Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной. Простейшие функциональные зависимости

Реляционная база данных содержит как структурную, так и семантическую информацию. Структура базы данных определяется числом и видом включенных в нее отношений, и связями типа "один ко многим", существующими между кортежами этих отношений. Семантическая часть описывает множество функциональных зависимостей, существующих между атрибутами этих отношений. Дадим определение функциональной зависимости.

Определение: Если даны два атрибута X и Y некоторого отношения, то говорят, что Y функционально зависит от X, если в любой момент времени каждому значению X соответствует ровно одно значение Y. Функциональная зависимость обозначается X -> Y. Отметим, что X и Y могут представлять собой не только единичные атрибуты, но и группы, составленные из нескольких атрибутов одного отношения. Можно сказать, что функциональные зависимости представляют собой связи типа "один ко многим", существующие внутри отношения.

    2-аянормальная форма (2НФ) отношения. Определение полной функциональной зависимости и 2НФ. Характеристика отношения во 2НФ. Алгоритм приведения ко 2НФ. Теорема Хита. Примеры.

Понятие полной функциональной зависимости.

Определение: неключевой атрибут функционально полно зависит от составного ключа если он функционально зависит от всего ключа в целом, но не находится в функциональной зависимости от какого-либо из входящих в него атрибутов.

Определение: избыточная функциональная зависимость - зависимость, заключающая в себе такую информацию, которая может быть получена на основе других зависимостей, имеющихся в базе данных.

2NF - вторая нормальная форма.

Определение второй нормальной формы: отношение находится во 2НФ , если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от ключа.

Корректной считается такая схема базы данных, в которой отсутствуют избыточные функциональные зависимости. В противном случае приходится прибегать к процедуре декомпозиции (разложения) имеющегося множества отношений. При этом порождаемое множество содержит большее число отношений, которые являются проекциями отношений исходного множества. (Операция проекции описана в разделе, посвященном реляционной алгебре). Обратимый пошаговый процесс замены данной совокупности отношений другой схемой с устранением избыточных функциональных зависимостей называется нормализацией.

Условие обратимости требует, чтобы декомпозиция сохраняла эквивалентность схем при замене одной схемы на другую, т.е. в результирующих отношениях:

1)не должны появляться ранее отсутствовавшие кортежи;

2)на отношениях новой схемы должно выполняться исходное множество функциональных зависимостей.

Теорема Хита

Пусть дано отношение .

Если r удовлетворяет функциональной зависимости , то оно равно соединению его проекцийи

    3-я нормальная форма (3НФ) отношения. Определение транзитивной зависимости и 3НФ.Алгоритм приведения к 3НФ.Нормальная форма Бойса-Кодда (НФБК).Определение и алгоритм приведения к НФБК. Характеристика отношения в 3НФ и в НФБК. Примеры.

Лекции № 8-9.

Функциональная зависимость. Нормальные формы.

Цель занятия: познакомить студентов с определением функциональной зависимости атрибутов, с понятием нормализации исходного отношения, рассказать о причинах, приводящих к необходимости нормализации файлов записи, ввести способы обеспечения требуемого уровня нормальности таблицы, определить нормальные формы на конкретном примере.

Функциональные зависимости

Теория нормализации, как и теория баз данных в целом, опирается на математический аппарат, основу которого составляют теория множеств и элементы алгебры.

Одни и те же данные могут группироваться в таблицы (отношения) различными способами. Группировка атрибутов в отношениях должна быть рациональной (т. е. дублирование данных д.б. минимальным) и упрощающей процедуры их обработки и обновления. Устранение избыточности данных является одной из важнейших задач проектирования баз данных и обеспечивается нормализацией.

Нормализация таблиц (отношений) - это формальный аппарат ограничений на формирование таблиц (отношений), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных. Процесс нормализации заключается в разложении (декомпозиции) исходных отношений БД на более простые отношения. Каждая ступень этого процесса приводит схему отношений в последовательные нормальные формы. Для каждой ступени нормализации имеются наборы ограничений, которым должны удовлетворять отношения БД. Нормализация позволяет удалить из таблиц базы избыточную неключевую информацию.

Вначале вспомним некоторые понятия:

Простой атрибут - это атрибут, значения которого неделимы. Иными словами, в таблице нет полей типа ФИО или Адрес - они разложены на поля Фамилия, Имя, Отчество в первом случае и на поля Индекс, Город и т. д. во втором.

Сложный (составной) атрибут получается путем соединения нескольких атомарных атрибутов, иначе его называют вектором или агрегатом данных.

Определение функциональной зависимости: Пусть X и Y атрибуты некоторого отношения. Если в любой момент времени произвольному значению X соответствует единственное значение Y, то Y функционально зависит от X (X Y)

Если ключ является составным, то любой атрибут должен зависеть от ключа в целом, но не может находиться в функциональной зависимости от какой-либо части составного ключа, т.е. функциональная зависимость имеет вид (X 1 , X 2 , ..., X) Y.

Функциональная зависимость может быть полной или неполной.

Неполной зависимостью называется зависимость неключевого атрибута от части составного ключа.


Полной функциональной зависимостью называется зависимость неключевого атрибута от всего составного ключа, а не от его частей.

Определение транзитивной функциональной зависимости: Пусть X, Y, Z - три атрибута некоторого отношения. При эtom X Y и Y Z, но обратное соответствие отсутствует, то есть Y не зависит от Z, а Х не зависит от Y. Тогда говорят, что Z транзитивно зависит от Х.

Определение многозначной зависимости: Пусть Х и Y атрибуты некоторого отношения. Атрибут Y многозначно зависит от атрибута X, если. каждому значению X соответствует множество значений Y, не связанных с другими атрибутами из отношения. Многозначные зависимости могут носить характер «один ко многим» (1:М), «многие к одному» (М:1) или «многие ко многим» (М:М), обозначаемые соответственно: X=>Y, Y<=X и X<=>Y. Например, преподаватель ведет несколько предметов, а каждый предмет может вестись несколькими преподавателями, тогда имеет место зависимость ФИО <=> Предмет.

Рассмотрим следующий пример: Предположим, что для учебной части факультета создается БД о преподавателях, которая включает следующие атрибуты:

ФИО - фамилия и инициалы преподавателя (совпадения фамилий и инициалов исключаются).

Должность - должность, занимаемая преподавателем.

Оклад- оклад преподавателя.

Стаж - преподавательский стаж. Д_Стаж - надбавка за стаж.

Кафедра - номер кафедры, на которой числится преподаватель.

Предмет - название предмета (дисциплины), читаемого преподавателем.

Группа - номер группы, в которой преподаватель проводит занятия.

Вид занятия - вид занятий, проводимых преподавателем в учебной группе.

Исходное отношение ПРЕПОДАВАТЕЛЬ

Реляционная база данных содержит как структурную, так и семантическую информацию. Структура базы данных определяется числом и видом включенных в нее отношений, и связями типа "один ко многим", существующими между кортежами этих отношений. Семантическая часть описывает множество функциональных зависимостей, существующих между атрибутами этих отношений. Дадим определение функциональной зависимости.

Определение: Если даны два атрибута X и Y некоторого отношения, то говорят, что Y функционально зависит от X, если в любой момент времени каждому значению X соответствует ровно одно значение Y. Функциональная зависимость обозначается X -> Y. Отметим, что X и Y могут представлять собой не только единичные атрибуты, но и группы, составленные из нескольких атрибутов одного отношения. Можно сказать, что функциональные зависимости представляют собой связи типа "один ко многим", существующие внутри отношения.

    2-аянормальная форма (2НФ) отношения. Определение полной функциональной зависимости и 2НФ. Характеристика отношения во 2НФ. Алгоритм приведения ко 2НФ. Теорема Хита. Примеры.

Понятие полной функциональной зависимости.

Определение: неключевой атрибут функционально полно зависит от составного ключа если он функционально зависит от всего ключа в целом, но не находится в функциональной зависимости от какого-либо из входящих в него атрибутов.

Определение: избыточная функциональная зависимость - зависимость, заключающая в себе такую информацию, которая может быть получена на основе других зависимостей, имеющихся в базе данных.

2NF - вторая нормальная форма.

Определение второй нормальной формы: отношение находится во 2НФ , если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от ключа.

Корректной считается такая схема базы данных, в которой отсутствуют избыточные функциональные зависимости. В противном случае приходится прибегать к процедуре декомпозиции (разложения) имеющегося множества отношений. При этом порождаемое множество содержит большее число отношений, которые являются проекциями отношений исходного множества. (Операция проекции описана в разделе, посвященном реляционной алгебре). Обратимый пошаговый процесс замены данной совокупности отношений другой схемой с устранением избыточных функциональных зависимостей называется нормализацией.

Условие обратимости требует, чтобы декомпозиция сохраняла эквивалентность схем при замене одной схемы на другую, т.е. в результирующих отношениях:

1)не должны появляться ранее отсутствовавшие кортежи;

2)на отношениях новой схемы должно выполняться исходное множество функциональных зависимостей.

Теорема Хита

Пусть дано отношение .

Если r удовлетворяет функциональной зависимости , то оно равно соединению его проекцийи

    3-я нормальная форма (3НФ) отношения. Определение транзитивной зависимости и 3НФ.Алгоритм приведения к 3НФ.Нормальная форма Бойса-Кодда (НФБК).Определение и алгоритм приведения к НФБК. Характеристика отношения в 3НФ и в НФБК. Примеры.

Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует в точности одно значение В.

Обозначение : A → B. Это значит, что во всех кортежах с одинаковым значением атрибута А атрибут В будет иметь также одно и то же значение.

Если существует функциональная зависимость вида A→B и В→А, то между А и В имеется взаимно однозначное соответствие , или функциональная зависимость . О

Обозначение : A↔B или В↔А.

Если отношение находится в 1НФ, то все неключевые атрибуты функционально зависят от ключа с различной степенью зависимости.

Частичная зависимость (частичная функциональная зависимость) – зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость – зависимость неключевого атрибута от всего составного ключа.

Транзитивная зависимость

Атрибут С зависит от атрибута А транзитивно (существует транзитивная зависимость ), если для атрибута А, В, С выполняются условия A→B и В→С, по обратной зависимости отсутствуют.

Множественная зависимость

В отношении R атрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами R.

Обозначения : А=>B, A<=B, A<=>B.

Взаимно независимые атрибуты

Два и более атрибута называются взаимно независимыми , если ни один из этих атрибутов не является функционально зависимым от других атрибутов.

Обозначения : А →В, А=В.

Нормальные формы:

    Первая нормальная форма (1НФ). Отношение находится в 1НФ, если все его атрибуты являются простыми (имеют единственное значение).

    Вторая нормальная форма (2НФ). Отношение находится в 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально зависит от первичного ключа (составного).

    Третья нормальная форма (3НФ). Отношение находится в 3НФ в том и только в том случае, если все атрибуты отношения взаимно независимы и полностью зависят от первичного ключа.

    Нормальная форма Бойса-Кодда (НФБК). Отношения находится в НФБК, если оно находится в 3НФ и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

    Четвертая нормальная форма (4НФ). Отношения находится в 4НФ в том и только в том случае, когда существует многозначная зависимость А=>B, а все остальные атрибуты отношения функционально зависят от А.

    Пятая нормальная форма (5НФ). Отношения находится в 5НФ, если оно находится в 4НФ и удовлетворяет зависимости по соединению относительно своих проекций.

    Шестая нормальная форма (6НФ). Отношение находится в 6НФ тогда и только тогда, когда она не может быть подвергнута дальнейшей декомпозиции без потерь.

    Обеспечение непротиворечивости и целостности данных в базе данных

Ответ :

Целостность – это свойство БД, означающее, что она содержит полную, непротиворечивую и адекватно отражающую предметную область информацию.

Различают:

    Физическую целостность – наличие физического доступа к данным и то, что данные не утрачены.

    Логическую целостность – отсутствие логических ошибок в БД, к которым относятся нарушение структуры БД или ее объектов, удаление или изменение установленных связей между объектами и т.д.

Поддержание целостности БД включает:

    Проверку (контроль) целостности

    Восстановление в случае обнаружения противоречий в базе.

Целостное состояние задается с помощью ограничений целостности (условий, которыми должны удовлетворять данные). Два типа ограничений целостности :

    Ограничение значений атрибутов отношений . Например : требование недопустимости NULL-значений, недопустимости повторяющихся значений в атрибутах, контроль принадлежности значений атрибутов заданного диапазона.

    Структурные ограничения на кортежи отношений . Определяет требования целостности сущностей и целостности ссылок .

Требование целостности сущностей состоит в том, что любой кортеж отношения должен быть отличным от любого другого кортежа этого отношения , иными словами, любое отношение должно обладать первичным ключом .

Требование целостности ссылок состоит в том, что для каждого значения внешнего ключа родительской таблицы должна найтись строка в дочерней таблице с таким же значением первичного ключа.

    Метод «сущность - связь»

Ответ :

Метод «сущность-связь» (метод «ER-диаграмм») – это метод, основанный на использование диаграмм, называемых соответственно диаграммами ER-экземпляров и диаграммами ER-типа.

Основные понятия

Сущность – это объект, информация о котором хранится в БД.

Атрибут – это свойство сущности.

Ключ сущности – это атрибут (набор атрибутов), используемый для идентификации экземпляра сущности.

Связь между сущностями – это зависимость между атрибутами этих сущностей.

Графические средства , используемые для получения наглядности и удобства проектирования:

    Диаграмма ER- экземпляров ;

    Диаграмма ER -типа или ER -диаграмма .

На основе анализа ER-диаграмм формируется отношения проектируемой БД. При этом учитывается степень связи сущностей и класс их принадлежности.

Степень связи – это характеристика связи между сущностями (1:1, 1:М; М:1; М:М).

Класс принадлежности сущности может быть: обязательным и необязательным .

Обязательный – если все экземпляры сущности обязательно участвуют в рассматриваемой связи.

Необязательный – не все экземпляры участвуют в рассматриваемой связи.

    Этапы проектирования баз данных

Ответ :

I . Концептуальное проектирование – сбор, анализ и редактирование требований к данным.

Цель : создание концептуальной модели данных, исходя из представлений пользователя о предметной области.

Процедуры :

    Определение сущностей и их документирование;

    Определение связей между сущностями и их документирование;

    Создание модели предметной области;

    Определение значений атрибутов;

    Определение первичных ключей для сущностей.

II . Логическое проектирование – на основе концептуальной модели создается структура данных.

Цель : преобразование концептуальной модели на основе выбранной модели данных в логическую модель, независимую от особенностей используемой в дальнейшем СУБД для физической реализации БД.

Процедуры :

    Выбор модели данных;

    Определение набора таблиц и их документирование;

    Нормализация таблиц;

    Определение требований к поддержке целостности данных и их документирование.

III . Физическое проектирование – определение особенностей данных и методов доступа.

Цель: описание конкретной реализации БД, размещение во внешней памяти компьютера.

Процедуры:

    Проектирование таблиц БД;

    Проектирование физической организации БД;

    Разработка стратегии защиты БД.

    Жизненный цикл базы данных

Ответ :

Жизненный цикл БД – это процесс проектирования, реализации и поддержания систем БД.

Стадии жизненного цикла БД:

    Анализ – анализ предметной области и выявление требований к ней, оценка актуальности системы.

    Проектирование – создание логической структуры БД, функциональное описание программных моделей и информационных запросов.

    Реализация – разработка ПО для БД, проводится тестирование.

    Эксплуатация и сопровождение .

Этапы жизненного цикла БД:

    Предварительное планирование – планирование БД, выполнения стратегического плана разработки БД (какие приложения используются, какие функции они выполняют, какие файлы связаны с каждым из этих приложений и какие новые файлы и приложения находятся в процессе разработки).

    Проверка осуществимости – проверка технологической, операционной и экономической осуществимостей.

    Определение требований – выбор цели БД, выявление информационных требований к БД, требования к оборудованию и к ПО, определение пользовательских требований.

    Концептуальное проектирование – создание концептуальной схемы.

    Реализация – приведение концептуальной модели ф функциональную БД.

    Выбор и приобретение необходимой СУБД.

    Преобразование концептуальной модели в логическую и физическую модели.

    На основе инфологической модели строится схема данных для конкретной СУБД.

    Определяются какие прикладные процессы необходимо реализовать как хранимые процедуры.

    Реализовать ограничения, предназначенные для обеспечения целостности данных.

    Спроектировать триггеры.

    Разработать стратегию индексирования и кластеризации, выполнить оценку размеров таблицы, кластеров и индексов.

    Определить уровни доступа пользователей, разработать и внедрить правила безопасности.

    Разработать сетевую топология БД.

    Создание словаря данных.

    Заполнение БД.

    Создание прикладного ПО, контроль управления.

    Обучение пользователя.

    Оценка и усовершенствование схемы БД .

    Правила формирования отношений

Ответ :

Правила формирования отношений основываются на учете следующего:

    Степень связи между сущностями (1:1, 1:М, М:1, М:М);

    Класса принадлежности экземпляров сущностей (обязательный и необязательный).

Лекция 3. Общие понятия и определения. Классификация функций. Предел функции. Бесконечно малые и бесконечно большие функции. Основные теоремы о бесконечно малых функциях.

Функция

При решении различных задач обычно приходится иметь дело с постоянными и переменными величинами.

Определение

Постоянной величиной называется величина, сохраняющая одно и тоже значение или вообще или в данном процессе: в последнем случае она называется параметром.

Переменной величиной называется величина, которая может принимать различные числовые значения.

Понятие функции

При изучении различных явлений обычно имеем дело с совокупностью переменных величин, которые связаны между собой так, что значения одних величин (независимые переменные) полностью определяют значения других (зависимые переменные и функции).

Определение

Переменная величина y называется функцией (однозначной) от переменной величины x, если они связаны между собой так, что каждому рассматриваемому значению x соответствует единственное вполне определенное значение величины y (сформулировал Н.И.Лобачевский).

Обозначение y=f(x) (1)

x – независимая переменная или аргумент;

y – зависимая переменная (функция);

f – характеристика функции.

Совокупность всех значений независимой переменной, для которых функция определена, называется областью определения или областью существования этой функции. Областью определения функции может быть: отрезок, полуинтервал, интервал, вся числовая ось.

Каждому значению радиуса соответствует значение площади круга. Площадь – функция от радиуса, определенная в бесконечном интервале

2. Функция (2). Функция определена при

Для наглядного представления поведения функции строят график функции.

Определение

Графиком функции y=f(x) называется множество точек M(x,y) плоскости OXY , координаты которых связаны данной функциональной зависимостью. Или график функции – это линия, уравнением которой служит равенство, определяющее функцию.

Например, график функции (2) – полуокружность радиуса 2 с центром в начале координат.

Простейшие функциональные зависимости

Рассмотрим несколько простейших функциональных зависимостей

  1. Прямая функциональная зависимость

Определение

Две переменные величины называются прямо пропорциональными, если при изменении одной из них в некотором отношении, другая изменяется в том же соотношении.

y=kx , где k – коэффициент пропорциональности.

График функции

  1. Линейная зависимость

Определение

Две переменные величины связаны линейной зависимостью, если , где - некоторые постоянные величины.

График функции

  1. Обратная пропорциональная зависимость

Определение

Две переменные величины называются обратно пропорциональными, если при изменении одной из них в некотором отношении, другая изменяется в обратном отношении.

  1. Квадратичная зависимость

Квадратичная зависимость в простейшем случае имеет вид , где k – некоторая постоянная величина. График функции – парабола.

  1. Синусоидальная зависимость.

При изучении периодических явлений важную роль играет синусоидальная зависимость

- функция называется гармоникой.

A – амплитуда;

Частота;

Начальная фаза.

Функция периодическая с периодом . Значения функции в точках x и x+T , отличающихся на период, одинаковы.

Функцию можно привести к виду , где . Отсюда получаем, что графиком гармоники является деформированная синусоида с амплитудой A периодом T, сдвинутая по оси ОХ на величину

T

Способы задания функции

Обычно рассматривают три способа задания функции: аналитический, табличный, графический.

  1. Аналитический способ задания функции

Если функция выражена при помощи формулы, то она задана аналитически.

Например

Если функция y=f(x) задана формулой, то ее характеристика f обозначает ту совокупность действий, которую нужно в определенном порядке произвести над значением аргумента x , чтобы получить соответствующее значение функции.

Пример . Выполняется три действия над значением аргумента.

  1. Табличный способ задания функции

Этот способ устанавливает соответствие между переменными с помощью таблицы. Зная аналитическое выражение функции, можно представить эту функцию для интересующих нас значений аргумента при помощи таблицы.

Можно ли от табличного задания функции перейти к аналитическому выражению?

Заметим, что таблица дает не все значения функции, причем промежуточные значения функции могут быть найдены лишь приближенно. Это, так называемое интерполирование функции. Поэтому, в общем случае найти точное аналитическое выражение функции по табличным данным нельзя. Однако всегда можно построить формулу, и при том не одну, которая для значений аргумента, имеющихся в таблице, будет давать соответствующие табличные значения функции. Такого рода формула называется интерполяционной.

  1. Графический способ задания функции

Аналитический и табличный способы не дают наглядного представления о функции.

Этого недостатка лишен графический способ задания функции y=f(x) , когда соответствие между аргументом x и функцией y устанавливается с помощью графика.

Понятие неявной функции

Функция называется явной, если она задана формулой, правая часть которой не содержит зависимой переменной.

Функция y от аргумента x называется неявной, если она задана уравнением

F(x,y)=0 (1) неразрешенным относительно зависимой переменной.

Понятие обратной функции

Пусть задана функция y=f(x) (1). Задавая значения аргумента х, получаем значения функции y.

Можно, считая y аргументом, а х – функцией, задавать значения y и получать значения x . В таком случае уравнение (1) будет определять x , как неявную функцию от y . Эта последняя функция называется обратной по отношению к данной функции y .

Предполагая, что уравнение (1) разрешено относительно x, получаем явное выражение обратной функции

(2), где функция для всех допустимых значений y удовлетворяет условию

Понравилась статья? Поделиться с друзьями: