Термическое и динамическое действие токов короткого замыкания. Короткое замыкание в электроэнергетических системах переменного тока. Конспект лекций по дисциплине «Электроснабжение промышленных предприятий»

Электродинамическую силу взаимодействия м/у двумя параллельными проводниками (рис. 1) произвольного сечения, обтекаемые токами i 1 и i 2 ,определяют по формуле

F=2.04·k ф i 1 i 2 ·l/a· 10 -8, кГ ,

где i 1 и i 2 – мгновенные значения токов в проводниках, a ; l – длина параллельных проводников, см ; a – расстояние м/у осями проводников, см ; k ф - коэффициент формы.

Сила взаимодействия двух параллельных проводников равномерно распределена по их длине. В практических расчетах эту равномерно распределенную силу заменяют результирующей силой F , приложенной к проводникам в середине их длины.

При одинаковом направлении токов в проводниках они притягиваются, а при разном – отталкиваются.

Коэффициент формы k ф зависит от формы сечения проводников и их взаимного расположения. Для круглых и трубчатых проводников k ф =1; для проводников других форм сечения принимают k ф =1 в тех случаях, когда сечение проводников мало, а длина их велика по сравнению с расстоянием м/у ними и можно предположить, что весь ток сосредоточен в оси проводника. Так, принимают k ф =1 при определении сил взаимодействия м/у фазами шинных конструкций распределительных устройств независимо от формы сечения шин, т.к. расстояние м/у шинами разных фаз в распределительных устройствах достаточно велики и составляют несколько сотен миллиметров и более.

Если расстояние м/у проводниками (шинами) прямоугольных, коробчатых и других сечений мало, то k ф ≠1.

Сила, действующая на проводник с током, определяется как результат взаимодействия его с токами в проводниках двух других фаз, при этом в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

f=√3·10 -7 · k ф ·I 2 m /a,

где I m – амплитуда тока в фазе, А; a – расстояние м/у соседними фазами, м.

Коэффициент √3 учитывает фазовые смещения токов в проводниках.

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ достигает своего наибольшего значения – ударного. При оценке взаимодействия фаз необходимо рассматривать двухфазное и трехфазное КЗ.

Для определения удельного усилия при трехфазном КЗ в системе проводников пользуются выражением

f (3) =√3·10 -7 · k ф ·i ( 3)2 у /a,

где i (3) у – ударный ток трехфазного КЗ, А.

В случае двухфазного КЗ влияние третьей (неповрежденной) фазы ничтожно мало, принимая во внимание, что ׀ i 1 ׀=‌ ׀ i 2 ‌| =|i (2)2 у |. Следовательно,

f (2) =2·10 -7 · k ф ·i ( 2)2 у /a,

где i ( 2) у – ударный ток двухфазного КЗ, А.

Учитывая, что междуфазное усилие при трехфазном КЗ больше, чем при двухфазном. Поэтому расчетным видом КЗ при оценке электродинамических сил считают трехфазное.

Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать достаточной электродинамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной работе.

Термическое действие токов КЗ . При протекании тока КЗ температура проводника повышается. Длительность процесса КЗ обычно мала (в пределах нескольких секунд), поэтому тепло, выделяющееся в проводнике, не успевает передаться в окружающую среду и практически целиком идет на нагрев проводника. Проводник или аппарат следует считать термически стойким, если его температура в процессе КЗ не превышает допустимых величин.

Определить температуру нагрева проводника в процессе КЗ можно следующим путем. При КЗ за время dt в проводнике выделяется определенное количество тепла

dQ=I 2 k , t r θ dt,

где I k , t – действующее значение полного тока КЗ в момент t КЗ; r θ – активное сопротивление проводника при данной его температуре θ :

r θ =ρ 0 (1+αθ )l /q,

здесь ρ 0 – удельное активное сопротивление проводника при θ=0 0 ; l – длина проводника; q – его сечение; α - температурный коэффициент сопротивления.

Практически все тепло идет на нагрев проводника

dQ=Gc θ dθ,

где G – масса проводника; c θ – удельная теплоемкость материала проводника при температуре θ.

Процесс нагрева при КЗ определяется уравнением

I 2 k , t r θ dt= Gc θ dθ.

При выборе электрических аппаратов обычно не требуется определять температуру токоведущих частей, поскольку завод- изготовитель по данным специальных испытаний и расчетов гарантирует время и среднеквадратичный ток термической стойкости. Другими словами, в каталогах приводиться значение гарантированного импульса среднеквадратичнаго тока КЗ, который выдерживается аппаратом без повреждений, препятствующих дальнейшей нормальной работе. Условие проверки термической стойкости в этом случае следующее:

B к ≤I 2 тер t тер,

где B к – расчетный импульс квадратичного тока КЗ, определяемый по изложенной выше методике; I тер и t тер – соответственно среднеквадратичный ток термической стойкости и время его протекания (номинальное значение).

На действия токов короткого замыкания проверяют

1) на динамическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальные токи до 60 А включительно; электрооборудование, защищенное токоограничивающими плавкими предохранителями на большие номинальные токи, следует проверять на динамическую устойчивость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

На термическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями на любые номинальные токи,

2) проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 1000кВА и с первичным напряжением до 20 кВ включительно, если в электрической части предусмотрено необходимое резервирование, при котором отключение этих приемников не вызывает расстройства производственного процесса, если повреждение проводников не может вызвать взрыва и если замена поврежденных проводников без особых затруднений.

3) проводники в цепях к индивидуальным электроприемникам и отбельным распределительным пунктам неответственного назначения при условии, что их повреждение при КЗ не может явиться причиной взрыва;

Электродинамическую силу взаимодействия м/у двумя параллельными проводниками (рис. 1) произвольного сечения, обтекаемые токами i 1 и i 2 ,определяют по формуле

F=2.04·k ф i 1 i 2 ·l/a· 10 -8, кГ ,

где i 1 и i 2 – мгновенные значения токов в проводниках, a ; l – длина параллельных проводников, см ; a – расстояние м/у осями проводников, см ; k ф - коэффициент формы.

Сила взаимодействия двух параллельных проводников равномерно распределена по их длине. В практических расчетах эту равномерно распределенную силу заменяют результирующей силой F , приложенной к проводникам в середине их длины.

При одинаковом направлении токов в проводниках они притягиваются, а при разном – отталкиваются.

Коэффициент формы k ф зависит от формы сечения проводников и их взаимного расположения. Для круглых и трубчатых проводников k ф =1; для проводников других форм сечения принимают k ф =1 в тех случаях, когда сечение проводников мало, а длина их велика по сравнению с расстоянием м/у ними и можно предположить, что весь ток сосредоточен в оси проводника. Так, принимают k ф =1 при определении сил взаимодействия м/у фазами шинных конструкций распределительных устройств независимо от формы сечения шин, т.к. расстояние м/у шинами разных фаз в распределительных устройствах достаточно велики и составляют несколько сотен миллиметров и более.

Если расстояние м/у проводниками (шинами) прямоугольных, коробчатых и других сечений мало, то k ф ≠1.

Сила, действующая на проводник с током, определяется как результат взаимодействия его с токами в проводниках двух других фаз, при этом в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

f=√3·10 -7 · k ф ·I 2 m /a,

где I m – амплитуда тока в фазе, А; a – расстояние м/у соседними фазами, м.

Коэффициент √3 учитывает фазовые смещения токов в проводниках.

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ достигает своего наибольшего значения – ударного. При оценке взаимодействия фаз необходимо рассматривать двухфазное и трехфазное КЗ.

Для определения удельного усилия при трехфазном КЗ в системе проводников пользуются выражением

f (3) =√3·10 -7 · k ф ·i ( 3)2 у /a,

где i (3) у – ударный ток трехфазного КЗ, А.

В случае двухфазного КЗ влияние третьей (неповрежденной) фазы ничтожно мало, принимая во внимание, что ׀ i 1 ׀=‌ ׀ i 2 ‌| =|i (2)2 у |. Следовательно,

f (2) =2·10 -7 · k ф ·i ( 2)2 у /a,

где i ( 2) у – ударный ток двухфазного КЗ, А.

Учитывая, что междуфазное усилие при трехфазном КЗ больше, чем при двухфазном. Поэтому расчетным видом КЗ при оценке электродинамических сил считают трехфазное.


Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать достаточной электродинамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной работе.

Термическое действие токов КЗ . При протекании тока КЗ температура проводника повышается. Длительность процесса КЗ обычно мала (в пределах нескольких секунд), поэтому тепло, выделяющееся в проводнике, не успевает передаться в окружающую среду и практически целиком идет на нагрев проводника. Проводник или аппарат следует считать термически стойким, если его температура в процессе КЗ не превышает допустимых величин.

Определить температуру нагрева проводника в процессе КЗ можно следующим путем. При КЗ за время dt в проводнике выделяется определенное количество тепла

dQ=I 2 k , t r θ dt,

где I k , t – действующее значение полного тока КЗ в момент t КЗ; r θ – активное сопротивление проводника при данной его температуре θ :

r θ =ρ 0 (1+αθ )l /q,

здесь ρ 0 – удельное активное сопротивление проводника при θ=0 0 ; l – длина проводника; q – его сечение; α - температурный коэффициент сопротивления.

Практически все тепло идет на нагрев проводника

dQ=Gc θ dθ,

где G – масса проводника; c θ – удельная теплоемкость материала проводника при температуре θ.

Процесс нагрева при КЗ определяется уравнением

I 2 k , t r θ dt= Gc θ dθ.

При выборе электрических аппаратов обычно не требуется определять температуру токоведущих частей, поскольку завод- изготовитель по данным специальных испытаний и расчетов гарантирует время и среднеквадратичный ток термической стойкости. Другими словами, в каталогах приводиться значение гарантированного импульса среднеквадратичнаго тока КЗ, который выдерживается аппаратом без повреждений, препятствующих дальнейшей нормальной работе. Условие проверки термической стойкости в этом случае следующее:

B к ≤I 2 тер t тер,

где B к – расчетный импульс квадратичного тока КЗ, определяемый по изложенной выше методике; I тер и t тер – соответственно среднеквадратичный ток термической стойкости и время его протекания (номинальное значение).

На действия токов короткого замыкания проверяют

1) на динамическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальные токи до 60 А включительно; электрооборудование, защищенное токоограничивающими плавкими предохранителями на большие номинальные токи, следует проверять на динамическую устойчивость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

На термическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями на любые номинальные токи,

2) проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 1000кВА и с первичным напряжением до 20 кВ включительно, если в электрической части предусмотрено необходимое резервирование, при котором отключение этих приемников не вызывает расстройства производственного процесса, если повреждение проводников не может вызвать взрыва и если замена поврежденных проводников без особых затруднений.

3) проводники в цепях к индивидуальным электроприемникам и отбельным распределительным пунктам неответственного назначения при условии, что их повреждение при КЗ не может явиться причиной взрыва;

Прохождение токов в проводниках приводит к возникновению между ними электродинамических (механических) усилий. Одинаковое направление токов в параллельных проводниках вызывает их притяжение, противоположное – их отталкивание. В режиме нормальной нагрузки механические силы взаимодействия незначительны, но при К3 они могут достигать значений, опасных для электрических аппаратов и ошиновок, вызвать их деформацию и даже разрушение.

Из теоретической электротехники известно, что сила взаимодействия между двумя проводниками при прохождение по ним токов i 1 и i 2 определяется по формуле

где i 1 , i 2 - мгновенные значения токов в проводниках, А; l - длина проводников, м ; а - расстояние между осями проводников, м; Кф - коэффициент формы, учитывающий форму сечения и взаимное рас­положение проводников (для круглых проводников сплошного сече­ния, кольцевого сечения, шин коробчатого сечения с высотой сече­ния 0,1 м и более принимается Кф= 1 .

Наибольшие механические усилия между проводниками воз­никают в режиме короткого замыкания в момент, когда ток КЗ достигает ударного значения.

Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать электродинамической стойкостью, т. е. должны выдержив ать механические усилия, возникающие при протекании токов КЗ, б ез деформаций, препятствующих их дальнейшей нормальной экс плуатации.

В зависимости от вида электрооборудования условия проверки его на электродинамическую стойкость различны. Например, за­воды-изготовители указывают гарантированный ток КЗ i дин (или i m ах , или i п р.скв) при котором обеспечивается электродинамичес­кая стойкость аппаратов (выключателей, разъединителей). При вы­боре их должно выполняться условие: i уд < i дин, кА.

Шинная конструкция обладает электродинамической стойко­стью, если выполняются условия:

где σ m ах, σ доп - соответственно максимальное расчетное и допус­тимое напряжения в материале шин, МПа (см. табл. 4.2); F max , F доп - соответственно максимальная расчетная и допустимая ме­ханические нагрузки на изоляторы, Н (задается в каталогах).

В соответствии с ПУЭ проверка электродинамической стойко­сти гибких токопроводов на максимальное сближение и тяжение проводников при КЗ производится только при i уд >50 кА.

Не проверяются на электродинамическую стой­кость аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере; аппараты и провод­ники, защищенные предохранителями с плавкими вставками на ток до 60 А.

4.3. Термическое действие токов короткого замыкания

При протекании по проводникам электрического тока провод­ники нагреваются. При нагреве проводника током нагрузки часть выделенной теплоты рассеивается в окружающую среду, причем степень рассеивания зависит от условий охлаждения.

При протекании тока КЗ температура проводников значительно возрастает, так как токи при КЗ резко увеличиваются, а дли­тельность КЗ мала, поэтому теплота, выделяющаяся в проводни­ке, не успевает передаться в окружающую среду и практически все идет на нагрев проводника. Нагрев проводника при КЗ может достигать опасных значений, приводя к плавлению или обугли­ванию изоляции, к деформации и плавлению токоведущих час­тей и т.п.

Критерием термической стойкости проводников являются до­пустимые температуры нагрева их токами КЗ.

Проводник или аппарат считается термически стойким, если его температура нагрева в процессе КЗ не превышает допустимых величин. Условие термической стойкости в общем случае выгля­дит так, °С:

θ º кон ≤ θ º доп,

где θº кон – конечное значение температуры проводника в режиме к.з.

Количественную оценку степени термического воздействия тока КЗ на проводники и электрические аппараты рекомендуется производить с помощью интеграла Джоуля

где i к t , - полный ток КЗ в произвольный момент времени t, А; t откл - расчетная продолжительность КЗ, с.

Заводы-изготовители в каталогах приводят значения гаранти­рованного среднеквадратичного тока термической стойкости (/ тер, кА) и допустимого времени его протекания (t тер, с) для элек­трических аппаратов (выключателей, разъединителей, трансфор­маторов тока и др.).

В этом случае условие термической стойкости аппаратов в ре­жиме КЗ выглядит так, кА 2 -с,

При проверке термической стойкости проводника, имеющего стандартное сечение q станд , мм 2 , должно быть выполнено условие

где q min – минимальное сечение проводника

Токи к. з. вызывают дополнительный нагрев токоведущих частей электрических аппаратов, шин и жил электрических кабелей.

Длительность т. к. з. определяется временем, необходимым для отключения цепи защитными устройствами. Для того чтобы повреждения от термического действия т. к. з. были наименьшими, стремятся отключить к. з. возможно быстрее (время срабатывания защиты не должно превышать 0,1 — 1 с).

Вследствие кратковременности к. з. считают, что все выделяемое тепло идет на нагрев проводников, в то время как при нагреве проводника током нагрузки часть выделяющегося тепла рассеивается в окружающей среде.

Для упрощения расчетов по вычислению количества тепла, выделяемого при к. з., условно принимают, что нагревание проводника производится током, неизменным по величине и равным установившемуся значению периодической слагающей т. к. з. При этом действительное время действия т. к. з. заменяют так называемым фиктивным временем t ф, в течение которого установившийся ток I ∞ выделит такое же количество тепла, как и действительный изменяющийся т. к. з.

После принятых допущений количество теплоты Q к, кал, выделяющееся по закону Джоуля-Ленца в проводнике с сопротивлением, равным R, при коротком замыкании составит:

Q к = 0,24 I 2 ∞ R tф

где t ф — фиктивное время действия тока к. з., с.

Температура нагреваемого устройства

υ= Q к /G c , (II-33)

где ϑ —°С, если Q k , ккал; G — вес, кг; с —удельная теплоемкость, ккал/(кгХ°С).

Для достижения динамической и термической стойкости оборудования прибегают в случае необходимости к ограничению величины т. к. з. путем включения реакторов, к уменьшению времени к. з.

Реактор представляет собой катушку с большим индуктивным и малым активным сопротивлением. Реакторы надежно изолируются от заземленных частей.

Реакторы выполняют без стальных сердечников, что сокращает потери электроэнергии в них, уменьшает их вес и стоимость; кроме того, при наличии стали их индуктивность зависела бы от величины тока, что приводило бы к меньшему ограничению т. к. з.

Номинальные параметры аппаратуры (ток, напряжение, мощность отключения) должны соответствовать вычислительным максимальным расчетным величинам в рабочем режиме и при к. з.

Номинальные данные электрической установки — совокупность суммарных параметров, характеризующих работу электроустановки в номинальном режиме.

Для предотвращения коротких замыканий и уменьшения их последствий необходимо устранить причины, вызывающие их, правильно проектировать, монтировать и эксплуатировать электроустановки, три этом предусматривать, чтобы все элементы электроустановок (аппараты, провода и т. п.) обладали динамической и термической стойкостью в условиях короткого замыкания.

Выбирать тажие выключатели мощности, которые под действием защиты быстро и надежно отключают поврежденные элементы оборудования или участок сети. Для этого надо уметь рассчитывать т. к. з. и определять вызванные ими снижения напряжения в узлах сети.

Контрольные вопросы

  1. Каковы причины коротких замыканий?
  2. К каким последствиям может привести короткое замыкание?
  3. Что называется коротким замыканием?
  4. Какие виды коротких замыканий вам известны?
  5. При каком коротком замыкании возникают наибольшие токи?
  6. Как определяются полные сопротивления цепи короткого замыкания?
  7. Какие принимают допущения при расчетах токов короткого замыкания?
  8. Для чего производится расчет токов короткого замыкания?
  9. В чем заключается процесс короткого замыкания?
  10. Как производится расчет токов короткого замыкания?
  11. В чем заключаются особенности расчета токов короткого замыкания в сетях напряжением до 1000 В?
  12. В чем разница расчетов токов короткого замыкания в именованных и относительных единицах?
  13. В чем проявляются действия токов короткого замыкания?
  14. Как определяются электродинамические и термические напряжения?
  15. Какие меры обеспечивают термическую стойкость оборудования?
  16. Какие параметры аппаратуры учитываются при расчете токов короткого замыкания?

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Однако для более точного расчета полное сопротивление цепи к. з. следует определять не путем арифметического сложения модулей полных сопротивлений участков этой цепи (II-5), а как в выражении на рисунке: Пример расчета. По расчетной схеме, приведенной на рис. II-4; определение сопротивлений элементов схемы — на рис. II-6. Сопротивления силового трансформатора ТМ 630/10, приведенные к напряжению 0,4…


iy = √2Ку Iк, где Ку — ударный коэффициент определяется из графика Ку = f (X/R) Расчетная схема для X/R = 24/50 = 0,48. Из графика имеем Ку =1 iу = 1,41*1*4,15 = 5,9 кА. Наибольший действующий ток к. з., по которому проверяется аппаратура на динамическую стойкость за время первого периода к. з., составляет: Iу=…

Сопротивление системы Хс определяем по формуле Хc=Uc//√3I(30) Сопротивление воздушной линии: индуктивное Хл =x0l; активное Rл = r0l где х0, r0 — удельные индуктивное и активное сопротивления линии, Ом/км (см. справочник). l — длина линии, км. Индуктивное сопротивление обмоток силового трансформатора: Хт = Uk%U1N/√3I1N100%. Результирующее индуктивное сопротивление Хрез — хс+хл+хт Если Хрез >1/3rл, то активным сопротивлением…

Если в двух параллельных проводниках протекают однонаправленные токи ι 1 и ι 2 , то эти проводники испытывают по отношению друг к другу силу притяжения в виде равномерно распределенной сплошной механической линейной нагрузки f [Н/м], равной

F = 2∙10 -7 к ф , (6.32)

где ι 1 , ι 2 – токи в проводниках, А;

а – расстояние между проводниками, м 2 ;

к ф – коэффициент, учитывающий неравномерность распределения тока по сечению проводника (к ф ≈ 1 для круглого, квадратного и трубчатого сечений при U < 6 кВ и для любого сечения при U > 6 кВ; при U < 6 кВ для плоских шин к ф определяется по справочным кривым в зависимости от размеров сечения и расстояния между шинами).

При 3х фазном КЗ и распределении проводников в одной плоскости наибольшее усилие от действия тока КЗ испытывает средняя фаза. Максимальная (ударная) линейная механическая нагрузка для этой фазы равна

F уд = 10 -7 к ф . (6.32)

Механическая нагрузка вызывает в жестких проводниках (шинах) изгибающий момент. В случае, когда бесконечно длинный проводник расположен на равномерно расставленных опорах (рис. 6.2), изгибающий момент максимален на самой опоре М макс, [Н∙м] и равен

М макс = , (6.33)

l – пролет между опорами, м.

проводника, закрепленного на равномерно расставленных опорах

При действии изгибающего момента в металле возникает механическое напряжение, σ, Н/м 2 или МПа. Наибольшее механическое напряжение в металле при изгибе равно

где W – момент сопротивления, м 3 .

Момент сопротивления определяется размерами проводника и направлением действующей на проводник силы (способа расположения шин, рис. 6.3)

Рис. 6.3. Расположение шин на изоляторах:

а – плашмя; б – на ребро

При расположении шин на изоляторах плашмя (рис. 6.3,а ), момент сопротивления равен

При расположении шин на ребро (рис. 6.3,б ) момент сопротивления равен

Расчетные значения напряжений в металле шины σ расч должны быть меньше допустимого значения напряжения σ доп для данного материала, т.е. должно выполняться условие

σ расч ≤ σ доп. (6.36)

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций по дисциплине «Электроснабжение промышленных предприятий»

Приазовский государственный технический университет.. кафедра электроснабжения промышленных предприятий..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Коляда Л.И
Конспект лекций по дисциплине «Электроснабжение промышленных предприятий» для студентов специально

Пути развития СЭС промышленных предприятий
Системы электроснабжения (СЭС) промышленных предприятий усложняются по мере развития электропотребления. При реконструкции (СЭС) и проектировании новых систем должны решаться следующие основные зад

Предприятий
Приемником электрической энергии является электрическая часть технологической установки или механизма, получающая энергию из сети и расходующая её на выполнение технологических процессов.

Характеристика ЭП промышленных предприятий
Рассмотрим характерные группы приемников электрической энергии промышленных предприятий. 1. Силовые общепромышленные установки. К этой группе приемников электрической энергии относя

Режимы работы электроприемников
Правильное определение электрических нагрузок (ЭНГ) является решающим и важнейшим этапом при проектировании и эксплуатации систем электроснабжения. Электрические нагрузки характериз

Методы определения расчетных нагрузок
Для расчета электрических нагрузок промышленных предприятий применяют в основном два метода: метод коэффициента спроса и метод расчетного коэффициента. К вспомогательным методам отн

Определение расхода электроэнергии
Суммарная нагрузка (активная, РΣ и реактивная, QΣ) на шинах напряжением выше 1000 В определяется соотношениями: РΣ = (Σ

Элементах электрической сети
В сетях промышленных предприятий теряется около 10% передаваемой электроэнергии. Величина потерь зависит от многих факторов, но в первую очередь определяется режимом работы электроприемников и отде

Способы снижения потерь ЭЭ в системах электроснабжения
Электроприемники промышленных предприятий требуют для своей работы как активную (Р), так и реактивную (Q) мощности. Реактивная мощность вырабатывается, как и активная, синхронными генераторами стан

Энергосистема
Для промышленных предприятий основным источником электроснабжения являются электрические станции, объединенные в энергетические системы. Количество электроэнергии, вырабатываемой ге

Электростанции промышленного назначения
Электростанции промышленного назначения (заводские электростанции) относятся к местным источникам активной мощности. Наличие местных источников должно обосновываться технико-экономи

Силовые трансформаторы в системе электроснабжения
Силовые трансформаторы являются основным электрическим оборудованием, обеспечивающим передачу и распределение электрической энергии от электростанций к потребителям. С помощью силовых тран

Режимы работы нейтрали в системах электроснабжения
Электротехнические установки и электрические сети напряжением выше 1000 В, согласно ПУЭ, разделяются на установки с большими токами замыкания на землю (сила тока однофазного короткого замыка

Незамкнутые и замкнутые сети
Незамкнутыми (открытыми) называются сети, линии которых не образуют замкнутых контуров. Такие сети имеют один основной источник питания, подключенный к одному из узлов сети.

Применяемые типы проводников
Для выполнения электрических сетей применяются неизолированные (голые) и изолированные провода, кабели, токопроводы. Голые провода не имеют изолирующих покровов. Их

Электропроводка с изолированными проводами
Электропроводками принято называть сети постоянного и переменного тока напряжением до 1 кВ, выполняемые изолированными проводами, также кабелями малых сечений (до 16 мм2).

Кабельные линии
Кабели применяются в сетях промышленных предприятий всех напряжений (до 110 кВ включительно) как внутри зданий и сооружений, так и по территории предприятия и во внешнем электроснабжении.

Шинопроводы
Шинопроводом называются линии передачи электроэнергии, проводниками которых являются жесткие шины. Шинопроводы могут быть открытыми (неизолированные шины на опорных из

Воздушные линии
Воздушной линией электропередачи (ВЛ или ВЛЭП) называют устройство для передачи электроэнергии по проводам. ВЛ могут использоваться в сетях высокого и низкого напряжений для распред

Короткие замыкания в электрических сетях
Коротким замыканием (КЗ) называется преднамеренное или случайное, не предусмотренное нормальными условиями работы соединение двух точек электрической сети через очень малое с

Расчет тока КЗ с неизменной периодической составляющей
Периодическую составляющую тока КЗ, в соответствии с допускаемыми погрешностями, можно считать практически неизменной во времени, если ее изменения остаются в пределах 10%. Если рас

Расчет тока КЗ с изменяющейся периодической составляющей
Если условие х* ≥ 3 не выполняется, то при расчете токов КЗ необходимо учитывать переходные процессы в генераторах. Упрощенно можно принять, что эти явления оказыва

Тепловое (электротермическое) действие тока КЗ
Переходный процесс (ПП) нагрева проводников током КЗ характерен тем, что его длительность (τпп ≈ несколько секунд) намного меньше, чем постоянная времени нагрева проводников т

Ограничение токов короткого замыкания
Для промышленных электрических сетей характерно наличие мощных источников питания и соответственно больших значений токов КЗ. Это может существенно увеличить стоимость системы электроснабжения по с

Схемы цеховых трансформаторных подстанций
Цеховые подстанции питают сеть НН. На цеховых трансформаторных подстанциях напряжением 6-10 / 0,4 кВ применяются, как правило, схемы без сборных шин ВН. Схемы трансформаторны

Схемы главных понизительных подстанций
Для надежного питания потребителей I и II категорий главные понизительные подстанции (ГПП и ПГВ), как правило, сооружаются двухтрансформаторными. Питаются подстанции от энергосистем

Основное электрооборудование подстанций
Основным электрооборудованием подстанций являются: силовые трансформаторы, коммутационные аппараты, разъединители, изоляторы и шины распределительных устройств, измерительные трансф

Изоляторы и шины распределительных устройств
Токоведущие части электроустановок крепятся и изолируются друг от друга посредством изоляторов. Изоляторы делятся на линейные, аппаратные, опорные и проходные. Линейные изоляторы пр

Назначение релейной защиты
В условиях эксплуатации электроустановок возможны повреждения отдельных элементов системы электроснабжения. Совокупность специальных устройств, контролирующих состояние всех элементов системы

Основные принципы действия релейной защиты
Одним из признаков возникновения КЗ является увеличение тока в линии. Этот признак используется для выполнения релейных защит (РЗ), называемых токовыми. Токовые РЗ приходят в действие при ув

Предприятий
Релейная защита – это только часть автоматики, которая получила применение в системах электроснабжения раньше других автоматических устройств. Однако только релейная защита не может

Понравилась статья? Поделиться с друзьями: