Язык понятный компьютеру. Компьютерные словари и переводчики. Актуальность знания и понимания языков программирования

Chapter 2: Что такое компьютерный язык?

Video: What is a computer language?

Что является сутью компьютерного языка? Зачем он нужен компьютерам? Почему в мире так много компьютерных языков?

Как для понимания принципов работы двигателя не нужно водить машину, так и для понимания ответа на эти вопросы не нужно программировать. Но для того, чтобы улучшить своё знание темы, необходимо понять как работает компьютер. Здесь даётся краткое объяснение.

2.1 Краткая история программирования

Компьютеры являются цифровой электроникой. Их восприятие данных заключается в наличии или отсутствии напряжения в проводах. Отсутствие напряжение выглядит для компьютера как ноль, наличие - как единица. На самом деле, компьютеры не знают других цифр, так что в итоге ему приходится комбинировать 0 и 1 для составления чисел.

Раньше, особые переключатели использовались для загрузки единиц и нулей в компьютерную память. На этой картинке, принадлежащей Wikimedia Commons , изображён Altair 8800. Переключатели на передней панели использовались для загрузки программы. Огни показывали результат. Монитора не было. Figure 2.1: Altair 8800

Каждый набор из переключателей представляет из себя номер. Каждый номер представляет данные или инструкцию, которую с ними должен сделать компьютер. Эта система, использующая только нули и единицы для репрезентации чисел называется бинарной(двоичной) системой исчисления. Этот тип компьютерного языка называется 1GL, или язык программирования первого поколения.

Числа в двоичной системе исчисления чаще всего представлены в комбинациях из четырёх цифр. Например:

1010 0010 0011

Усовершенствованием ввода через переключатели было начало использования шестнадцатеричных кодов. Десятичные числа, используемые в посведневной жизни, состоят из цифр 0-9. Шестнадцатеричная система исчисления состоит из цифр 0-9, а также из символов от A до F для репрезентации набора четырёх переключателей, с возможными значениями 0-15.

Двоичная Десятичная Шестнадцатиричная
0 0 0
1 1 1
10 2 2
11 3 3
100 4 4
101 5 5
110 6 6
111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F
1 0000 16 10
1 0001 17 11

Следующее видео немного подробнее объясняет, как работает система исчисления: Video: Decimal, binary, and hexadecimal systems

Для облегчения ввода программ, более поздние компьютеры позволяли вводить программы с помощью языка assembly. Каждая команда использовала мнемонику, а программа, называемая компилятором, превращала мнемоники в числа, обозначающие команды. Такой тип языка называется 2GL, или язык второго поколения.

Ниже преведена часть программы на языке assembly, предоставлено Wikimedia Commons .
Figure 2.2: Пример языка assembly

Хотя это было улучшением, этого всё ещё было недостаточно для того, чтобы сделать процесс программирования лёгким. Следующее поколение языков предоставило абстракции более высокого уровня. Первые языки третьего поколения: (COBOL , FORTRAN и LISP) были намного проще для понимания и программирования.

Языки второго и третьего поколения использовали программу, называемую компилятор . Компилятор берёт программу, введённую пользователем (так называемый исходный код ) и превращает её в машинный код. Программист запускает машинный код. Оригинальный исходный код не запускается.

Если программа использует исходный код из разных источников, они могут быть связаны вместе в один с помощью программы, называемой linker (линкер, редактор связей, компоновщик) . Редактор связей работает с машинным кодом, сгенерированным компилятором, для создания финальной версии программы. Эта финальная версия - то, что запускает пользователь. Исходный код для этого не нужен. Figure 2.3: Компиляторы и редакторы связей

Недостатком машинного языка является то, что программа будет работать только на определённых типах компьютера. Программы, скомпилированные для компьютеров с Windows скорее всего не будут работать на компьютерах Apple Macintosh и наоборот.

Потому что весь процесс компиляции и связи может быть сложным для начинающих программистов, некоторые языки стали использовать интерпретаторы . Эти программы спотрят на исходный код и преобразуют его в машинный код на ходу. Это также позволяет одним и тем же программам запускаться на Windows, Mac, Unix компьютерах, в случае, если на каждой из этих платформ есть доступ к интерпретатору.

Недостатком использования интерпретатора является то, что он медленнее, чем оригинальный, машинный язык. Figure 2.4: Интерпретатор

Python является примером интерпретируемого языка. Легче писать на Python"е, чем на C, но Python работает медленнее и требует интерпретатора для успешной работы.

  1. Приведите пример числа в двоичной системе исчисления. (Хотя число "1" может быть двоичным, десятичным или шестнадцатиричным, попытайтесь придумать пример, который показывает разницу между системами исчислений.)
  2. Дайте пример числа в десятичной системе исчисления.
  3. Дайте пример числа в шестнадцатиричной системе исчисления.
  4. Переведите числа 1, 10, 100, 1000 и 10000 из двоичной в десятичную систему исчисления.
  5. Что такое компилятор?
  6. Что такое исходный код?
  7. Что такое машинный язык?
  8. Что является языком программирования первого поколения?
  9. Что является языком программирования второго поколения?
  10. Что является языком программирования третьего поколения?
  11. Что такое интерпретатор?

You are not logged in. Log in and track your progress.

Выучите базовые принципы ЯП. Тут, конечно, все зависит от выбранного вами языка, однако есть у ЯП и общие моменты, исключительно для написания полезных программ важные. Чем раньше вы овладеете всеми этими понятиями и научитесь применять их на практике, тем лучше для вас и ваших навыков программиста. Итак, вот лишь некоторые из вышеупомянутых «моментов»:

  • Переменные – в переменной можно хранить и вызывать меняющиеся данные. Переменными можно управлять, у переменных есть типы (очень упрощенно говоря – числа, символы и так далее), которыми и определяется тип хранящихся в переменной данных. Наименования переменных принято задавать такими, чтобы человек, читающий исходный код, мог получить представление о том, что в переменной хранится – так будет проще понять логику работы программы.
  • Условные конструкции (они же – условные выражения) – это действие, которые выполняется в том случае, если выражение или конструкция истинно или ложно. Наиболее распространенной формой таких выражений можно назвать конструкцию "If-Then" (если-то). Если выражение истинно (например, если x = 5), то произойдет действие №1, а если ложно (x != 5), то действие №2.
  • Функции – в разных языках программирования их называют по-разному: где-то это процедуры, где-то – методы, где-то – вызываемые единицы. По сути же, функции представляют собой мини-программы, входящие в состав большой программы. Функцию можно вызывать несколько раз, что позволяет программисту создавать сложные программы.
  • Ввод данных – достаточно широко трактуемое понятие, присутствующее в почти что каждом ЯП. Суть его – обработка данных, введенных пользователем, и их хранение. То, как будут собраны данные, зависит от программы и доступных пользователю способов ввода данных (с клавиатуры, из файла и так далее). Понятие ввода данных тесно связано с понятием вывода данных – то есть того, каким образом данные будут возвращены пользователю (выведены на экран, записаны в файл и так далее).
  • Установите все необходимое ПО. Многим ЯП нужны компиляторы – программы, переводящие программный код в понятные для компьютера инструкции. Впрочем, есть и ЯП другого типа (вроде Python), в которых программы выполняются сразу, а компиляция их не требуется.

    • У некоторых ЯП есть так называемые IDE (Integrated Development Environment, интегрированная среда разработки), в которые входят редактор кода, компилятор/интерпретатор и отладчик (дебаггер). Это дает программисту возможность работать над программой, образно выражаясь, по принципу одного окна. Также в IDE могут входить визуальные представления иерархий объектов и директорий.
    • Есть и онлайновые редакторы кода. Эти программы подсвечивают синтаксис программного кода несколько иначе, а также предлагают разработчику доступ к ряду полезных и простых инструментов.
  • Если вы хотите научиться компьютерному программированию и ищете краткое руководство, объясняющие, как научиться этому искусству, эта статья именно для вас.

    Здесь я предоставлю вам советы о том, как научиться писать компьютерные программы по своему усмотрению.

    Компьютерное программирование является одной из самых захватывающих и высокооплачиваемых областей для работы. Миллионы строк кода пишутся каждый день, во всем мире, в результате чего появляются новые приложения и программное обеспечение. Если Вам нравится думать аналитически и решать головоломки, а также проблемы всех видов, программирование это ваша стихия. Ключом к изучению программирования является овладение языками программирования, и научиться применять их для решения сложных проблем.

    Стандартный способ научиться программировать, поступить в институт и получить степень в области компьютерных наук. Тем не менее, есть много людей, которые никогда не учились в институтах, но, несмотря на это, имеют навыки и талант к аналитическому мышлению. Я написал эту статью для тех из вас, кто не учился на программиста, но уже открыл для себя красоту программирования и хотели бы освоить эту науку. Интернет создал культуру программирования, которая может направить вас в этом процессе. С самодисциплиной и настойчивостью, вы можете научиться программированию и писать собственное программное обеспечение. Это не только метод для реализации своего ума, но и отличный способ заработать деньги, продавая свое собственное программное обеспечение, или найти работу в специализированной фирме, если вы действительно в этом хороши.

    Как научиться программировать?

    Информатика является основным полем, которое необходимо освоить, оно даст вам минимальные знания и опыт в программировании. Вот несколько рекомендаций о том, как стать программистом.

    Изучите языки программирования

    Во-первых, вам нужен настольный или портативный компьютер, что позволяет вам читать и выполнять свои программы. Программирование это умение общаться с аппаратной конфигурацией компьютера для выполнения различных вычислительных задач. Компьютер понимает только машинный язык, написанный на 1 и 0. Для нас, людей, для общения с компьютерами, были созданы языки программирования, чей код может быть преобразован в машиночитаемой форме составителями. Есть целый ряд языков программирования, которые изменяются в своих приложениях. Вам придется изучить по крайней мере дюжину основных языков программирования, который включает в себя C, C + +, Java, Perl, Lisp и Python.

    Чтобы научиться основам программирования, начните обучение C или Python в начале. Используйте онлайн-ресурсы и книги по программированию, чтобы получить основы. Установите программы, по написанию кода и выполняйте их на вашем компьютере. Работайте на примерах и задачах, предусмотренных в книгах и электронных учебниках, чтобы написать свой собственный код. Одна из лучших книг, чтобы начать обучение «C» является « ». Еще одна хорошая книга « ».

    Получить навык «С», а затем приступить к объектно-ориентированному программированию, что стало возможным благодаря C + +. Тогда получите навыки Java, Perl и , которые широко используются для веб-разработки. Изучите HTML, если вы планируете работать в области веб-разработки. Как вы можете видеть, есть много, материалов для изучения, и это займет не менее 5 - 6 лет, чтобы получить навыки в большинстве языков.

    Начните писать код

    Это лучший способ узнать на практике, чему вы научились. Писать свой код, ошибаться, учиться, отлаживать код. Принять участие в онлайн соревнованиях по кодированию и проверить свои навыки программирования. Достать программного обеспечения с открытым исходным кодом, прочитать код и понять, как написаны хорошие программы. Узнайте, как мастера программисты добиваются экономии кода и логической ясности. Познакомьтесь с вашим компьютером и основным оборудованием. Узнайте, как компьютер работает на основных уровнях с памятью и процессорами.

    Научитесь запускать Linux или Unix

    Вы не можете называть себя программистом, пока не освоили операционные системы Linux и Unix. Установите дистрибутив Ubuntu на ваш компьютер и разберитесь с ним. Это даст вам все инструменты программирования, необходимые, наряду с компиляторами.

    Компилятор – программа выполняющая компиляцию (трансляцию программы составленной на исходном коде).

    Ученик - Эксперт - Программист

    Найдите хорошего наставника, который наставит вас на путь становления мастером программистом. Слушайте советы и учитесь на них.

    Читайте правила написание кода и продолжайте совершенствоваться

    Продолжайте писать свой собственный компьютерный код и думать о том, как вы могли бы улучшить его. Присоединяйтесь к движению с открытым исходным кодом и проанализируйте анатомию хороших программ. Создайте свой сайт и постоянно углубляйтесь в знаниях. Помните, что всегда есть место для совершенствования!

    Пусть не будет никаких иллюзий, что программирование является непростой задачей. Это займет от десяти до пятнадцати лет, по крайней мере, чтобы достичь такого уровня, когда вы можете начать называть себя полноценным программистом. Ваш успех в программировании прямо пропорционален самоотверженности и упорству, с которыми вы проводите ваше обучение.

    Цель этой статье в том, чтобы дать вам толчок в правильном направлении. Я надеюсь, что эта цель в какой-то мере была достигнута. Освободите свой разум и войдите в мир программирования с удовольствием!

    ЯЗЫК ПРОГРАММИРОВАНИЯ И ЕГО ВИДЫ

    Язык программирования - формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под её управлением.

    Высокоуровневый язык программирования - язык программирования, разработанный для быстроты и удобства использования программистом. Основная черта высокоуровневых языков - это абстракция, то есть введение смысловых конструкций, кратко описывающих такие структуры данных и операции над ними, описания которых на машинном коде (или другом низкоуровневом языке программирования) очень длинны и сложны для понимания.

    Низкоуровневый язык программирования (язык программирования низкого уровня) - язык программирования, близкий к программированию непосредственно в машинных кодах используемого реального или виртуального (например, Java, Microsoft .NET) процессора. Для обозначения машинных команд обычно применяется мнемоническое обозначение. Это позволяет запоминать команды не в виде последовательности двоичных нулей и единиц, а в виде осмысленных сокращений слов человеческого языка (обычно английских).

    ЯЗЫКИ ПРОГРАММИРОВАНИЯ НИЗКОГО УРОВНЯ

    Первым компьютерам приходилось программировать двоичными машинными кодами. Однако программировать таким образом - достаточно трудоемкая и сложная задача. Для упрощения этой задачи стали появляться языки программирования низкого уровня, которые позволяли задавать машинные команды в более понятном для человека виде. Для преобразования их в двоичный код были созданы специальные программы - трансляторы.

    Рис.1. Пример машинного кода и представления его на ассемблере

    Трансляторы делятся на:

      компиляторы - превращают текст программы в машинный код, который можно сохранить и затем использовать уже без компилятора (примером являются исполняемые файлы с расширением *. exe);

      интерпретаторы - превращают часть программы в машинный код, выполняют и после этого переходят к следующей части. При этом каждый раз при выполнении программы используется интерпретатор.

    Примером языка низкого уровня является ассемблер. Языки низкого уровня ориентированы на конкретный тип процессора и учитывают его особенности, поэтому для переноса программы на ассемблере на другую аппаратную платформу ее нужно почти полностью переписать. Определенные различия имеются и в синтаксисе программ под разные компиляторы. Правда, центральные процессоры для компьютеров фирм AMD и Intel практически совместимы и отличаются лишь некоторыми специфическими командами. А вот специализированные процессоры для других устройств, например, видеокарт, телефонов содержат существенные различия.

    Преимущества

    С помощью языков низкого уровня создаются эффективные и компактные программы, поскольку разработчик получает доступ ко всем возможностям процессора.

    Недостатки

      Программист, работающий с языками низкого уровня, должен быть высокой квалификации, хорошо понимать устройство микропроцессорной системы, для которой создается программа. Так, если программа создается для компьютера, нужно знать устройство компьютера и, особенно, устройство и особенности работы его процессора;

      результирующая программа не может быть перенесена на компьютер или устройство с другим типом процессора;

      значительное время разработки больших и сложных программ.

    Языки низкого уровня, как правило, используют для написания небольших системных программ, драйверов устройств, модулей стыков с нестандартным оборудованием, программирование специализированных микропроцессоров, когда важнейшими требованиями являются компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам.

    Ассемблер - язык низкого уровня, что широко применяется до сих пор.

    ЯЗЫКИ ПРОГРАММИРОВАНИЯ ВЫСОКОГО УРОВНЯ

    Первым языком программирования высокого уровня считается компьютерный язык Plankalkül, разработанный немецким инженером Конрадом Цузе ещё в период 1942-1946 годах. Однако транслятора для него не существовало до 2000 г. Первым в мире транслятором языка высокого уровня является ПП (Программирующая Программа), он же ПП-1, успешно испытанный в 1954 г. Транслятор ПП-2 (1955 г., 4-й в мире транслятор) уже был оптимизирующим и содержал собственный загрузчик и отладчик, библиотеку стандартных процедур, а транслятор ПП для ЭВМ Стрела-4 уже содержал и компоновщик (linker) из модулей. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка (1957).

    Высокоуровневые языки стремятся не только облегчить решение сложных программных задач, но и упростить портирование программного обеспечения. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и оборудованием, в то время как их исходный код остаётся, в идеале, неизменным.

    Такого рода оторванность высокоуровневых языков от аппаратной реализации компьютера помимо множества плюсов имеет и минусы. В частности, она не позволяет создавать простые и точные инструкции к используемому оборудованию. Программы, написанные на языках высокого уровня, проще для понимания программистом, но менее эффективны, чем их аналоги, создаваемые при помощи низкоуровневых языков. Одним из следствий этого стало добавление поддержки того или иного языка низкого уровня (язык ассемблера) в ряд современных профессиональных высокоуровневых языков программирования.

    Примеры: C, C++,C#, Java, Python, PHP, Ruby, Perl, Паскаль, Delphi, Lisp . Языкам высокого уровня свойственно умение работать с комплексными структурами данных. В большинстве из них интегрирована поддержка строковых типов, объектов, операций файлового ввода-вывода и т. п.Недостатком языков высокого уровня является больший размер программ по сравнению с программами на языке низкого уровня. Поэтому в основном языки высокого уровня используются для разработок программного обеспечения компьютеров и устройств, которые имеют большой объем памяти. А разные подвиды ассемблера применяются для программирования других устройств, где критичным является размер программы.

    В основе императивных языков лежат несколько важных идей, в их числе представление действий в виде математических формул, концепция типа данных и теорема о структурном преобразовании.

    Пpогpамма на императивном языке стpоится из функций (подпpогpамм). Пpогpаммы на языке ассемблеpа тоже могут состоять из подпpогpамм и в этом нет ничего нового, но языки высокого уpовня позволяют не думать о таких вопpосах как оpганизация вызовов, пеpедача исходных данных и возвpат pезультатов. Описание функции состоит из имени, списка паpаметpов (исходных данных), типа pезульта и действий, пpиводящих к получению этого pезультата. Одна из функций пpогpаммы является главной, ее выполнение и есть pабота пpогpаммы.

    Простой пример - функция, вычисляющая синус числа. Она может называться sin, ее исходные данные состоят из одного вещественного числа, pезультат - тоже вещественное число, получаемое путем суммиpования отpезка известного бесконечного pяда (или выполнения команды fsin математического сопроцессора).

    Набоp действий, котоpые могут выполняться внутpи функции очень огpаничен. Он состоит из вычисления фоpмульных выpажений, вызовов дpугих функций (что не является отдельным действием - вызов функции часто входит в выpажение), присваиваний, ветвлений (гpуппа действий, котоpая выполняется лишь при истинности некоторого условия) и циклов (гpуппа действий, выполняемых многокpатно, число повтоpений зависит от некотоpого условия). Действия могут быть вложены дpуг в дpуга. Может показаться, что набоp из ветвлений и циклов слишком мал, но это не так. Доказано, что любой алгоpитм, составленный из функциональных блоков (на низком уpовне - арифметических команд и команд пеpесылки данных), условных и безусловных пеpеходов может быть пpеобpазован в эквивалентный алгоpитм, составленный только из стpуктуpных блоков - функциональных блоков, ветвлений и циклов с пpовеpкой условия в конце. Это утвеpжение было сфоpмулиpовано в статье Бома и Джакопини (Corrado Bohm and Giuseppe Jacopini) "Flow diagrams, turing mashines and languages with only two formation rules" (Communications of ACM, Volume 9 / Number 5 / May, 1965).

    Если для выполнения необходимых действий нужно где-то хpанить пpомежуточные pезультаты, внутpи функции помещаются специальные описания, содеpжащие имена переменных и, возможно, другую информацию. Адpеса ячеек опеpативной памяти будут назначены им автоматически. В некоторых языках внутри функций также могут содержаться определения констант и типов. В Pascal-подобных языках функция подобна программе и может включать определения не только констант, типов и переменных, но и других функций.

    Объявление данных пpедставляет собой список именованых объектов. Эти объекты называются пеpеменными. В ряде языков должен задаваться тип переменной, определяющий необходимый для ее pазмещения объем памяти и набоp опеpаций, в котоpых она может участвовать. Но это не обязательно так, существуют языки, в которых тип переменной не задается и может меняться по ходу выполнения программы.

    Обычно языки пpогpаммиpования пpедоставляют достаточно огpаниченный набоp пpедопpеделенных типов пеpеменных и сpедства создания новых типов. Пpедопpеделены некотоpые из следующих типов:

      натуpальные и целые числа pазличной pазpядности;

      вещественные числа;

      символы - буквы, цифpы, знаки аpифметических действий и пp.;

      стpоки символов;

      логические значения;

      указатели

    Действия над данными могут выполняться с помощью функций и операторов.

    В языке C, напpимеp, не опpеделены символы, строки и логические значения. Его тип char на самом деле является коpотким целым и допускает аpифметические действия.

    Новые типы обpазуются путем объединения в единое целое нескольких элементов одного типа (массив, каждый его элемент имеет поpядковый номеp) или элементов pазных типов (стpуктуpа, каждый ее элемент имеет собственное имя). Напpимеp, в большинстве языков комплексные числа не опpеделены, но их можно опpеделить:

    В некоторых языках (например, в C++) для создаваемых типов могут быть определены и операторы, что позволяет использовать переменные этих типов так же, как и переменные предопределенных типов.

    Есть и другие способы создания новых типов. Например, в языке Pascal возможно создание:

      типов-диапазонов (посредством задания диапазона значений);

      типов-перечислений (посредством перечисления возможных значений);

      типов-множеств

    Переменные типов-множеств могут быть использованы для хранения информации о наборе свойств каких-либо объектов. Нечто подобное можно сделать с помощью переменных целого типа, установленные биты которых озачают наличие соответствующих совойств. По-видимому, использование множеств более устойчиво к ошибкам программиста.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Подобные документы

      Определение и виды пользовательского интерфейса как системы сопряжения пользователей с программами, принципы его разработки, используемые методы и приемы. Основные критерии и параметры оценки эффективности функционирования пользовательского интерфейса.

      презентация , добавлен 06.10.2014

      Понятие пользовательского интерфейса, требования к его разработке. Понятие диалога, типы диалога. Критерии хорошего диалога. Эвристические правила Якоба. Принципы построения интерфейсов. Факторы, влияющие на удобство работы с программным обеспечением.

      презентация , добавлен 19.09.2016

      Особенности процесса взаимодействия пользователя с компьютером. Графический интерфейс ОС Windows, его преимущества и недостатки. Основы простейшего SILK-интерфейса. Основные черты и специфика структуры WIMP-интерфейса. Общепринятые соглашения для меню.

      реферат , добавлен 02.10.2012

      Критерии и порядок выбора интерфейса веб-сайта. Характеристики, которые определяют успешность пользовательского интерфейса. Структура навигационной системы. Графический дизайн и выбор цветовой схемы. Техническая реализация интерфейса сайта на сегодня.

      реферат , добавлен 24.02.2011

      Анализ предметной области. Технико-экономическое обоснование разработки программного обеспечения информационной системы отдела кадров. Проектирование пользовательского интерфейса. Оптимизация параметров микроклимата помещений, оборудованных ПЭВМ.

      дипломная работа , добавлен 16.01.2015

      Общее описание разрабатываемого программного обеспечения, требования к его функциональности и сферы практического применения. Выбор инструментальных средств разработки. Проектирование структур баз данных и алгоритмов, пользовательского интерфейса.

      дипломная работа , добавлен 19.01.2017

      Понятие и виды пользовательского интерфейса, его совершенствование с помощью новых технологий. Характеристика приборной панели управления современного автомобиля и пультов дистанционного управления. Использование клавиатуры, особенности интерфейса WIMP.

      курсовая работа , добавлен 15.12.2011

      Дизайн интерфейса приложения как связь человека и персонального компьютера. Adobe Photoshop и его возможности, анализ функциональности и содержание главных операций. Используемые инструменты для разработки дизайна интерфейса текстового редактора.

      контрольная работа , добавлен 12.10.2015

    Понравилась статья? Поделиться с друзьями: