедели|Неделя|Год|Квартал|Месяц|Документ|Фирма|Дебет|ДтНоменклатура
|ДтГруппаНоменклатура|ДтРазделНоменклатура|Кредит|Сумма|ВалСумма|Количество
|Валюта|ДтКонтрагенты|ДтГруппаКонтрагенты|КтКонтрагенты|КтГруппаКонтрагенты|
КтРазныеОбъекты

Где под префиксами Дт(Кт) идут субконто Дебета (Кредита), Группа — это группа данного субконто (если имеется), Раздел — группа группы, Класс — группа раздела.

Для торговой системы поля могут быть такие:

Направление|ВидДвижения|ЗаНал|Товар|Количество|Цена|Сумма|Дата|Фирма
|Склад|Валюта|Документ|ДеньНедели|Неделя|Год|Квартал|Месяц|Автор
|КатегорияТовара|КатегорияДвижения|КатегорияКонтрагента|ГруппаТовара
|ВалСумма|Себестоимость|Контрагент

Для анализа данных используются таблицы "Анализ движений.xls" ("Анализ бухгалтерии.xls"). Открывая их, не отключайте макросы, иначе вы не сможете обновлять отчеты (они запускаются макросами на языке VBA). Исходные данные эти файлы берут из файлов C:\fixin\motions.txt (C:\fixin\buh.txt), в остальном они одинаковые.

Основы OLAP

Поэтому возможно, вам придется скопировать ваши данные в один из этих файлов.
Чтобы в EXCEL загрузились ваши данные, выберите или напишите свой фильтр и нажмите кнопку "Сформировать" на листе "Условия".
Листы отчетов начинаются префиксом "Отч". Перейдите на лист отчета, нажмите "Обновить" и данные отчета изменятся в соотсветсвии с последними загруженными данными.
Если вас не устраивают стандартные отчеты, есть лист ОтчШаблон. Скопируйте его в новый лист и настройте вид отчета, работая со сводной таблицей на этом листе (о работе со сводными таблицами — в любой книге по EXEL 2000). Рекомендую настраивать отчеты на небольшом наборе данных, а затем уже запускать их на большом массиве, т.к. нет никакой возможности отключить перерисовку таблиц при каждом изменении макета отчета.

Технические комментарии :

При выгрузке данных из 1С пользователь выбирает папку, куда ему выгружать файл. Я сделал это потому, что вполне вероятно в ближайшем будующем будут выгружаться несколько файлов (остатки и движения). Затем по нажатию в Проводнике кнопки "Отправить" —> "На OLAP-анализ в EXCEL 2000" данные копируются из выбранной папки в папку C:\fixin. (чтобы эта команда появилась в списке команды "Отправить" и нужно скопировать файл "На OLAP-анализ в EXCEL 2000.bat" в каталог C:\Windows\SendTo) Поэтому выгружайте данные сразу давая имена файлам motions.txt или buh.txt.

Формат текстового файла:
Первая строка текстового файла — заголовки колонок разделенные "|", остальные строки содержат значения этих колонок, разделенные "|".

Для импорта текстовых файлов в Excel используется Microsoft Query (составная часть EXCEL) для его работы необходимо наличие в каталоге импорта (C:\fixin) файла shema.ini, содержащего следующую информацию:


ColNameHeader=True
Format=Delimited(|)
MaxScanRows=3
CharacterSet=ANSI
ColNameHeader=True
Format=Delimited(|)
MaxScanRows=3
CharacterSet=ANSI

Пояснение: motions.txt и buh.txt — это название раздела, соответствует имени импортируемого файла, описывает, как импортировать текстовый файл в Эксель. Остальные параметры означают, что первая строка содержит названия колонок, разделителем колонок является "|", набор символов — Windows ANSI (для ДОС — OEM).
Тип полей определяется автоматически исходя из содержащихся в колонке данных (дата, число, строка).
Перечень полей не нужно нигде описывать — EXCEL и OLAP сами определят, какие поля содержатся в файле по заголовкам в первой строке.

Внимание, проверьте ваши региональные настройки "Панель управления" —> "Региональные настройки" . В моих обработках числа выгружаются с разделителем запятая, а даты в формате "ДД.ММ.ГГГГ".

Данные при нажатии кнопки "Сформировать" загружаются в сводную таблицу на листе "База", а из этой сводной таблицы и берут данные все отчеты на листах "Отч".

Я понимаю, что любители MS SQL Server и мощных баз данных начнут ворчать, что у меня слишком все упрощено, что моя обработка загнется на годичной выборке, но в первую очередь я хочу дать преимущества OLAP-анализа для средних организаций. Я бы позиционировал этот продукт как инструмент годичного анализа для оптовых компаний, квартального анализа для розничной торговли и оперативного анализа для любой организации.

Мне пришлось повозиться с VBA, чтобы данные брались из файла с любым списком полей и можно было заранее готовить бланки отчетов.

Описание работы в EXCEL (для пользователей):

Инструкция по использованию отчетов:
1. Отправьте на анализ выгруженные данные (уточните у администратора). Для этого нажмите правой кнопкой на папке, в которую у вас выгрузились данные из 1С и выберите команду "Отправить", затем "На OLAP-анализ в EXCEL 2000".
2. Откройте файл "Анализ движений.xls"
3. Выберите Значение фильтра, нужные вам фильтры можно дописать на закладке "Значения".
4. Нажмите кнопку "Сформировать", при этом выгруженные данные будут загружены в EXCEL.
5. После загрузки данных в EXCEL, можно смотреть различные отчеты. Для этого достаточно нажать кнопку "Обновить" в выбранном отчете. Листы с отчетами начинаются на Отч.
Внимание! После того как вы поменяете значение фильтра, нужно еще раз нажать кнопку "Сформировать", чтобы данные в EXCEL перезагрузились из файла выгрузки в соответствие с фильтрами.

Обработки из демо-примера:

Обработка motionsbuh2011.ert – последняя версия выгрузки проводок из Бухгалтерии 7.7 для анализа в Excel. В ней есть галочка «Присоединить в файл», которая позволяет выгружать данные частями по периодам, присоединяя их в один и тот же файл, а не выгружая в один и тот же файл заново:

Обработка motionswork.ert выгружает данные о продажах для анализа в Excel.

Примеры отчетов :

Шахматка по проводкам:

Загруженность операторов по видам накладных:

P.S. :

Понятно, что по аналогичной схеме можно организовать выгрузку данных из 1С8.
В 2011 году ко мне обращался пользователь, которому нужно было доработать эту обработку в 1С7, чтобы она выгружала большие объемы данных, я нашел аутсорсера и выполнил эту работу. Так что разработка вполне актуальна.

Обработка motionsbuh2011.ert доработана, чтобы справляться с выгрузкой большого объема данных.

Первое четкое определение OLAP (On-line Analytical Processing) предложено в 1993 году Е.Ф.Коддом (E.F.Codd) в статье, опубликованной при поддержке Arbor Software (теперь — Hyperion Software). Статья включала 12 правил, которые сейчас уже стали широко известными и описаны на сайте любого поставщика OLAP приложений. Позже, в 1995 году, к ним были добавлены еще шесть менее известных правил, все они были разделены на четыре группы и названы «характеристиками» (features). Вот эти правила, дающие определение OLAP приложения с комментариями Найджела Пендса (Nigel Pendse), одного из создателей сайта OLAP Report.

Основные характеристики OLAP включают:

1. Многомерность модели данных . С этим утверждением мало кто спорит, и оно считается основной характеристикой OLAP. Частью этого требования считается возможность построения различных проекций и разрезов модели.

2. Интуитивные механизмы манипулирования данными . Кодд считает, что манипулирование данными должно производится с помощью действий непосредственно в ячейке таблиц, без применения меню или сложных. Можно предположить, что это подразумевает использование операций с мышью, но Кодд этого не утверждает. Многие продукты не выполняют этого правила. С нашей точки зрения, эта характеристика незначительно влияет на качество процесса анализа данных. Мы считаем, что программа должна предлагать возможность выбора модели работы, т.к. не всем пользователям нравится одно и то же.

3. Доступность . OLAP это Посредник. Кодд особенно подчеркивает, что ядро OLAP является программой промежуточного уровня между гетерогенными источниками данных и пользовательским интерфейсом. Большинство продуктов обеспечивают эти функции, но удобство доступа к данным часто оказывается ниже чем это хотелось бы другим поставщикам программ.

4. Пакетное извлечение данных . Это правило требует, чтобы продукты предлагали как собственные базы для хранения анализируемых данных, так и динамический (live) доступ к внешним данным. Мы согласны с Коддом в этом пункте и сожалеем, что лишь немногие OLAP продукты соответствуют ему. Даже те программы, которые предлагают такие функции, редко делают их легкими и достаточно автоматизированными. В результате, Кодд поддерживает многомерное представление данных плюс частичный предварительный обсчет больших многомерных баз данных с прозрачным сквозным доступом к детальной информации. Сегодня это рассматривается как определение гибридного OLAP, которая становится наиболее популярной архитектурой, так что Кодд очень точно увидел основные тенденции в этой области.

5. Архитектура «клиент-сервер» . Кодд считает, что не только каждый продукт должен быть клиент-серверным, но и что каждая серверная компонента OLAP продуктов должна быть достаточно интеллектуальной для того, чтобы разные клиенты могли быть подключены с минимальными усилиями и программированием. Это намного более сложный тест, чем простая клиент-серверная архитектура и относительно мало продуктов проходит его. Мы могли бы возразить, что этот тест, возможно, сложнее, чем надо и не стоит диктовать разработчикам архитектуру системы.

6. Прозрачность . Этот тест также сложен, но необходим. Полное соответствие означает, что пользователь, скажем, электронной таблицы может получить полный доступ к средствам, предоставляемым ядром OLAP и может при этом даже не знать о том, откуда получены эти данные. Для того чтобы достичь этого, продукты должны предоставлять динамический доступ к гетерогенным источникам данных и полнофункциональный модуль, встраиваемый в электронную таблицу. Между электронной таблицей и хранилищем данных при этом размещается OLAP сервер.

7. Многопользовательская работа . Кодд определяет, что для того, чтобы считаться стратегическим OLAP инструментом, приложения должны работать не только на чтение и интерпретацию данных, и, соответственно, они должны обеспечивать одновременный доступ (включая и извлечение, и обновление данных), целостность и безопасность.

Специальные характеристики

8. Обработка ненормализованных данных . Это означает возможность интеграции между ядром OLAP и ненормализованным источником данных. Кодд выделяет то, что при обновлении данных, выполненном в среде OLAP, должна быть возможность изменять ненормализованные данные во внешних системах.

9. Хранение OLAP результатов отдельно от исходных данных . В действительности, это имеет отношение к реализации продукта, а не к его возможностям, но мало кто будет спорить с этим утверждением. По сути, Кобб поддерживает широко принятую систему, в соответствии с которой OLAP приложения должны строить анализ непосредственно на основе данных транзакции и изменения в данных OLAP должны храниться отдельно от данных транзакции.

10. Выделение отсутствующих данных . Это означает, что отсутствующие данные должны отличаться от нулевого значения. Как правило, все современные OLAP системы поддерживают эту характеристику.

11. Обработка отсутствующих значений . Все отсутствующие значения должны быть проигнорированы при анализе, вне зависимости от их источника.

Характеристики построения отчетов

12. Гибкое построение отчетов . Различные измерения должны выстраиваться любым способом в соответствии с потребностями пользователя. Большинство продуктов соответствует этому требованию в рамках специальных редакторов отчетов. Хотелось бы, чтобы такие же возможности были доступны и в интерактивных средствах просмотра, но это встречается значительно реже. Это — одна из причин, по которой мы предпочитаем, чтобы функционал анализа и построения отчетов был объединен в одном модуле.

1. Понятие куба olap

13. Стабильная производительность при построении отчетов . Это означает, что производительность системы при построении отчетов не должна существенно падать при увеличении размерности или величины базы данных.

14. Автоматическое регулирование физического уровня . OLAP система должна автоматически регулировать физическую структуру для адаптации ее к типу и структуре модели.

Управление размерностью

15. Общая функциональность . Все измерения должны иметь одинаковые возможности в структуре и функциональности.

16. Неограниченное число измерений и уровней агрегирования . Фактически, под неограниченным числом Кодд подразумевает 15-20, т.е. число, заведомо превышающее максимальные потребности аналитика.

17. Неограниченные операции между данными различных измерений . Кодд полагает, что для того, чтобы приложение называлось многомерным, оно должно поддерживать любые вычисления с использованием данных всех измерений.

Подробности о продуктах Hyperion — на сайте www.hyperion.ru

Версия для печати

Назад

10.8 Работа со сводными таблицами (объект PivotTable)

Объект Excel.PivotTable, программная работа со сводными таблицами и кубами OLAP в Excel средствами VBA, объект PivotCache, создание макета сводной таблицы

В процессе работы большинства предприятий накапливаются так называемые необработанные данные (raw data) о деятельности. Например, для торгового предприятия могут накапливаться данные о продажах товаров - по каждой покупке отдельно, для предприятий сотовой связи - статистика нагрузки на базовые станции и т.п. Очень часто менеджменту предприятия необходима аналитическая информация, которая генерируется на основе необработанной - например, посчитать вклад каждого вида товара в доходы предприятия или качество обслуживания в зоне данной станции. Из необработанной информации такие сведения извлечь очень тяжело: нужно выполнять очень сложные SQL-запросы, которые выполняются долго и часто мешают текущей работе. Поэтому все чаще в настоящее время необработанные данные сводятся вначале в хранилище архивных данных - Data Warehouse, а затем - в кубы OLAP, которые очень удобны для интерактивного анализа. Проще всего представить себе кубы OLAP как многомерные таблицы, в которых вместо стандартных двух измерений (столбцы и строки, как в обычных таблицах), измерений может быть очень много. Обычно для описания измерений в кубе используется термин «в разрезе». Например, отделу маркетинга может быть нужна информация во временном разрезе, в региональном разрезе, в разрезе типов продукта, в разрезе каналов продаж и т.п. При помощи кубов (в отличие от стандартных SQL-запросов) очень просто получать ответы на вопросы типа «сколько товаров такого-то типа было продано в четвертом квартале прошлого года в Северо-Западном регионе через региональных дистрибьюторов.

Конечно же, в обычных базах данных такие кубы не создать. Для работы с кубами OLAP требуются специализированные программные продукты. Вместе с SQL Server поставляется база данных OLAP от Microsoft, которая называется Analysis Services. Есть OLAP-решения от Oracle, IBM, Sybase и т.п.

Для работы с такими кубами в Excel встроен специальный клиент.

По-русски он называется Сводная таблица (на графическом экране он доступен через меню Данные -> Сводная таблица ), а по-английски - Pivot Table . Соответственно, объект, который представляет этот клиент, называется PivotTable. Необходимо отметить, что он умеет работать не только с кубами OLAP, но и с обычными данными в таблицах Excel или баз данных, но многие возможности при этом теряются.

Сводная таблица и объект PivotTable - это программные продукты фирмы Panorama Software, которые были приобретены Microsoft и интегрированы в Excel.

Поэтому работа с объектом PivotTable несколько отличается от работы с другими объектами Excel. Догадаться, что нужно сделать, часто бывает непросто. Поэтому рекомендуется для получения подсказок активно использовать макрорекордер. В то же время при работе со сводными таблицами пользователям часто приходится выполнять одни и те же повторяющиеся операции, поэтому автоматизация во многих ситуациях необходима.

Как выглядит программная работа со сводной таблицей?

Первое, что нам потребуется сделать - создать объект PivotCache, который будет представлять набор записей, полученных с источника OLAP. Очень условно этот объект PivotCache можно сравнить с QueryTable. Для каждого объекта PivotTable можно использовать только один объект PivotCache. Создание объекта PivotCache производится при помощи метода Add() коллекции PivotCaches:

Dim PC1 As PivotCache

Set PC1 = ActiveWorkbook.PivotCaches.Add(xlExternal)

PivotCaches - стандартная коллекция, и из методов, которые заслуживают подробного рассмотрения, в ней можно назвать только метод Add(). Этот метод принимает два параметра:

  • SourceType - обязательный, определяет тип источника данных для сводной таблицы. Можно указать создание PivotTable на основе диапазона в Excel, данных из базы данных, во внешнем источнике данных, другой PivotTable и т.п. На практике обычно OLAP есть смысл использовать только тогда, когда данных много - соответственно нужно специализированное внешнее хранилище (например, Microsoft Analysis Services). В этой ситуации выбирается значение xlExternal.
  • SourceData - обязательный во всех случаях, кроме тех, когда значение первого параметра - xlExternal. Собственно говоря, определяет тот диапазон данных, на основе которого и будет создаваться PivotTable. Обычно принимает объект Range.

Следующая задача - настроить параметры объекта PivotCache. Как уже говорилось, этот объект очень напоминает QueryTable, и набор свойств и методов у него очень похожий. Некоторые наиболее важные свойства и методы:

  • ADOConnection - возможность возвратить объект ADO Connection, который автоматически создается для подключения к внешнему источнику данных. Используется для дополнительной настройки свойств подключения.
  • Connection - работает точно так же, как и одноименное свойство объекта QueryTable. Может принимать строку подключения, готовый объект Recordset, текстовый файл, Web-запрос. файл Microsoft Query. Чаще всего при работе с OLAP прописывается строка подключения напрямую (поскольку получать объект Recordset, например для изменения данных, большого смысла нет - источники данных OLAP практически всегда доступны только на чтение). Например, настройка этого свойства для подключения к базе данных Foodmart (учебная база данных Analysis Services) на сервере LONDON может выглядеть так:

PC1.Connection = «OLEDB;Provider=MSOLAP.2;Data Source=LONDON1;Initial Catalog = FoodMart 2000»

  • свойства CommandType и CommandText точно так же описывают тип команды, которая передается на сервер баз данных, и текст самой команды. Например, чтобы обратиться на куб Sales и получить его целиком в кэш на клиенте, можно использовать код вида

PC1.CommandType = xlCmdCube

PC1.CommandText = Array(«Sales»)

  • свойство LocalConnection позволяет подключиться к локальному кубу (файлу *.cub), созданному средствами Excel. Конечно, такие файлы для работы с «производственными» объемами данных использовать очень не рекомендуется - только для целей создания макетов и т.п.
  • свойство MemoryUsed возвращает количество оперативной памяти, используемой PivotCache. Если PivotTable на основе этого PivotCache еще не создана и не открыта, возвращает 0. Можно использовать для проверок, если ваше приложение будет работать на слабых клиентах.
  • свойство OLAP возвращает True, если PivotCache подключен к серверу OLAP.
  • OptimizeCache - возможность оптимизировать структуру кэша. Изначальная загрузка данных будет производиться дольше, но потом скорость работы может возрасти. Для источников OLE DB не работает.

Остальные свойства объекта PivotCache совпадают с аналогичными свойствами объекта QueryTable, и поэтому здесь рассматриваться не будут.

Главный метод объекта PivotCache - это метод CreatePivotTable(). При помощи этого метода и производится следующий этап - создание сводной таблицы (объекта PivotTable). Этот метод принимает четыре параметра:

  • TableDestination - единственный обязательный параметр.

    Принимает объект Range, в верхний левый угол которого будет помещена сводная таблица.

  • TableName - имя сводной таблицы. Если не указано, то автоматически сгенерируется имя вида «СводнаяТаблица1».
  • ReadData - если установить в True, то все содержимое куба будет автоматически помещено в кэш. С этим параметром нужно быть очень осторожным, поскольку неправильное его применение может резко увеличить нагрузку на клиента.
  • DefaultVersion - это свойство обычно не указывается. Позволяет определить версию создаваемой сводной таблицы. По умолчанию используется наиболее свежая версия.

Создание сводной таблицы в первой ячейке первого листа книги может выглядеть так:

PC1.CreatePivotTable Range («A1»)

Сводная таблица у нас создана, однако сразу же после создания она пуста. В ней предусмотрено четыре области, в которые можно размещать поля из источника (на графическом экране все это можно настроить либо при помощи окна Список полей сводной таблицы - оно открывается автоматически, либо при помощи кнопки Макет на последнем экране мастера создания сводных таблиц):

  • область столбцов - в нее помещаются те измерения («разрез», в котором будут анализироваться данные), членов которых меньше;
  • область строк - те измерения, членов которых больше;
  • область страницы - те измерения, по которым нужно только проводить фильтрацию (например, показать данные только по такому-то региону или только за такой-то год);
  • область данных - собственно говоря, центральная часть таблицы. Те числовые данные (например, сумма продаж), которые мы и анализируем.

Полагаться на пользователя в том, что он правильно разместит элементы во всех четырех областях, трудно.

Кроме того, это может занять определенное время. Поэтому часто требуется расположить данные в сводной таблице программным образом. Эта операция производится при помощи объекта CubeField. Главное свойство этого объекта - Orientation, оно определяет, где будет находиться то или иное поле. Например, помещаем измерение Customers в область столбцов:

PT1.CubeFields («»).Orientation = xlColumnField

Затем - измерение Time в область строк:

PT1.CubeFields («»).Orientation = xlRowField

Затем - измерение Product в область страницы:

PT1.CubeFields («»).Orientation = xlPageField

И наконец, показатель (числовые данные для анализа) Unit Sales:

PT1.CubeFields(«.»).Orientation = xlDataField

Теперь сводная таблица создана и с ней вполне можно работать. Однако часто необходимо выполнить еще одну операцию - раскрыть нужный уровень иерархии измерения. Например, если нас интересует поквартальный анализ, то нужно раскрыть уровень Quarter измерения Time (по умолчанию показывается только самый верхний уровень). Конечно, пользователь может сделать это самостоятельно, но не всегда можно рассчитывать, что он догадается, куда щелкнуть мышью. Программным образом раскрыть, например, иерархию измерения Time на уровень кварталов для 1997 года можно при помощи объектов PivotField и PivotItem:

PT1.PivotFields(«.»).PivotItems(«.»).DrilledDown = True

Понравилась статья? Поделиться с друзьями: