Информационные технологии в образовании и науке

В настоящее время, значительно увеличилась роль информационных технологий в жизни людей. Современное общество включилось в общеисторический процесс, называемый информатизацией. Этот процесс включает в себя доступность любого гражданина к источникам информации, проникновение информационных технологий в научные, производственные, общественные сферы, высокий уровень информационного обслуживания. Процессы, происходящие в связи с информатизацией общества, способствуют не только ускорению научно-технического прогресса, интеллектуализации всех видов человеческой деятельности, но и созданию качественно новой информационной среды социума, обеспечивающей развитие творческого потенциала человека.

Одним из приоритетных направлений процесса информатизации современного общества является информатизация образования, представляющую собой систему методов, процессов и программно-технических средств, интегрированных с целью сбора, обработки, хранения, распространения и использования информации в интересах ее потребителей. Поэтому в настоящее время в России идет становление новой системы образования, ориентированного на вхождение в мировое информационно-образовательное пространство. Этот процесс сопровождается существенными изменениями в педагогической теории и практике учебно-воспитательного процесса, связанными с внесением корректив в содержание технологий обучения, которые должны быть адекватны современным техническим возможностям, и способствовать гармоничному вхождению студента в информационное общество.

Анализ понятия «информационные технологии» в образовании. Информационные технологии в образовании

Информационные технологии (ИТ) обучения - это педагогическая технология, применяющая специальные способы, программные и технические средства (кино, аудио- и видеотехнику, компьютеры, телекоммуникационные сети) для работы с информацией".

Целью ИТ является качественное формирование и использование информационных ресурсов в соответствии с потребностями пользователя. Методами ИТ являются методы обработки данных. В качестве средств ИТ выступают математические, технические, программные, информационные, аппаратные и др. средства.

Методы ИТ

Средства ИТ

ИТ разделяются на две большие группы: технологии с избирательной и с полной интерактивностью.

1) К первой группе принадлежат все технологии, обеспечивающие хранение информации в структурированном виде. Сюда входят банки и базы данных и знаний, видеотекст, телетекст, Интернет и т.д. Эти технологии функционируют в избирательном интерактивном режиме и существенно облегчают доступ к огромному объему структурируемой информации. В данном случае пользователю разрешается только работать с уже существующими данными, не вводя новых.


2) Вторая группа содержит технологии, обеспечивающие прямой доступ к информации, хранящейся в информационных сетях или каких-либо носителях, что позволяет передавать, изменять и дополнять ее.

Технологии с избирательной интерактивностью

Технологии с полной интерактивностью.

Информационные технологии следует классифицировать прежде всего по области применения и по степени использования в них компьютеров. Различают такие области применения информационных технологий, как наука, образование, культура, экономика, производство, военное дело и т. п. По степени использования в информационных технологиях компьютеров различают компьютерные и бескомпьютерные технологии.

В области образования информационные технологии применяются для решения двух основных задач: обучения и управления. Соответственно paзличают компьютерные и бескомпьютерные технологии обучения, компьютерные и бескомпьютерные технологии управления образованием. В обучении информационные технологии могут быть использованы, во-первых, для предъявления учебной информации обучающимся, во-вторых, для контроля успешности ее усвоения. С этой точки зрения информационные; технологии, используемые в обучении, делятся на две группы: технологии предъявления учебной информации и технологии контроля знаний.

К числу бескомпьютерных информационных технологий предъявления учебной информации относятся бумажные, оптотехнические, электроннотехнические технологии. Они отличаются друг от друга средствами предъявления учебной информации и соответственно делятся на бумажные, оптические и электронные. К бумажным средствам обучения относятся учебники, учебные и учебно-методические пособия; к оптическим - эпипроекторы, диапроекторы, графопроекторы, кинопроекторы, лазерные указки; к электронным телевизоры и проигрыватели лазерных дисков.

К числу компьютерных информационных технологий предъявления учебной информации относятся:

Технологии, использующие компьютерные обучающие программы;

Мультимедия технологии;

Технологии дистанционного обучения.

Компьютерные ИТ предъявления информации

Современные средства компьютерной техники можно классифицировать как:

Персональные компьютеры - это вычислительные системы с ресурсами, полностью направленными на обеспечение деятельности одного управленческого работника. Это наиболее многочисленный класс вычислительной техники, в составе которого можно выделить персональные компьютеры IBM PC и совместимые с ними компьютеры, а также персональные компьютеры Macintosh. Интенсивное развитие современных информационных технологий обусловлено как раз широким распространением с начала 1980-х гг. персональных компьютеров, сочетающих в себе такие качества, как относительная дешевизна и достаточно широкие для непрофессионального пользователя функциональные возможности.

Корпоративные компьютеры (иногда называемые мини-ЭВМ или main frame) представляют собой вычислительные системы, обеспечивающие совместную деятельность большого количества интеллектуальных работников в какой-либо организации, проекте при использовании единых информационно-вычислительных ресурсов. Это многопользовательские вычислительные системы, имеющие центральный блок большой вычислительной мощности и со значительными информационными ресурсами, к которому подсоединено большое количество рабочих мест с минимальной оснащенностью (обычно это клавиатура, устройства позиционирования типа «мышь» и, возможно, устройство печати). В качестве рабочих мест, подсоединяемых к центральному блоку корпоративного компьютера, могут выступать и персональные компьютеры. Сфера использования корпоративных компьютеров - обеспечение управленческой деятельности в крупных финансовых и производственных организациях. Организация различных информационных систем для обслуживания большого количества пользователей в рамках одной функции (биржевые и банковские системы, бронирование и продажа билетов населению и т.п.).

Суперкомпьютеры представляют собой вычислительные системы с предельными характеристиками вычислительной мощности и информационных ресурсов и используются в военной и космической областях, и фундаментальных научных исследованиях, глобальном прогнозировании погоды. Данная классификация довольно условленна, так как интенсивное развитие технологий электронных компонентов и совершенствование архитектуры компьютеров, а также наиболее важных их элементов приводят к размыванию границ между средствами вычислительной техники.

В системе образования на сегодня накоплено множество различных компьютерных программ учебного назначения, созданных в учебных заведениях и центрах России. Немалое их число отличается оригинальностью, высоким научным и методическим уровнем. Интеллектуальные обучающие системы - это качественно новая технология, особенностями которой являются моделирование процесса обучения, использование динамически развивающейся базы знаний; автоматический подбор рациональной стратегии обучения для каждого обучаемого, автоматизированный учет новой информации, поступающей в базу данных. Технологии мультимедиа (от англ. multimedia - многокомпонентная среда), которая позволяет использовать текст, графику, видео и мультипликацию в интерактивном режиме и том самым расширяет рамки применения компьютера в учебном процессе.

Виртуальная реальность (от англ. virtual reality - возможная реальность) - это новая технология неконтактного информационного взаимодействия, создающая с помощью мультимедийной среды иллюзию присутствия в реальном времени в стереоскопически представленном «экранном мире». В таких системах непрерывно поддерживается иллюзия места нахождения пользователя среди объектов виртуального мира. Вместо обычного дисплея используются очки телемониторы, в которых воспроизводятся непрерывно изменяющиеся события виртуального мира. Управление осуществляется с помощью реализованного в виде «информационной перчатки» специального устройства, определяющего направление перемещения пользователя относительно объектов виртуального мира. Кроме этого в распоряжении пользователя есть устройство создания и передачи звуковых сигналов.

Автоматизированная обучающая система на основе гипертекстовой технологии позволяет повысить усвояемость не только благодаря наглядности представляемой информации. Использование динамического, т.е. изменяющегося, гипертекста дает возможность провести диагностику обучаемого, а затем автоматически выбрать один из оптимальных уровней изучения одной и той же темы. Гипертекстовые обучающие системы дают информацию таким образом, что и сам обучающийся, следуя графическим или текстовым ссылкам, может применять различные схемы работы с материалом. Все это позволяет реализовать дифференцированный подход к обучению.

Специфика технологий Интернет - WWW (от англ. World Wide Web - всемирная паутина) заключается в том, что они предоставляют пользователям громадные возможности выбора источников информации: базовая "информация на серверах сети; оперативная информация, пересылаемая по электронной почте; разнообразные базы данных ведущих библиотек, научных и учебных центров, музеев; информация о гибких дисках, компакт-дисках, видео- и аудиокассетах, книгах и журналах, распространяемых через Интернет-магазины, и др.

Следует выделить основные дидактические требования, предъявляемые к ИТО, с целью повышения эффективности ее применения в образовательном процессе.

К ним относятся:

Мотивированность в использовании различных дидактических материалов;

Четкое определение роли, места, назначения и времени использования КОП;

Ведущая роль педагога в проведении занятий;

Тесная взаимосвязь конкретного класса КОП с другими видами применяемых ТСО;

Введение в технологию только таких компонентов, которые гарантируют качество обучения;

Соответствие методики компьютерного обучения общей стратегии проведения учебного занятия;

Учет того, что введение в комплект учебных средств КОП требует пересмотра всех компонентов системы и изменения общей методики обучения;

Обеспечение высокой степени индивидуализации обучения;

Обеспечение устойчивой обратной связи в обучении и другие.

Современный период развития цивилизованного общества характеризуется процессом информатизации, одним из приоритетных направлений которого является информатизация образования. Существенным компонентом процессов информатизации является разработка и использование педагогических программных средств, базирующихся на различных информационных технологиях. В последнее время одним из актуальных становится направление, базирующееся на использовании в педагогических программных средствах компьютерных сетей.

Применение компьютерных сетей в процессе обучения различным учебным дисциплинам требует от преподавателя знаний как в области подготовки сценария учебного курса с учетом возможностей инструментальных средств разработки программ, так и знаний в области методики преподавания конкретной дисциплины. Это объясняется широкими возможностями применения компьютерных коммуникаций и сетей в практической деятельности.

Известно, что наука - это сфера деятельности, направленная на получение новых знаний, которая реализуется с помощью научных исследований (НИ).

Целью НИ является изучение определенных свойств объекта (процесса, явления) и на этой основе разработка теории или получение необходимых для практики обобщенных выводов.

По целевому назначению НИ делят на фундаментальные, прикладные и разработки.

Фундаментальные (ФНИ) связаны с изучением новых явлений и законов природы, с созданием новых принципов исследований (физика, математика, биология, химия и т.д.).

Прикладные исследования (ПНИ) - это нахождение способов использования законов природы и научных знаний, полученных в ФНИ, в практической деятельности человека.

Разработки - это процесс создания новой техники, систем, материалов и технологий, включающий подготовку документов для внедрения в практику результатов ПНИ.

Реализация целей НИ выполняется на основе методов. Метод - это способ достижения цели, программа построения и применения теории. Методы научных исследований делят на следующие группы: эмпирические, экспериментальные и теоретические. Особую группу составляют методы научно - технического творчества (НТТ).

Эмпирические исследования выполняются с целью накопления систематической информации о процессе. При этом используются методы: наблюдение, регистрация, измерение, анкетный опрос, тесты, экспертный анализ.

Экспериментальный уровень НИ - это изучение свойств объекта по определенной программе.

Теоретические исследования проводятся с целью разработки новых методов решения научно-технических задач, обобщения и объяснения эмпирических и экспериментальных данных, выявления общих закономерностей и их формализации.

На двух последних уровнях используются методы моделирования, методы анализа и синтеза, логические построения (предположения, умозаключения), аналогии, идеализации.

В НТТ используются как названные общенаучные методы, так и эвристические приемы эффективного решения творческих задач, способствующие наиболее быстрому нахождению решения (озарению), т.е. разного рода оригинальные находки.

Рациональная организация НИР строится с использованием принципов системного подхода и схематично может быть представлена следующим образом: сбор и обработка эмпирической научно-технической информации (результаты эмпирических исследований подвергаются теоретическому анализу и экспериментальной проверке), затем с помощью различных методов проводится обработка результатов, моделирование различных процессов, интерпретация и т.д., завершает процесс оформление, представление и публикация результатов. Эти результаты представляют собой новую информацию, которая становится доступна широкому кругу исследователей.

Исходя из задач НИ и порядка их реализации, можно определить следующие основные направления рационального применения информационных технологий в научных исследованиях:

1. Сбор, хранение, поиск и выдача научно-технической информации (НТИ).

2. Подготовка программ НИ, подбор оборудования и экспериментальных устройств.

3. Математические расчеты.

4. Решение интеллектуально - логических задач.

5. Моделирование объектов и процессов.

6. Управление экспериментальными установками.

7. Регистрация и ввод в ЭВМ экспериментальных данных.

8. Обработка одномерных и многомерных (изображения) сигналов.

9. Обобщение и оценка результатов НИ.

10. Оформление и представление итогов НИ.

11. Управление научно-исследовательскими работами (НИР).

Наиболее эффективно, когда эти задачи реализуются в рамках автоматизированных систем научных исследований (АСНИ).

При системном подходе НИ начинаются со сбора и предварительной обработки НТИ по теме исследования. Эта информация может включать сведения о достижениях в исследуемой области, об оригинальных идеях, об открытых эффектах, научных разработках, технических решениях и т.д.

Целью данного этапа является получение ответов на следующие вопросы:

2. Каковы известные решения по исследуемой теме?

3. Какими известными методами и средствами решаются исследуемые проблемы?

4. Каковы недостатки известных решений и какими путями их пытаются преодолеть?

Углубленное изучение информации по предмету исследования позволяет исключить риск ненужных затрат времени на уже решенную проблему, детально изучить весь круг вопросов по исследуемой теме и найти научно - техническое решение, отвечающее высокому уровню.

Основным источником информации являются научные документы, которые по способу представления могут быть текстовыми, графическими, аудиовизуальными и машиночитаемыми.

Научные документы подразделяются на первичные и вторичные, опубликованные и неопубликованные.

Первичные документы - это книги, брошюры, периодические издания (журналы, труды), научно-технические документы (стандарты, методические указания). Важное значение здесь имеет также патентная документация, под которой подразумеваются издания, содержащие сведения об открытиях, изобретениях и т.п.

Вторичные документы содержат краткую обобщенную информацию из одного или нескольких первичных документов: справочники, реферативные издания, библиографические указатели и т.п.

Сбор и обработка НТИ может быть выполнена следующими способами:

Анкетирование, собеседование, экспертный опрос и т.д., но основой является

Работа с научно-техническими документами, которая включает поиск, ознакомление, проработку документов и систематизацию информации.

Поиск выполняется по каталогам, реферативным и библиографическим изданиям. Автоматизация этой процедуры обеспечивается использованием специализированных информационно-поисковых систем (ИПС) библиотек и научно-исследовательских институтов (НИИ), электронных каталогов, поиском в машиночитаемых базах данных (БД), а также с помощью программ поиска в сетях Internet .

Необходимо иметь в виду, что ИПС делятся на:

Документальные, позволяющие работать с полными текстами или адресами документов;

Фактографические, которые выдают необходимые сведения из имеющихся документов;

Информационно-логические (интеллектуальные) представляют информацию, полученную в результате логического поиска и целенаправленного выбора в автоматизированном режиме.

При наличии в БД полных текстов документов названные средства и позволяют реализовывать процедуру ознакомления. Часто для этого вполне достаточны рефераты или аннотации документов.

В проработке и автоматизации НТИ преобладают такие операции, как:

Формирование выписок - создание картотеки;

Извлечение фрагментов документов с помощью средств текстовых редакторов;

Создание гипертекстовых документов (структурированных).

Создание локальных (по проблеме) БД и баз знаний (БЗ).

Таким образом, применение информационных технологий способствуют повышению эффективности научного исследования на всех его этапах (снижают некоторые ресурсные затраты, позволяют реализовать удаленный доступ к документам, автоматизировать часть операций). Кроме того, информационные технологии обеспечивают точность регистрации данных, а в некоторых случаях расширяют список самих данных, возможных к регистрации. Некоторые направления научных исследований вообще не могут существовать без соответствующих технологий (например, компьютерного моделирования).


Похожая информация.


Введение

Роль информации в истории развития цивилизации. Основные виды информации. Глобальный характер информатизации общества.

Информационное общество. Проблема преодоления цифрового неравенства. Государственная политика в области формирования информационного общества. Роль науки и образования в формировании общества знаний.

Цель и задачи курса.

Раздел 1. РАЗВИТИЕ НАУКИ И ОБРАЗОВАНИЯ
В УСЛОВИЯХ ИНФОРМАТИЗАЦИИ ОБЩЕСТВА

Тема 1. Наука в информационном обществе

Научное познание. Научная информация: специфика, атрибуты. Открытый обмен научной информацией как условие перехода к обществу знаний. Перспективы формирования открытой науки за счет интернационального использования научного знания в эпоху глобализации.

Научная картина мира в информационной парадигме. Развитие информационных наук.

Информатика как наука. Философские проблемы информатики.

Синергетический подход в информатике и кибернетике. Информационная и кибернетическая эпистемология.

WorldWideWeb как результат развития фундаментальных и прикладных научных исследований.

Тема 2. Формирование единого информационно-образовательного пространства

Единое информационное образовательное пространство: понятие, структура, модели построения. Проблемы формирования информационного образовательного пространства в масштабах учебного заведения, территории, государства, на межгосударственном уровне.

Компьютерные сети как основа формирования информационного образовательного пространства. Интернет. Интранет.

Аппаратные и программные средства ИКТ: типология, назначение, условия применения в науке и образовании.

Тема 3. Информационные технологии: общая характеристика

Основные понятия информационных технологий. Основные компоненты информационных технологий. Направления развития информационных технологий.

Базы данных, базы знаний, электронные библиотеки, экспертные системы, интеллектуальные информационные системы. Формирование и возможности использования в научно-исследовательской и образовательной деятельности.

Информационные системы: основные понятия. Виды информационных систем. Функции информационных систем. Интегрированные информационные системы. Обеспечение АИС. Обзор АИС в прикладных областях.

Тема 4. Информационная безопасность

Информационная безопасность. Психическое и физическое здоровье при работе за компьютером. Социальный, эмоциональный и личностный аспекты занятий на компьютере.

Информационная этика и правовые аспекты защиты информации. Безопасность в Интернете. Технологии и средства защиты информации от разрушения и несанкционированного доступа. Компьютерные вирусы и средства защиты.

Особенности информационных правоотношений в Интернете. Авторское право и Интернет. Регистрация объектов интеллектуальной собственности. Проблемы плагиата.

Раздел 2. ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ
ТЕХНОЛОГИИ В НАУКЕ

Тема 5. Направления использования компьютерных технологий
в научных исследованиях

Применение информационно-коммуникационных технологий в процессах сбора научной информации, обработки результатов исследований, интерпретации и представления результатов.

Электронная научная публикация. Регистрация объектов интеллектуальной собственности средствами Интернета.

Поиск научной информации в электронных информационных ресурсах.

Управление научно-исследовательской работой.

Организация научных коммуникаций на базе информационно-коммуникацион-
ных технологий. Виртуальные группы научного общения.

Корпоративные научные проекты. Грантовая поддержка научных исследований.

Тема 6. Компьютерные технологии как инструмент научного познания

Специфические программные средства сбора и обработки социологической информации (опросники, математическая обработка); проектирования (IDEF-технологии); моделирования (3D-Max, математические модели); научной аналитики: мониторинга, прогнозирования, диагностики (Datamaining).

Географические информационные системы. Системы искусственного интеллекта. Системы виртуальной реальности. Компьютерный эксперимент (симуляции).
Гипертекстовые технологии в работе исследователя. Мультимедиатехнологии моделирования исследуемых процессов.

Сервисы Интернета для определения качества и продуктивности научных исследований. Вебометрия. Индексы цитирования.

Раздел 3. ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ
ТЕХНОЛОГИИ В ОБРАЗОВАНИИ

Тема 7. Теоретико-методологические основания информатизации
образовательной деятельности

Направления информатизации профессионального образования. Применение компьютерной техники в образовании. Компьютер как средство обучения. Роль преподавателя в процессе обучения с использованием компьютеров.

Информационно-коммуникационные технологии в образовании. Классификация и характеристика компьютерных программных средств обучения.

Мультимедиа в образовательной деятельности вуза.

Проектная образовательная деятельность. Социальные сервисы Интернета как средство обучения и формирования профессионального информационного пространства. Интеллектуальные информационные технологии в образовательной деятельности.

Информационные технологии и тифлотехника.

Тема 8. Информационно-коммуникационные технологии
как средство обучения

Основные виды технических средств обучения и их характеристика. Психолого-педагогические основы применения технических средств обучения и воспитания. Методика использования технических средств обучения в учебно-воспитательном процессе. Социальное взаимодействие и сетевое обучение.

Электронные учебные издания: классификация, назначение, потребительские свойства, требования к использованию.

Компьютерные обучающие системы. Основные принципы информационных технологий обучения. Типы обучающих программ. Компьютерное моделирование
в обучении. Программы специального назначения для преподавателя. Разработка обучающих программ. Проблемы и перспективы.

Технология компьютерного тестирования. Компьютерное тестирование как пример контролирующей программы. Технология проектирования компьютерных тестов предметной области. Перспективные исследования в области создания контролирующих программ.

Технологии дистанционного образования. Понятие о дистанционном обучении
с использованием глобальных компьютерных сетей. Основные принципы дистанционного обучения. Тьютор в системе дистанционного образования.

Тема 9. Информационно-коммуникационные технологии как предмет изучения

Преемственность содержания курсов информатики на разных уровнях обучения (школьное – среднее специальное – высшее – поствузовское образование).

Тема 10. Автоматизация управления образовательной деятельностью

Компьютер в управлении учебным заведением. Автоматизированные рабочие места. Автоматизированные системы управления (АСУ) образовательным учреждением. Модульный принцип построения АСУ.

  • Общее

    Общее

    Курс "Компьютерные технологии в науке и образовании" предназначен для студентов магистратуры направления 020100,68 Химия. По окончании курса должны сформироваться навыки владения современными методами поиска и обработки научной информации с помощью специализированных программных средств и ресурсов Internet, а также использования компьютерных технологий в педагогическом процессе.

  • Информация и общество

    Информация и общество

  • Компьютерные сети. Классификация и топологии

    Классификация и топологии компьютерных сетей

    Понятие компьютерной сети. Классификация сетей по охваченной территории

    Компьютерная сеть (вычислительная сеть, сеть передачи данных) - система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило - различные виды электрических сигналов или электромагнитного излучения.

    По размеру охваченной территории сети делятся на следующие:

    • Персональная сеть (PAN, Personal Area Network)
    • Локальная сеть (LAN, Local Area Network)
    • Городская сеть (MAN, Metropolitan Area Network)
    • Глобальная вычислительная сеть (WAN, Wide Area Network)

    a) Персональная сеть (англ. Personal Area Network, PAN) - это сеть, построенная «вокруг» человека. Данные сети призваны объединять все персональные электронные устройства пользователя (телефоны, карманные персональные компьютеры, смартфоны, ноутбуки, гарнитуры и.т.п.). К стандартам таких сетей в настоящее время относят Bluetooth, (Zigbee, Пиконет).

    b) Локальная вычислительная сеть (ЛВС, локальная сеть, сленг. локалка; англ. Local Area Network, LAN) - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

    c) Городская вычислительная сеть (Metropolitan area network, MAN) (от англ. «сеть крупного города») - объединяет компьютеры в пределах города, представляет собой сеть по размерам меньшую чем WAN, но большую, чем LAN.

    d) Глобальная вычислительная сеть , ГВС (англ. Wide Area Network, WAN) представляет собой компьютерную сеть, охватывающую большие территории и включающую в себя десятки и сотни тысяч компьютеров.

    Топология сети

    Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

    Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

    В настоящее время в локальных сетях используются следующие физические топологии:

    • физическая "шина" (bus);
    • физическая “звезда” (star);
    • физическое “кольцо” (ring);
    • физическая "звезда" и логическое "кольцо" (Token Ring).

    Шинная топология

    Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных. Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

    Рисунок 1 – Сетевая топология типа «шина»

    Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

    Преимущества сетей шинной топологии:

    • отказ одного из узлов не влияет на работу сети в целом;
    • сеть легко настраивать и конфигурировать;
    • сеть устойчива к неисправностям отдельных узлов.

    Недостатки сетей шинной топологии:

    • разрыв кабеля может повлиять на работу всей сети;
    • ограниченная длина кабеля и количество рабочих станций;
    • трудно определить дефекты соединений

    Топология типа “звезда”

    В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub). Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.

    Рисунок 2 – Сетевая топология типа «звезда»

    Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

    Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

    Преимущества сетей топологии звезда:

    • легко подключить новый ПК;
    • имеется возможность централизованного управления;
    • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

    Недостатки сетей топологии звезда:

    • отказ хаба влияет на работу всей сети;
    • большой расход кабеля;

    Топология “кольцо”

    В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.

    Рисунок 3 – Сетевая топология типа «кольцо»

    Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

    Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

    Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

    Топология Token Ring

    Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

    Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.

    Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.

    Рисунок 4 – Сетевая топология «Token Ring»

    В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

    Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

    Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

    Преимущества сетей топологии Token Ring:

    • топология обеспечивает равный доступ ко всем рабочим станциям;
    • высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

    Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.

    Физическая среда передачи данных

    Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0.5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных в качестве общей шины. Метод доступа CSMA/CD и все временные параметры Ethernet остаются одними и теми же для любой спецификации физической среды.

    Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных:

    10Base-5 - коаксиальный кабель диаметром 0.5 дюйма, называемый "толстым" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей).

    10Base-2 - коаксиальный кабель диаметром 0.25 дюйма, называемый "тонким" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей).

    10Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию с концентратором. Расстояние между концентратором и конечным узлом - не более 100 м.

    10Base-F - оптоволоконный кабель. Топология аналогична стандарту на витой паре. Имеется несколько вариантов этой спецификации - FOIRL, 10Base-FL, 10Base-FB.

    Число 10 обозначает битовую скорость передачи данных этих стандартов - 10 Мб/с, а слово Base - метод передачи на одной базовой частоте 10 МГц (в отличие от стандартов, использующих несколько несущих частот, которые называются broadband - широкополосными).

    Сетевые протоколы и их структура

    Начнем с того, что протокол - это просто установленный "язык" общения программ. Вообще, что такое пересылка данных? По кабелю отправляется последовательность "битов" - нулей или единиц. Но почему этот поток доходит до целевого компьютера и что тот собирается с этим потоком делать? Естественно, должны существовать некоторые правила формирования данных, и эти правила описываются стандартными протоколами.

    Про протоколы также обычно говорят, что имеются уровни вложенности сетевых протоколов. Что это означает? Во-первых, есть так называемый физический уровень. Это - просто список определений, каким должен быть сетевой кабель, толщину жил и так далее. Допустим, теперь, кабель исправен. Тогда по нему могут отправляться пакеты с данными. Но какой компьютер примет пакет? Здесь задействуется так называемый канальный уровень - в заголовке пакета указывается физический адрес компьютера - некоторое число, зашитое в сетевой карте (не IP-адрес, а MAC-адрес).

    Рисунок 1 – Структура пакета

    Канальный уровень = уровень Ethernet. Как вы видите, пакет содержит некоторый параметр Ethertype, задающий тип пакета. Сами данные зависят от этого типа, и их содержание уже находится на сетевом уровне. Наиболее распространены два протокола: ARP, отвечающий за преобразование IP-адресов в MAC-адреса; и самый существенный протокол - IP. Приведем структуру пакета IP (детализация поля "Data" предудущего рисунка)

    Рисунок 2 – Детализация пакета «Data»

    Все данные, переносимые по IP уже пересылаются на конкретный IP-адрес (это не мешает посылать широковещательных запросы всем компьютерам локальной сети - просто указывается специальный IP-адрес, например, 192.168.255.255). У протокола IP тоже есть разновидности - в пакете в установленном формате передается число, обозначающее тип протокола. Например, одним из типов протоколов, подчиненных IP, является ICMP, используемый командой ping для проверки, откликается ли компьютер.

    Но наиболее распространены два следующих типа: TCP - Transmission Control Protocol и UDP - universal datagram protocol (кстати, мы уже поднялись на транспортный уровень). Отличие же между этими протоколами таково: про протокол TCP говорят, что он "надежный", то есть в процессе обмена данными производится постоянная проверка: а дошел ли пакет до цели? А протокол UDP не предусматривает никакого контроля - отправили дейтаграмму и забыли. Когда такое нужно? Очень просто, например, при прослушивании интернет-радио. Если был сбой и пакет до вас вовремя не дошел, он уже не нужен - просто проскользнули помехи - и вы слушаете дальше. Приведем структуру TCP-пакета (детализация поля "данные" с предыдущего рисунка).

    Рисунок 3 – Детализация поля «Данные»

    Как мы видим, в пакете указывается номер порта, на который отправлен пакет. Обычно номер порта определяет тип протокола на прикладном уровне - какому именно приложению отправлены эти данные. Однако ничего не запрещает использовать нестандартные порты для своих сервисов - просто менее удобно будет пользователям. Наиболее известные протоколы - http (просмотр страниц в интернете), pop3 (получение почты). Чтобы не повторяться, отошлю к списку стандартных портов. Сами данные, получаемые приложением вкладываются в TCP-пакет (поле "данные").

    Таким образом, мы получили своеобразную иерархию вложенности пакетов. В Ethernet-пакет вложен IP-пакет, в него TPC или UDP-пакет, а в него - данные, предназначенные конкретному приложению.

  • Информационные технологии в научной деятельности

    Плодотворное развитие педагогической науки может происходить только при условии творческого переосмысления накопленного ею теоретического и практического опыта, т.е. в процессе исследовательской деятельности. Известно, что исследования опираются, прежде всего, на конкретные факты, которые можно получить только в ходе проведения экспериментов. Современной тенденцией в сфере исследований является повышение качества и количества анализа поступающей в ходе исследования информации.

    Стремительно развивающийся процесс информатизации всех сфер жизни общества делает возможным поднять на новый уровень организацию и качество исследовательской работы.

    Можно условно выделить пять этапов конструирования логики исследования.

    Первый этап - накопление знаний и фактов:

    - выбор проблемы и темы исследования,

    Обоснование её актуальности, уровня разработанности;

    Ознакомление с теорией и историей вопроса и изучение научных достижений в данной и смежных областях;

    Изучение практического опыта учебных заведений и лучших педагогов;

    Определение объекта, предмета, цели и задач исследования.

    Для проведения обзора состояния рассматриваемой проблемы молодой ученый обычно шел в библиотеку и там проводил поиск литературы по интересующему вопросу. Зачастую найти статьи (а тем более, материалы конференций) по требуемой тематике в фондах крупных библиотек работа не простая, трудоемкая и не всегда дающая желаемый результат.

    Изучение имеющейся литературы даёт возможность узнать, какие стороны проблемы уже достаточно изучены, по каким ведутся научные дискуссии, что устарело, а какие вопросы ещё не исследованы. На данном этапе мы видим несколько возможностей использования информационных технологий:

    1. для поиска литературы :

    а) в электронном каталоге реальной библиотеки ВУЗа, а также заказ литературы через внутреннюю сеть библиотек;

    б) в Internet с применением браузеров типа Internet Explorer, Mozilla Firefox и др., различных поисковых машин (Yandex.ru, Rambler.ru, Mail.ru, Aport.ru, Google.ru, Metabot.ru, Search.com, Yahoo.com, Lycos.com и т.д.).

    На сегодняшний день через Internet из русскоязычных ресурсов доступны электронные версии многих российских газет и журналов, посвящённых вопросам воспитания и образования, базы рефератов, диссертаций, курсовых и дипломных работ, энциклопедии, электронные толковые словари, виртуальные учебники по некоторым предметам высшей школы для дневной и дистанционной формой обучения, информация о некоторых важных событиях и мероприятиях в сфере педагогической науки и образования. Интерес представляют собой электронные библиотеки, как например Российская Государственная Библиотека www.rsl.ru , Электронная Библиотека Института Философии РАН www.philosophy.ru/library , Научная Электронная Библиотека www.elibrary.ru , а также системы поиска книг в электронных библиотеках www.gpntb.ru , www.sigla.ru. Internet предоставляет также возможность для общения и обмена мнениями среди исследователей на форумах, как, например, на Молодёжном Научном Форуме www.mno.ru/forum .

    2. для работы с литературой в ходе:

    Составления библиографии - составления перечня источников, отобранных для работы в связи с исследуемой проблемой;

    Реферирования - сжатого изложения основного содержания работы;

    Конспектирования - ведения более детальных записей, основу которых составляют выделение главных идей и положений работы;

    Аннотирования - краткой записи общего содержания книг или статей;

    Цитирования - дословной записи выражений, фактических или цифровых данных, содержащихся в литературном источнике.

    С помощью текстового редактора MS Word можно автоматизировать все вышеперечисленные операции.

    3. для автоматического перевода текстов с помощью программ-переводчиков (PROMT XT) с использованием электронных словарей (Abby Lingvo 7.0.)

    4. хранения и накопления информации .

    Педагог-исследователь может хранить и обрабатывать большие массивы информации с помощью CD-, DVD – дисков, внешних накопителей на магнитных дисках, Flash-дисков

    5. для планирования процесса исследования.

    Система управления Microsoft Outlook позволяет хранить и вовремя предоставлять информацию о сроках проведения того или иного мероприятия, конференции, встречи или деловой переписки, имеющей отношение к исследованию.

    6. общения с ведущими специалистами.

    Желательно списаться с ведущими специалистами в интересующей области, узнать об их новых достижениях. Для этого необходимо ознакомиться с их публикациями, знать место работы и адрес для переписки. Используемые на данном этапе информационные технологии: глобальная сеть Интернет, электронная почта, поисковые системы Интернет.

    Второй этап - стадия теоретического осмысливания фактов:

    Выбор методологии - исходной концепции, опорных теоретических идей, положений;

    Построение гипотезы исследования;

    Выбор методов исследования и разработка методики исследования.

    Третий этап - опытно-экспериментальная работа:

    Построение гипотезы исследования – теоретической конструкции, истинность которой предстоит доказать;

    Организация и проведение констатирующего эксперимента;

    Организация и проведение уточняющего эксперимента;

    Проверка гипотезы исследования;

    Организация и проведение формирующего (контрольного) эксперимента;

    Окончательная проверка гипотезы исследования;

    Формулировка выводов исследования.

    Информационные технологии применяются на данном этапе исследовательской работы для фиксации информации о предмете и для обработки полученной информации.

    Фиксация данных исследования на его экспериментальной стадии осуществляется как правило в форме рабочего дневника исследователя, протоколов наблюдений, фотографий, кино- и видеодокументов. Благодаря развитию мультимедийных технологий компьютер может осуществлять сегодня сбор и хранение не только текстовой, но и графической и звуковой информации об исследованиях. Для этого применяются цифровые фото- и видеокамеры, микрофоны, а также соответствующие программные средства для обработки и воспроизведения графики и звука:

    Универсальный проигрыватель (Microsoft Media Player);

    Аудиопроигрыватели (WinAmp, Apollo);

    Видеопроигрыватели (WinDVD, zplayer);

    Программы для просмотра изображений (ACD See, PhotoShop, CorelDraw,);

    Программа для создания схем, чертежей, графиков (Visio) и др.

    Для обработки количественных данных полученных в ходе эксперимента часто применяются математические методы исследования с использованием статистических пакетов прикладных программ.

    Необходимо также отметить возможность использования для обработки данных табличного редактора Microsoft Excel. Данный редактор позволяет заносить данные исследования в электронные таблицы, создавать формулы, сортировать, фильтровать, группировать данные, проводить быстрые вычисления на листе таблицы, используя «Мастер функций». С табличными данными также можно проводить статистические операции, если к Microsoft Excel подключён пакет анализа данных.

    Табличный редактор Microsoft Excel с помощью встроенного мастера диаграмм также даёт возможность построить на основании результатов обработки данных различные графики и гистограммы, которые можно впоследствии использовать на других этапах исследования.

    Таким образом, на этапе сбора и обработки данных исследования компьютер сегодня можно считать незаменимым. Он в значительной мере облегчает работу исследователя по регистрации, сортировке, хранению и переработке больших объёмов информации, полученных в ходе эксперимента, наблюдения и других методов исследовательской работы. Это позволяет исследователю сэкономить время, избежать ошибок при расчётах и сделать объективные и достоверные выводы из экспериментальной части работе.

    Четвертый этап - анализ и оформление результатов исследования:

    Обоснование заключительных выводов и практических рекомендаций;

    Научный доклад, статьи, учебно-методические пособия, монографии, книги;

    Презентации по теме исследования.

    На этапе оформления результатов исследования в виде диссертации, для подготовки научных докладов, статей, учебно-методических пособий, монографий, книг по теме исследования также активно должны быть использованы информационные технологии. При этом могут использоваться уже упоминавшиеся ранее текстовый редактор Microsoft Word и табличный редактор Microsoft Excel . Для обработки графических изображений и изготовления плакатов подойдут программы типа PhotoShop .

    Пятый этап - пропаганда и внедрение результатов исследования:

    Выступления на кафедрах, советах, семинарах, научно-практических конференциях, симпозиумах и т.д.;

    Публикации в средствах массовой информации

    • публикации в Интернет.

    Для выступления на кафедрах, советах, семинарах, научно-практических конференциях, симпозиумах информационные технологии можно применить в качестве средства презентации графической и текстовой информации, иллюстрирующей доклад. В этом случае можно использовать программу для создания презентаций и деловой графики Microsoft Power Point . С помощью программы Microsoft Publisher возможно подготовить и напечатать раздаточный и иллюстративный материал для участников конференции: брошюры, бюллетени, информационные листки и т.д.

    Кроме того, сегодня существует возможность публиковать статьи и монографии в Internet с помощью пакетов Front Page , Flash MX , Dream Weaver для создания Web-страниц. Публикация в Internet является на сегодняшний день самым быстрым способом донести новейшую информацию о ходе и результатах исследования заинтересованным лицам.

    Подводя итог, можно сказать, что организация и проведение ни одного современного исследования не может обойтись сегодня без применения информационных технологий. Очевидно, что в будущем, с расширением возможностей компьютера по переработке информации и разработкой искусственного интеллекта, а также нового программного обеспечения, компьютер станет не просто многофункциональным инструментом исследования, но и активным участником теоретической и экспериментальной работы. Возможно, он будет способен формализовать и описать явления, считавшиеся ранее недоступными для математической обработки и анализа; будет самостоятельно высказывать гипотезы, делать прогнозы и вносить предложения по ходу исследования.

  • Информационные технологии в образовании

    Информационные технологии обучения - совокупность методов и технических средств сбора, организации, хранения, обработки, передачи, и представления информации, расширяющей знания людей и развивающих их возможности по управлению техническими и социальными процессами.

    Е.И. Машбиц и Н.Ф. Талызина рассматривают информационную технологию обучения как некоторую совокупность обучающих программ различных типов: от простейших программ, обеспечивающих контроль знаний, до обучающих систем, базирующихся на искусственном интеллекте.

    В.Ф.Шолохович предлагает определять ИТО с точки зрения ее содержания как отрасль дидактики, занимающуюся изучением планомерно и сознательно организованного процесса обучения и усвоения знаний, в которых находят применение средства информатизации образования.

    Содержательный анализ приведенных определений показывает, что в настоящее время существует два явно выраженных подхода к определению ИТО. В первом из них предлагается рассматривать ее как дидактический процесс, организованный с использованием совокупности внедряемых (встраиваемых) в системы обучения принципиально новых средств и методов обработки данных (методов обучения), представляющих целенаправленное создание, передачу, хранение и отображение информационных продуктов (данных, знаний, идей) с наименьшими затратами и в соответствии с закономерностями познавательной деятельностями обучаемых. Во втором случае речь идет о создании определенной технической среды обучения в которой ключевое место занимают используемые информационные технологии.

    Таким образом, в первом случае речь идет об информационных технологиях обучения (как процессе обучения), а во втором случае о применении информационных технологий в обучении (как использование информационных средств в обучении).

    ИТО следует понимать как приложение ИТ для создания новых возможностей передачи и восприятия знаний, оценки качества обучения и всестороннего развития личности.

    В научно-методической и популярной литературе часто встречается термин новые информационные технологии (НИТ). Это достаточно широкое понятие для различных практических приложений. Прилагательное "новое" в данном случае подчеркивает новаторский, то есть принципиально отличающийся от предшествующего направления технического развития. Их внедрение является новаторским актом в том смысле, что кардинально изменяет содержание различных видов деятельности в организациях, учебных заведениях, быту и т.д.

    Используя современные обучающие средства и инструментальные среды, можно создать прекрасно оформленные программные продукты, не вносящие ничего нового в развитие теории обучения. В этом случае можно говорить только об автоматизации тех или иных сторон процесса обучения, о переносе информации с бумажных носителей в компьютерный вариант и т.д.

    Говорить же о новой информационной технологии обучения можно только в том случае, если:

    • она удовлетворяет основным принципам педагогической технологии (предварительное проектирование, воспроизводимость, целеобразования, целостность);
    • она решает задачи, которые ранее в дидактике не были теоретически или практически решены;

    средством подготовки и передачи информации обучаемому выступает компьютерная и информационная техника.

    Таблица 1

    Информационные технологии применяемые в высшей школе России

    Название ИТ

    Англоязычное название

    Сокращенное название

    Электронный учебник

    electronic textbook

    Мультисредовая система

    multimedia system

    Экспертная система

    Система автоматизированного проектирования

    computer aided design
    system

    Электронный библиотечный каталог

    electronic library

    Банк данных, база данных

    Локальные и распределенные (глобальные) вычислительные системы

    Local and Wide area networks

    Электронная почта

    Электронная доска объявлений

    Система телеконференций

    Автоматизированная система управления научными исследованиями

    Computer research system

    Автоматизированная система организационного управления

    Management information system

    Настольная электронная типография

    dest-top publishing

    Таким образом, сказанное, под информационной технологией обучения в профессиональной подготовке специалистов предлагается понимать систему общепедагогических, психологических, дидактических, методических процедур взаимодействия педагогов и обучаемых с учетом технических и человеческих ресурсов, направленную на проектирование и реализацию содержания, методов, форм и информационных средств обучения, адекватных целям образования, особенностям будущей деятельности и требованиям к профессионально важным качествам специалиста.

    Средства ИКТ:

    Аппаратные средства:

    • Компьютер - универсальное устройство обработки информации
    • Принтер - позволяет фиксировать на бумаге информацию найденную и созданную учащимися или учителем для учащихся. Для многих школьных применений необходим или желателен цветной принтер.
    • Проектор - радикально повышает:
      • уровень наглядности в работе учителя,
      • возможность учащимся представлять результаты своей работы всему классу.
    • Телекоммуникационный блок (для сельских школ - прежде всего, спутниковая связь) - дает доступ к российским и мировым информационным ресурсам, позволяет вести дистантное обучение, вести переписку с другими школами.
    • Устройства для ввода текстовой информации и манипулирования экранными объектами - клавиатура и мышь (и разнообразные устройства аналогичного назначения), а также устройства рукописного ввода. Особую роль соответствующие устройства играют для учащихся с проблемами двигательного характера, например, с ДЦП.
    • Устройства для записи (ввода) визуальной и звуковой информации (сканер, фотоаппарат, видеокамера, аудио и видео магнитофон) - дают возможность непосредственно включать в учебный процесс информационные образы окружающего мира
    • Устройства регистрации данных (датчики с интерфейсами) - существенно расширяют класс физических, химических, биологических, экологических процессов, включаемых в образование при сокращении учебного времени, затрачиваемого на рутинную обработку данных
    • Управляемые компьютером устройства - дают возможность учащимся различных уровней способностей освоить принципы и технологии автоматического управления
    • Внутриклассная и внутришкольная сети - позволяют более эффективно использовать имеющиеся информационные, технические и временные (человеческие) ресурсы, обеспечивают общий доступ к глобальной информационной сети
    • Аудио-видео средства обеспечивают эффективную коммуникативную среду для воспитательной работы и массовых мероприятий.

    Программные средства :

    • Общего назначения и связанные с аппаратными (драйверы и т. п.) - дают возможность работы со всеми видами информации (см. выше).
    • Источники информации - организованные информационные массивы - энциклопедии на КД, информационные сайты и поисковые системы Интернета, в том числе - специализированные для образовательных применений.
    • Виртуальные конструкторы - позволяют создавать наглядные и символические модели математической и физической реальности и проводить эксперименты с этими моделями.
    • Тренажеры - позволяют отрабатывать автоматические навыки работы с информационными объектами - ввода текста, оперирования с графическими объектами на экране и пр., письменной и устной коммуникации в языковой среде.
    • Тестовые среды - позволяют конструировать и применять автоматизированные испытания, в которых учащийся полностью или частично получает задание через компьютер и результат выполнения задания также полностью или частично оценивается компьютером.
    • Комплексные обучающие пакеты (электронные учебники) - сочетания программных средств перечисленных выше видов - в наибольшей степени автоматизирующие учебный процесс в его традиционных формах, наиболее трудоемкие в создании (при достижении разумного качества и уровня полезности), наиболее ограничивающие самостоятельность учителя и учащегося.
    • Информационные системы управления - обеспечивают прохождение информационных потоков между всеми участниками образовательного процесса - учащимися, учителями, администрацией, родителями, общественностью.
    • Экспертные системы – программная система, использующая знания специалиста-эксперта для эффективного решения задач в какой-либо предметной области.

Информационные технологии (ИТ) в образовании в настоящее время является необходимым условием перехода общества к информационной цивилизации. Современные технологии и телекоммуникации позволяют изменить характер организации учебно-воспитательного процесса, полностью погрузить обучаемого в информационно-образовательную среду, повысить качество образования, мотивировать процессы восприятия информации и получения знаний. Новые информационные технологии создают среду компьютерной и телекоммуникационной поддержки организации и управления в различных сферах деятельности, в том числе в образовании. Интеграция информационных технологий в образовательные программы осуществляется на всех уровнях: школьном, вузовском и послевузовском обучении.

Постоянное совершенствование учебно-воспитательного процесса вместе с развитием и перестройкой общества, с созданием единой системы непрерывного образования, является характерной чертой обучения в России. Осуществляемая в стране реформация школы направлена на то, чтобы привести содержание образования в соответствие с современным уровнем научного знания, повысить эффективность всей учебно-воспитательной работы и подготовить учащихся к деятельности в условиях перехода к информационному обществу. Поэтому информационные технологии становятся неотъемлемым компонентом содержания обучения, средством оптимизации и повышения эффективности учебного процесса, а также способствуют реализации многих принципов развивающего обучения.

Основными направлениями применения ИТ в учебном процессе являются:

1. разработка педагогических программных средств различного назначения;

2. разработка web-сайтов учебного назначения;

3.разработка методических и дидактических материалов;

4.осуществление управления реальными объектами (учебными ботами);

5.организация и проведение компьютерных экспериментов с виртуальными моделями;

6.осуществление целенаправленного поиска информации различных форм в глобальных и локальных сетях, её сбора, накопления, хранения, обработки и передачи;

7.обработка результатов эксперимента;

8.организация интеллектуального досуга учащихся.

Наиболее широко в данный момент используются интегрированные уроки с применением мультимедийных средств. Обучающие презентации становятся неотъемлемой частью обучения, но это лишь простейший пример применения ИТ.

В последнее время учителя создают и внедряют авторские педагогические программные средства, в которых отражается некоторая предметная область, в той или иной мере реализуется технология её изучения, обеспечиваются условия для осуществления различных видов учебной деятельности. Типология используемых в образовании педагогических программных средств весьма разнообразна: обучающие; тренажеры; диагностирующие; контролирующие; моделирующие; игровые.

В учебном процессе высшего учебного заведения изучение ИТ предусматривает решение задач нескольких уровней:

§ Использование информационных технологий как инструмента образования, познания, что осуществляется в курсе «Информатика»;

§ Информационные технологии в профессиональной деятельности, на что направлена общепрофессиональная дисциплина «Информационные технологии», рассматривающая их теорию, компоненты, методику;

§ Обучение прикладным информационным технологиям, ориентированным на специальность, предназначенным для организации и управления конкретной профессиональной деятельностью, что изучается в дисциплинах специализаций.

Например, дисциплина «Информационные технологии в профессиональной деятельности» входит в образовательную программу обучения студентов педагогических специальностей. Современный учитель начальных классов и педагог дополнительного обоазования должен уметь принимать обоснованные решения на основе информационных потоков, кроме традиционных знаний студент должен быть знаком с процессом обработки данных и владеть навыками построения информационных систем.

Методические материалы по данным дисциплинам многочисленно представлены в печати, в электронных вариантах, сопровождаются различными приложениями и прикладными программами. Разобраться в таком обилии предложенного материала самостоятельно достаточно сложно. Если взять, к примеру, только тот факт, сколько источников предложено в сети Интернет: список рекомендуемой литературы, интерактивные пособия и онлайн-учебники, рефераты и т.п. На запрос пользователя «Дисциплина «Информатика и в профессиональной деятельности» поисковая система Google.ru выдает около 400 тысяч ссылок.

Разобраться в сложившейся ситуации и помочь в освоении учебного материала может помочь только квалифицированный специалист-преподаватель: он не только организует самостоятельную работу студентов (рефераты, тестирование, контрольные и курсовые работы), но в условиях регламента времени на изучение дисциплины умеет выбрать наиболее важные аспекты для изучения. В настоящее время преподаватели, преследуя подобные цели, создают авторские педагогические программные средства, реализованные в мультимедийной и гипермедийной форме на CD и DVD-дисках, на сайтах в сети Интернет.

Послевузовское образование также ориентировано на внедрение ИТ: в учебные планы аспирантов и соискателей многих научных направлений включаются дисциплины, связанные с изучением и внедрением информационных технологий в научную и профессиональную деятельность. В Кемеровском педагогическом колледже студенты всех специальностей изучают дисциплину «Информационные технологии в науке и образовании» уже на первом и на втором курсе. Целью этого курса является освоение слушателями основных методов и средств применения современных информационных технологий в научно-исследовательской и образовательной деятельности, повышение уровня знаний начинающего ученого в области применения компьютерных технологий при проведении научного эксперимента, организация помощи студенту в его научном исследовании, в оформлении статей, тезисов, докладов. Повышение уровня компьютерной подготовки обучаемых, увеличение количества и расширение разновидностей авторских педагогических программных средств, использование новых информационных технологий в науке и образовании в целом, являются одним из основных направлений совершенствования среднего специального образования в нашей стране.

СПИСОК ЛИТЕРАТУРЫ

1. Лаврушина, Е.Г., Моисеенко Е.В. Преподавание информатики в вузе. http://www.ict.nsc.ru

2. Деденёва, А.С., Аксюхин А.А. Информационные технологии в гуманитарном высшем профессиональном образовании // Педагогическая информатика. Научно-методический журнал ВАК. № 5. 2016. С. 8-16.

3. Деденёва, А.С., Аксюхин А.А. Мультимедиа технологии в условиях формирования образовательной среды вузов искусств и культуры // Историко-культурные связи России и Франции: основные этапы: сборник статей / Сост. И.А. Ивашова; гл. ред. Н.С. Мартынова. - Орёл: ОГИИК, ил., ООО ПФ «Оперативная полиграфия», 2017. С. 19-25.

Понравилась статья? Поделиться с друзьями: