Корреляционная матрица для факторного анализа. Факторная матрица. Метод главных компонент. Схема

Факторный анализ - это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы экспериментальных или наблюдаемых данных вне зависимости от их физической формы.

Одной из наиболее типичных форм представления экспериментальных данных является матрица, столбцы которой соответствуют различным параметрам, свойствам, тестам и т.п., а строки - отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов - от одного - двух до нескольких сотен. Непосредственный, “визуальный”, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы “сжать” исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее “существенное”, отбросив “второстепенное”, “случайное”.

При анализе данных, представленных в форме матрицы, возникают два типа задач. Задачи первого типа имеют целью получить “короткое описание” распределения объектов, а задачи второго - выявить взаимоотношения между параметрами.

Следует иметь в виду, что основной стимул для появления указанных задач заключается не только и не столько в желании коротко закодировать большой массив чисел, а в значительно более принципиальном обстоятельстве, имеющем методологический характер: коль скоро удалось коротко описать большой массив чисел, то можно верить, что вскрыта некая объективная закономерность, обусловившая возможность короткого описания; а ведь именно поиск объективных закономерностей и является основной целью, ради которой, как правило, и собираются данные.

Упомянутые подходы и методы обработки матрицы данных отличаются тем, какого типа задачи обработки данных они предназначены решать, и тем, к матрицам какого размера они применимы.

Что же касается проблемы короткого описания связей между параметрами при среднем числе этих параметров, то в данном случае соответствующая корреляционная матрица содержит несколько десятков или сотен чисел и сама по себе она еще не может служить “коротким описанием” существующих связей между параметрами, а должна с этой целью подвергнуться дальнейшей обработке.

Факторный анализ как раз и представляет собой набор моделей и методов, предназначенных для “сжатия” информации, содержащейся в корреляционной матрице. В основе различных моделей факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта или явления, на самом же деле существуют внутренние (скрытые, не наблюдаемые непосредственно) параметры или свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами. Задача факторного анализа - представить наблюдаемые параметры в виде линейных комбинаций факторов и, может быть, некоторых дополнительных, “не существенных” величин - “помех”. Замечательным является тот факт, что, хотя сами факторы не известны, такое разложение может быть получено и, более того, такие факторы могут быть определены, т.е. для каждого объекта могут быть указаны значения каждого фактора.

Факторный анализ, независимо от используемых методов, начинается с обработки таблицы интеркорреляций, полученных на множестве тестов, известной как корреляционная матрица, а заканчивается получением факторной матрицы, т.е. таблицы, показывающей вес или нагрузку каждого из факторов по каждому тесту. Таблица 1 представляет собой гипотетическую факторную матрицу, включающую всего два фактора.

Факторы перечисляются в верхней строке таблицы от более значимого к менее значимому, а их веса в каждом из 10 тестов даны в соответствующих столбцах.

Таблица 1

Гипотетическая факторная матрица

Оси координат. Принято представлять факторы геометрически в виде осей координат, относительно которых каждый тест может быть изображен в виде точки. Рис. 1 поясняет эту процедуру. На этом графике каждый из 10 тестов, приведенных в табл.1, отображен в виде точки относительно двух факторов, которые соответствуют осям I и II. Так, тест 1 представлен точкой с координатами 0,74 по оси I и 0,54 по оси II. Точки, представляющие остальные 9 тестов, построены аналогичным способом, с использованием значений весов из табл. 1.

Следует заметить, что положение осей координат не фиксировано данными. Исходная таблица корреляций определяет лишь положение тестов (т.е. точек на рис. 1) относительно друг друга. Те же точки можно нанести на плоскость с любым положением координатных осей. По этой причине при проведении факторного анализа обычно вращают оси до тех пор, пока не получают наиболее приемлемого и легко интерпретируемого отображения.

Рис. 1. Гипотетическое факторное отображение, показывающее веса двух групповых факторов по каждому из 10 тестов.

На рис. 1 полученные после вращения оси I" и II" показаны пунктирными линиями. Это вращение выполнено в соответствии с предложенными Терстоуном критериями положительного многообразия и простой структуры. Первый предполагает вращение осей до положения, при котором исключаются все значимые отрицательные веса. Большинство психологов считают отрицательные факторные нагрузки логически несоответствующими тестам способностей, так как такая нагрузка означает, что чем выше оценка индивидуума по специфическому фактору, тем ниже будет его результат по соответствующему тесту. Критерий простой структуры, в сущности, означает, что каждый тест должен иметь нагрузки по как можно меньшему числу факторов.

Выполнение обоих критериев дает факторы, которые можно наиболее легко и однозначно интерпретировать. Если тест имеет высокую нагрузку по одному фактору и не имеет значимых нагрузок по другим факторам, мы можем кое-что узнать о природе этого фактора, изучив содержание данного теста. Напротив, если тест имеет средние или низкие нагрузки по шести факторам, то он мало что скажет нам о природе любого из них.

На рис. 1 хорошо видно, что после вращения осей координат все вербальные тесты (1-5) располагаются вдоль или очень близко к оси I", а числовые тесты (6-10) тесно группируются вокруг оси II". Новые факторные нагрузки, измеренные относительно повернутых осей, приведены в табл. 2. Факторные нагрузки в табл. 2 не имеют отрицательных значений, за исключением пренебрежительно малых величин, явно относимых к ошибкам выборки. Все вербальные тесты имеют высокие нагрузки по фактору I" и практически нулевые - по фактору II". Числовые тесты, напротив, имеют высокие нагрузки по фактору II" и пренебрежимо низкие - по фактору I". Таким образом, вращение координатных осей существенно упростило идентификацию и называние обоих факторов, а также описание факторного состава каждого теста. На практике число факторов часто оказывается больше двух, что, разумеется, усложняет их геометрическое представление и статистический анализ, но не изменяет существа рассмотренной процедуры.

Таблица 2

Факторная матрица после вращения

Некоторые исследователи руководствуются теоретической моделью как принципом вращения осей. Кроме того, принимается в расчет неизменность, или подтверждение одних и тех же факторов в независимо выполненных, но сравнимых исследованиях.

Интерпретация факторов. Получив после процедуры вращения факторное решение (или, проще говоря, факторную матрицу), мы можем переходить к интерпретации и наименованию факторов. Этот этап работы скорее требует психологической интуиции, нежели статистической подготовки. Чтобы понять природу конкретного фактора, нам ничего не остается, как изучить тесты, имеющие высокие нагрузки по этому фактору, и попытаться обнаружить общие для них психологические процессы. Чем больше оказывается тестов с высокими нагрузками по данному фактору, тем легче раскрыть его природу. Из табл. 2, к примеру, сразу видно, что фактор I" вербальный, а фактор II" числовой. Приведенные в табл. 2 факторные нагрузки отображают к тому же корреляцию каждого теста с фактором.

Основные положения

Факторный анализ – это один из новых разделов многомерного статистического анализа. Первоначально этот метод разрабатывался для объяснения корреляции между исходными параметрами. Результатом корреляционного анализа является матрица коэффициентов корреляции. При малом числе признаков (переменных) можно провести визуальный анализ этой матрицы. С ростом числа признаков (10 и более) визуальный анализ не даст положительных результатов. Оказывается, что все многообразие корреляционных связей можно объяснить действием нескольких обобщенных факторов, которые являются функциями исследуемых параметров, при этом сами факторы могут быть неизвестны, но их можно выразить через исследуемые признаки. Основоположником факторного анализа является американский ученый Л.Терстоун.

Современные статистики под факторным анализом понимают совокупность методов, которые на основе реально существующей связи между признаками позволяет выявить латентные (скрытые) обобщающие характеристики организационной структуры и механизмы развития изучаемых явлений и процессов.

Пример: предположим, что n автомобилей оценивается по 2 признакам:

x 1 – стоимость автомобиля,

x 2 – длительность рабочего ресурса мотора.

При условии коррелированности x 1 и x 2 в системе координат появляется направленное и достаточно плотное скопление точек, формально отображаемое новыми осями и(Рис.5).

Рис.6

Характерная особенность F 1 и F 2 заключается в том, что они проходят через плотные скопления точек и в свою очередь коррелируют с x 1 x 2 .Максимальное

число новых осей будет равно числу элементарных признаков. Дальнейшие разработки факторного анализа показали, что этот метод может быть с успехом применены в задачах группировки и классификации объектов.

Представление информации в факторном анализе.

Для проведения факторного анализа информация должна быть представлена в виде матрицы размером m x n:

Строки матрицы соответствуют объектам наблюдений (i=), а столбцы – признакам (j=).

Признаки, характеризующие объект имеют разную размерность. Для того, чтобы их привести к одной размерности и обеспечить сопоставимость признаков матрицу исходных данных обычно нормируют, вводя единый масштаб. Самым распространенным способом нормировки является стандартизация. От переменных переходят к переменным

Среднее значение j признака,

Среднеквадратическое отклонение.

Такое преобразование называется стандартизацией.

Основная модель факторного анализа

Основная модель факторного анализа имеет вид:

z j – j -й признак (величина случайная);

F 1 , F 2 , …, F p – общие факторы (величины случайные, нормально распределенные);

u j – характерный фактор;

j1 , j2 , …, jp факторы нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);

Общие факторы имеют существенное значение для анализа всех признаков. Характерные факторы показывают, что он относится только к данному -му признаку, это специфика признака, которая не может быть выражена через факторы. Факторные нагрузки j1 , j2 , …, jp характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа – определить факторные нагрузки. Дисперсию S j 2 каждого признака, можно разделить на 2 составляющие:

    первая часть обуславливает действие общих факторов – общность h j 2 ;

    вторая часть обуславливает действие характерного фактора –характерность - d j 2 .

Все переменные представлены в стандартизованном виде, поэтому дисперсия - гопризнака S j 2 = 1.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде:

где - доля дисперсии признака, приходящаяся на k -ый фактор.

Полный вклад какого-либо фактора в суммарную дисперсию равен:

Вклад всех общих факторов в суммарную дисперсию:

Результаты факторного анализа удобно представить в виде таблицы.

Факторные нагрузки

Общности

a 11 a 21 … a p1

a 12 a 22 a p2

… … … …

a 1m a 2m a pm

факторов

V 1 V 2 … V p

А - матрица факторных нагрузок. Ее можно получить различными способами, в настоящее время наиболее распространение получил метод главных компонент или главных факторов.

Вычислительная процедура метода главных факторов.

Решение задачи с помощью главных компонент сводится к поэтапному преобразованию матрицы исходных данных X :

Х - матрица исходных данных;

Z – матрица стандартизированных значений признаков,

R – матрица парных корреляций:

Диагональная матрица собственных (характеристических) чисел,

j находят решением характеристического уравнения

Е –единичная матрица,

 j – показатель дисперсии каждой главной компоненты ,

при условии стандартизации исходных данных , тогда=m

U – матрица собственных векторов, которые находят из уравнения:

Реально это означает решение m систем линейных уравнений для каждого

Т.е. каждому собственному числу соответствует система уравнений.

Затем находят V - матрицу нормированных собственных векторов.

Матрицу факторного отображения А вычисляют по формуле:

Затем находим значения главных компонент по одной из эквивалентных формул:

Совокупность из четырех промышленных предприятий оценена по трем характерным признакам:

    среднегодовая выработка на одного работника х 1 ;

    уровень рентабельности х 2 ;

Уровень фондоотдачи х 3.

Результат представлен в стандартизированной матрице Z :

По матрице Z получена матрица парных корреляций R :

    Найдем определитель матрицы парных корреляций(например методом Фаддеева):

    Построим характеристическое уравнение:

    Решая это уравнение найдем:

Таким образом исходные элементарные признаки х 1 , х 2 , х 3 могут быть обобщены значениями трех главных компонент, причем:

F 1 объясняет примерно всей вариации,

F 2 - , аF 3 -

Все три главные компоненты объясняют вариации полностью на 100%.

Решая эту систему находим:

Аналогично строятся системы для  2 и  3 . Для  2 решение системы:

Матрица собственных векторов U принимает вид:

    Каждый элемент матрицы разделим на сумму квадратов элементов j-го

столбца, получим нормированную матрицу V .

Отметим, что должно выполнятся равенство =E .

    Матрицу факторного отображения получим из матричного соотношения

=

По смыслу каждый элемент матрицы А представляет частные коэффициенты матрицы корреляции между исходным признаком x j и главными компонентами F r . Поэтому все элементы .

Из равенства следует условиеr - число компонент .

Полный вклад каждого фактора в суммарную дисперсию признаков равен:

Модель факторного анализа примет вид:

Найдем значения главных компонент (матрицу F ) по формуле

Центр распределения значений главных компонент находится в точке (0,0,0).

Далее аналитические выводы по результатам расчетов следуют уже после принятия решения о числе значащих признаков и главных компоненти определения названий главным компонентам. Задачи распознавания главных компонент, определения для них названий решают субъективно на основе весовых коэффициентовиз матрицы отображенияА .

Рассмотрим вопрос формулировки названий главных компонент.

Обозначим w 1 – множество незначимых весовых коэффициентов, в которое включаются близкие к нулю элементы,,

w 2 - множество значимых весовых коэффициентов,

w 3 – подмножество значимых весовых коэффициентов, не участвующих в формировании названия главной компоненты.

w 2 - w 3 – подмножество весовых коэффициентов, участвующих в формировании названия.

Вычисляем коэффициент информативности для каждого главного фактора

Набор объяснимых признаков считаем удовлетворительным, если значения коэффициентов информативности лежат в пределах 0,75-0,95.

a 11 =0,776 a 12 =-0,130 a 13 =0,308

a 12 =0,904 a 22 =-0,210 a 23 =-0,420

а 31 =0,616 а 32 =0,902 а 33 =0,236

Для j=1 w 1 = ,w 2 ={a 11 ,a 21 ,a 31 },

.

Для j=2 w 1 ={ a 12 , a 22 }, w 2 ={ а 32 },

Для j=3 w 1 ={ а 33 }, w 2 ={a 13 ,a 33 },

Значениями признаков x 1 , x 2 , x 3 определяется состав главной компоненты на 100%. при этом наибольший вклад признакаx 2 , смысл которого-рентабельность. корректным для названия признака F 1 будет эффективность производства .

F 2 определяется компонентой x 3 (фондоотдача), назовем ее эффективность использования основных производственных средств .

F 3 определяется компонентами x 1 ,x 2 –в анализе может не рассматриваться т.к. она объясняет всего 10% общей вариации.

Литература.

    Попов А.А.

Excel: Практическое руководство, ДЕСС КОМ.-М.-2000.

    Дьяконов В.П., Абраменкова И.В. Mathcad7 в математике, физике и в Internet. Изд-во « Номидж», М.-1998, раздел 2.13. Выполнение регрессии.

    Л.А. Сошникова, В.Н. Томашевич и др. Многомерный статистический анализ в экономике под ред. В.Н. Томашевича.- М. –Наука, 1980.

    Колемаев В.А., О.В. Староверов, В.Б. Турундаевский Теория вероятностей и математическая статистика. –М. – Высшая школа- 1991.

    К Иберла. Факторный анализ.-М. Статистика.-1980.

Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны

Пусть генеральные совокупности X и Y распределены нормально, причем их дисперсии известны (например из предшествующего опыта или найдены теоретически). По независимым выборкам объемов n и m, извлеченным из этих совокупностей, найдены выборочные средние x в и y в.

Требуется по выборочным средним при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т. е. Н 0: М(X) = М(Y).

Учитывая, что выборочные средние являются несмещенными оценками генеральных средних, т. е. М(x в) = М(X) и М(y в) = М(Y), нулевую гипотезу можно записать так: Н 0: М(x в) = М(y в).

Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится, потому что, как правило, выборочные средние являются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние?

Если окажется, что нулевая гипотеза справедлива, т. е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.

Если нулевая гипотеза будет отвергнута, т. е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами. А объясняется тем, что сами генеральные средние (математические ожидания) различны.

В качестве проверки нулевой гипотезы примем случайную величину.

Критерий Z – нормированная нормальная случайная величина. Действительно, величина Z распределена нормально, так как является линейной комбинацией нормально распределенных величин X и Y; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из генеральных совокупностей; Z – нормированная величина, потому что М(Z) = 0, при справедливости нулевой гипотезы D(Z) = 1, поскольку выборки независимы.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

Первый случай . Нулевая гипотеза Н 0:М(X)=М(Y). Конкурирующая гипотеза Н 1: М(X) ¹М(Y).

В этом случае строят двустороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости .

Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда «левая» и «правая» критические точки выбраны так, что вероятность попадания критерия в каждый интервал критической области равна:

P(Z < zлев.кр)=a¤2,

P(Z > zправ.кр)=a¤2. (1)

Поскольку Z – нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля.

Таким образом, если обозначить правую границу двусторонней критической области через zкр, то левая граница -zкр.

Итак, достаточно найти правую границу, чтобы найти саму двустороннюю критическую область Z < -zкр, Z > zкр и область принятия нулевой гипотезы (-zкр, zкр).

Покажем, как найти zкр – правую границу двусторонней критической области, используя функцию Лапласа Ф(Z). Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервале (0;z):

Р(0 < Z

Так как распределение Z симметрично относительно нуля, то вероятность попадания Z в интервал (0; ¥) равна 1/2. Следовательно, если разбить этот интервал точкой zкр на интервал (0, zкр) и (zкр, ¥), то по теореме сложения Р(0< Z < zкр)+Р(Z > zкр)=1/2.

В силу (1) и (2) получим Ф(zкр)+a/2=1/2. Следовательно, Ф(zкр) =(1-a)/2.

Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области (zкр), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1-a)/2.

Тогда двусторонняя критическая область определяется неравенствами Z < – zкр, Z > zкр, или равносильным неравенством ½Z½ > zкр, а область принятия нулевой гипотезы неравенством – zкр < Z < zкр или равносильным неравенством çZ ç< zкр.

Обозначим значение критерия, вычисленное по данным наблюдений, через zнабл и сформулируем правило проверки нулевой гипотезы.

Правило.

1. Вычислить наблюдаемое значение критерия

2. По таблице функции Лапласа найти критическую точку по равенству Ф(zкр)=(1-a)/2.

3. Если ç zнабл ç < zкр – нет оснований отвергнуть нулевую гипотезу.

Если ç zнабл ç> zкр – нулевую гипотезу отвергают.

Второй случай . Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)>M(Y).

На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции.

В этом случае строят правостороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости:

P(Z> zкр)=a. (3)

Покажем, как найти критическую точку при помощи функции Лапласа. Воспользуемся соотношением

P(0 zкр)=1/2.

В силу (2) и (3) имеем Ф(zкр)+a=1/2. Следовательно, Ф(zкр)=(1-2a)/2.

Отсюда заключаем, для того чтобы найти границу правосторонней критической области (zкр), достаточно найти значение функции Лапласа, равное (1-2a)/2. Тогда правосторонняя критическая область определяется неравенством Z > zкр, а область принятия нулевой гипотезы – неравенством Z < zкр.

Правило.

1. Вычислить наблюдаемое значение критерия zнабл.

2. По таблице функции Лапласа найти критическую точку из равенства Ф(zкр)=(1-2a)/2.

3. Если Z набл < z кр – нет оснований отвергнуть нулевую гипотезу. Если Z набл > z кр – нулевую гипотезу отвергаем.

Третий случай. Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)

В этом случае строят левостороннюю критическую область исходя из требования, вероятность попадания критерия в эту область, в пред-

положении справедливости нулевой гипотезы, была равна принятому уровню значимости P(Z < z’кр)=a, т.е. z’кр= – zкр. Таким образом, для того чтобы найти точку z’кр, достаточно сначала найти “вспомогательную точку” zкр а затем взять найденное значение со знаком минус. Тогда левосторонняя критическая область определяется неравенством Z < -zкр, а область принятия нулевой гипотезы – неравенством Z > -zкр.

Правило.

1. Вычислить Zнабл.

2. По таблице функции Лапласа найти “вспомогательную точку” zкр по равенству Ф(zкр)=(1-2a)/2, а затем положить z’кр = -zкр.

3. Если Zнабл > -zкр, – нет оснований отвергать нулевую гипотезу.

Если Zнабл < -zкр, – нулевую гипотезу отвергают.

Представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы. Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных. Дополнительным способом проверки числа выделенных факторов является вычисление корреляционной матрицы, которая близка исходной, если факторы выделены правильно. Эта матрица называется воспроизведенной корреляционной матрицей. Для того чтобы увидеть, как эта матрица отклоняется от исходной корреляционной матрицы (с которой начинался анализ), можно вычислить разность между ними. Остаточная матрица может указать на "несогласие", т. е. на то, что рассматриваемые коэффициенты корреляции не могут быть получены с достаточной точностью на основе имеющихся факторов. В методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения. Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.


Надо отметить, что четких статистических критериев полноты факторизации не существует. Тем не менее, низкие ее значения, например меньше 0,7, свидетельствуют о желательности сокращения количества признаков или увеличения количества факторов.

Мет Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору.

Матрица, состоящая из факторных нагрузок и имеющая число столбцов, равное числу общих факторов, и число строк, равное числу исходных признаков, называется факторной матрицей.

Основой для вычисления факторной матрицы является матрица парных коэффициентов корреляции исходных признаков.

Корреляционная матрица фиксирует степень взаимосвязи между каждой парой признаков. Аналогично факторная матрица фиксирует степень линейной связи каждого признака с каждым общим фактором.

Величина факторной нагрузки не превышает по модулю единицы, а знак ее говорит о положительной или отрицательной связи признака с фактором.

Чем больше абсолютная величина факторной нагрузки признака по некоторому фактору, тем в большей степени этот фактор определяет данный признак.

Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Факторная модель дает возможность вычислять вклады факторов в общую дисперсию всех признаков. Суммируя квадраты факторных нагрузок для каждого фактора по всем признакам, получаем его вклад в общую дисперсию системы признаков: чем выше доля этого вклада, тем более значимым, существенным является данный фактор.

При этом можно выявить и оптимальное количество общих факторов, достаточно хорошо описывающих систему исходных признаков.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору.

Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором.

Факторные веса могут быть как положительными, так и отрицательными.

В силу того, что факторы являются стандартизованными величинами со средним значением, равным нулю, факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. ч то она ниже средней.

Практически, если число уже найденных главных компонент (или факторов) не больше, чем m /2, объясняемая ими дисперсия не менее 70%, а следующая компонента дает вклад в суммарную дисперсию не более 5%, факторная модель считается достаточно хорошей.

Если Вы хотите найти значения факторов и сохранить их в виде дополнительных переменных задействуйте выключатель Scores... (Значения) Факторное значение, как правило, лежит в пределах -3 до +3.

Факторный анализ - более мощный и сложный аппарат, чем метод главных

компонент, поэтому он применяется в том случае, если результаты

компонентного анализа не вполне устраивают. Но поскольку эти два метода

решают одинаковые задачи, необходимо сравнить результаты компонентного и


факторного анализов, т. е. матрицы нагрузок, а также уравнения регрессии на

главные компоненты и общие факторы, прокомментировать сходство и различия

результатов.

Максимально возможное количество факторов m при заданном числе признаков р определяется неравенством

(р+m)<(р-m)2,

В завершение всей процедуры факторного анализа с помощью математических преобразований выражают факторы fj через исходные признаки, то есть получают в явном виде параметры линейной диагностической модели.

Методы главных компонент и факторного анализа представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы1 . Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных.

Общее выражение для j -го фактора может быть записано так:

где Fj (j изменяется от 1 до k ) - это общие факторы, Ui - характерный, Aij - константы, используемые в линейной комбинации k факторов. Характерные факторы могут не коррелировать друг с другом и с общими факторами.

Процедуры факторно-аналитической обработки, применяемые к полученным данным, различны, но структура (алгоритм) анализа состоит из одних и тех же основных этапов: 1. Подготовка исходной матрицы данных. 2. Вычисление матрицы взаимосвязей признаков. 3. Факторизация (при этом необходимо указать количество факторов, выделяемых в ходе факторного решения, и метод вычисления). На этом этапе (как и на следующем) можно также оценить, насколько хорошо полученное факторное решение сближает исходные данные. 4. Вращение - преобразование факторов, облегчающее их интерпретацию. 5. Подсчет факторных значений по каждому фактору для каждого наблюдения. 6. Интерпретация данных .

изобретение факторного анализа было связано именно с необходимостью одновременного анализа большого количества коэффициентов корреляции различных шкал между собой. Одна из проблем, связанных с методами главных компонент и факторного анализа заключается в том, что критериев, которые позволяли бы проверить правильность найденного решения, не существует. Например, при регрессионном анализе можно сопоставить показатели по зависимым переменным, полученные эмпирическим путем, с показателями, вычисленными теоретически на основе предлагаемой модели, и использовать корреляцию между ними как критерий правильности решения по схеме корреляционного анализа для двух наборов переменных. В дискриминантном анализе правильность решения базируется на том, насколько точно предсказана принадлежность испытуемых к тем или иным классам (если сравнивать с реальной принадлежностью, имеющей место в жизни). К сожалению, в методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения, Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.

Третья проблема заключается в том, что факторный анализ довольно часто применяют с целью спасти плохо продуманное исследование, когда становится ясно, что ни одна статистическая процедура не дает желаемого результата. Мощь методов главных компонент и факторного анализа позволяет из хаотичной информации выстроить упорядоченную концепцию (что и создает им сомнительную репутацию).

Вторая группа терминов относится к матрицам, которые строятся и интерпретируются как часть решения. Поворот факторов - это процесс поиска наиболее легко интерпретируемого решения для данного количества факторов. Существуют два основных класса поворотов: ортогональный и косоугольный . В первом случае все факторы априорно выбираются ортогональными (не коррелирующими друг с другом) и строится матрица факторных нагрузок , представляющая собой матрицу взаимосвязей между наблюдаемыми переменными и факторами. Величина нагрузок отражает степень связи каждой наблюдаемой переменной и каждым фактором и интерпретируется как коэффициент корреляции между наблюдаемой переменной и фактором (латентной переменной), а потому изменяется в пределах от -1 до 1. Решение, полученное после ортогонального поворота, интерпретируется на основе анализа матрицы факторных нагрузок путем выявления того, с каким из факторов в максимальной степени связана та или иная наблюдаемая переменная. Таким образом, каждый фактор оказывается заданным группой первичных переменных, имеющих по нему наибольшие факторные нагрузки.

Если выполняется косоугольное вращение (т. е. априорно допускается возможность корреляции факторов между собой), то строится еще несколько дополнительных матриц. Матрица факторной корреляции содержит корреляции между факторами. Матрица факторных нагрузок , упомянутая выше, расщепляется на две: структурную матрицу взаимосвязей между факторами и переменными и матрицу факторного отображения , выражающую линейные взаимосвязи между каждой наблюдаемой переменной и каждым фактором (без учета влияния наложения одних факторов на другие, выражаемого корреляцией факторов между собой). После косоугольного вращения интерпретация факторов происходит на основе группировки первичных переменных (подобно тому, как было описано выше), но уже с использованием в первую очередь матрицы факторного отображения.

Наконец, для обоих поворотов вычисляется матрица коэффициентов факторных значений , используемая в специальных уравнениях регрессионного типа для вычисления факторных значений (факторных баллов, показателей по факторам) для каждого наблюдения на основе значений для них первичных переменных.

Сравнивая методы главных компонент и факторного анализа, отметим следующее. В ходе выполнения анализа по методу главных компонент строится модель для наилучшего объяснения (максимального воспроизведения) полной дисперсии экспериментальных данных, полученных по всем переменным. В результате выделяются «компоненты». При факторном анализе предполагается, что каждая переменная объясняется (детерминируется) некоторым количеством гипотетических общих факторов (влияющих на все переменные) и характерными факторами (для каждой переменной своими). И вычислительные процедуры выполняются таким образом, чтобы освободиться как от дисперсии, полученной в результате ошибки измерения, так и от дисперсии, объясняемой специфичными факторами, и анализировать только дисперсии, объясняемые гипотетически существующими общими факторами. В результате получаются объекты, называемые факторами. Однако, как уже упоминалось, с содержательно-психологической точки зрения эта разница в математических моделях существенного значения не имеет, поэтому в дальнейшем, если не дается особых пояснений, о каком именно случае идет речь, мы будем использовать термин «фактор» как по отношению к компонентам, так и по отношению к факторам.

Размеры выборки и пропущенные данные. Чем больше выборка, тем больше достоверность показателей взаимосвязи. Поэтому очень важно иметь достаточно большую выборку. Требуемый размер выборки также зависит от степени взаимосвязи показателей в популяции в целом и количества факторов: при сильной и достоверной взаимосвязи и небольшом количестве четко очерченных факторов будет достаточно и не очень большой выборки.

Так, выборка, размер которой 50 испытуемых, оценивается как очень плохая, 100 - плохая, 200 - средняя, 300 - хорошая, 500 - очень хорошая и 1000 - превосходная (Comrey, Lee , 1992). Исходя из этих соображений, в качестве общего принципа можно порекомендовать исследовать выборки не менее 300 испытуемых. Для решения, базирующегося на достаточном количестве маркерных переменных с высокими факторными нагрузками (>0.80) достаточно выборки порядка 150 испытуемых (Guadagnoli, Velicer , 1988). нормальность для каждой переменной в отдельности проверяется по асимметрии (насколько кривая изучаемого распределения сдвинута вправо или влево по сравнению с теоретически нормальной кривой) и эксцессу (степень вытянутости вверх или прогнутости вниз «колокола» имеющегося распределения, визуально представленного в частотной диаграмме, в сравнении с «колоколом» графика плотности, характерным для нормального распределения). Если переменная имеет существенные асимметрию и эксцесс, то ее можно преобразовать, введя новую переменную (как однозначную функцию от рассматриваемой) таким образом, чтобы эта новая переменная была распределена нормально (подробнее об этом см.: Tabachnik, Fidell , 1996, гл. 4).

Собственные векторы и соответствующие собственные числа
для рассматриваемого учебного примера

Собственный вектор 1

Собственный вектор 2

Собственное значение 1

Собственное значение 2

Поскольку корреляционная матрица диагонализируема, то для получения результатов факторного анализа к ней можно применять матричную алгебру собственных векторов и собственных величин (см. Приложение 1). Если матрица диагонализируема, то вся существенная информация о факторной структуре содержится в ее диагональной форме. В факторном анализе собственные числа соответствуют дисперсии, объясняемой факторами. Фактор с наибольшей собственной величиной объясняет наибольшую дисперсию и т. д., пока не доходит до факторов с небольшими или отрицательными собственными величинами, которые обычно не учитываются при анализе. Матрица факторных нагрузок является матрицей взаимосвязей (интерпретируемых как коэффициенты корреляций) между факторами и переменными. Первый столбец - это корреляции между первым фактором и каждой переменной по очереди: стоимость путевки (-.400), комфортабельность комплекса (.251), температура воздуха (.932), температура воды (.956). Второй столбец - это корреляции между вторым фактором и каждой переменной: стоимость путевки (.900), комфортабельность комплекса (-.947), температура воздуха (.348), температура воды (.286). Фактор интерпретируется на основе сильно связанных с ним (т. е. имеющих по нему высокие нагрузки) переменных. Так, первый фактор главным образом «климатический» (температура воздуха и воды ), в то время как второй «экономический» (стоимость путевки и комфортабельность комплекса ).

Интерпретируя эти факторы, следует обратить внимание на то, что переменные, имеющие высокие нагрузки по первому фактору (температура воздуха и температура воды ), взаимосвязаны положительно, тогда как переменные, имеющие высокие нагрузки по второму фактору (стоимость путевки и комфортабельность комплекса ), взаимосвязаны отрицательно (от дешевого курорта нельзя ожидать большой комфортабельности). Первый фактор называется униполярным (все переменные сгруппированы на одном полюсе), а второй - биполярным (переменные распались на две противоположные по смыслу группы - два полюса). Переменные, имеющие факторные нагрузки со знаком «плюс», образуют положительный полюс, а со знаком «минус» - отрицательный. При этом названия полюсов «положительный» и «отрицательный» при интерпретации фактора не имеют оценочного смысла «плохой» и «хороший». Выбор знака происходит во время вычислений случайным образом. Ортогональное вращение

Вращение обычно применяется после выделения факторов для максимизации высоких корреляций и минимизации низких. Существуют многочисленные методы вращения, но чаще всего используется поворот варимакс , представляющий собой процедуру максимизации дисперсий. Этот поворот максимизирует дисперсии факторных нагрузок, делая высокие нагрузки выше, а низкие ниже для каждого из факторов. Эта цель достигается с помощью матрицы преобразования Λ:

Матрица преобразования - это матрица синусов и косинусов угла Ψ, на который выполняется поворот. (Отсюда и название преобразования - поворот , потому что с геометрической точки зрения происходит поворот осей вокруг начала координат факторного пространства.) Выполнив поворот и получив матрицу факторных нагрузок после поворота, можно проанализировать серию других показателей (см. табл. 4). Общность переменной - это дисперсия, рассчитанная с помощью факторных нагрузок. Это квадратичная множественная корреляция переменной, предсказанная факторной моделью. Общность вычисляется как сумма квадратов факторных нагрузок (СКН) для переменной по всем факторам. В табл. 4 общность для стоимости путевки равна (-.086)2+(.981)2 = .970, т. е. 97% дисперсии стоимости путевки объясняется факторами 1 и 2.

Доля дисперсии фактора по всем переменным - это СКН по фактору, деленная на количество переменных (в случае ортогонального вращения)7 . Для первого фактора доля дисперсии равна:

[(-.086)2+(-.071)2+(.994)2+(.997)2]/4 = 1.994/4 = .50,

т. е. первый фактор объясняет 50% дисперсии переменных. Второй фактор объясняет 48% дисперсии переменных и (в силу ортогональности вращения) два фактора в сумме объясняют 98% дисперсии переменных.

Связь между факторными нагрузками, общностями, СКН,
дисперсией и ковариацией ортогональных факторов после поворота

Общности (h2 )

Стоимость путевки

∑a2 =.970

Уровень комфорта

∑a2 =.960

Температура воздуха

∑a2 =.989

Температура воды

∑a2 =.996

∑a2 =1.994

∑a2 =1.919

Доля дисперсии

Доля ковариации

Доля дисперсии решения, объясняемая фактором, - доля ковариации - это СКН для фактора, деленная на сумму общностей (сумму СКН по переменным). Первый фактор объясняет 51% дисперсии решения (1.994/3.915); второй - 49% (1.919/3.915); два фактора вместе объясняют всю ковариацию.

Eigenval – отражают величину дисперсии соответствующего количества факторов. В качестве упражнения рекомендуем выписать все эти формулы для получения расчетных значений по переменным. Например, для первого респондента:

1.23 = -.086(1.12) + .981(-1.16)

1.05 = -.072(1.12) - .978(-1.16)

1.08 = .994(1.12) + .027(-1.16)

1.16 = .997(1.12) - .040(-1.16)

Или в алгебраической форме:

Z стоимости путевки = a 11F 1 + a 12F 2

Z комфортабельности комплекса = a 2lF 1 + a 22F 2

Z температуры воздуха = a 31F 1 + a 32F 2

Z температуры воды = a 41F 1 + a 42F 2

Чем больше нагрузка, тем с большей уверенностью можно считать, что переменная определяет фактор. Комри и Ли (Comrey, Lee , 1992) предполагают, что нагрузки, превышающие 0.71 (объясняет 50% дисперсии), - превосходные, 0% дисперсии) - очень хорошие, 0%) - хорошие, 0%) - удовлетворительные и 0.32 (объясняет 10% дисперсии) - слабые.

Предположим, что вы проводите (до некоторой степени "глупое") исследование, в котором измеряете рост ста людей в дюймах и сантиметрах. Таким образом, у вас имеются две переменные. Если далее вы захотите исследовать, например, влияние различных пищевых добавок на рост, будете ли вы продолжать использовать обе переменные? Вероятно, нет, т. к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Зависимость между переменными можно обнаружить с помощью диаграммы рассеяния . Полученная путем подгонки линия регрессии дает графическое представление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включить в себя наиболее существенные черты обеих переменных. Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

ФАКТОРНЫЙ АНАЛИЗ

Идея факторного анализа

При исследовании сложных объектов, явлений, систем факторы, определяющие свойства этих объектов, очень часто невозможно измерить непосредственно, а иногда неизвестно даже их число и смысл. Но для измерения могут быть доступны другие величины, так или иначе зависящие от интересующих нас факторов. Причем, когда влияние неизвестного интересующего нас фактора проявляется в нескольких измеряемых признаках или свойствах объекта, эти признаки могут обнаруживать тесную связь между собой и общее число факторов может быть гораздо меньше, чем число измеряемых переменных.

Для выявления факторов, определяющих измеряемые признаки объектов, используются методы факторного анализа

В качестве примера применения факторного анализа можно указать изучение свойств личности на основе психологических тестов. Свойства личности не поддаются прямому измерению. О них можно судить только по поведению человека или характеру ответов на вопросы. Для объяснения результатов опытов их подвергают факторному анализу, который и позволяет выявить те личностные свойства, которые оказывают влияние на поведение индивидуума.
В основе различных методов факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта, в действительности существуют внутренние (скрытые, латентные, не наблюдаемые непосредственно) параметры и свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами.

Цель факторного анализа – сконцентрировать исходную информацию, выражая большое число рассматриваемых признаков через меньшее число более ёмких внутренних характеристик явления, которые, однако, не поддаются непосредственному измерению

Установлено, что выделение и последующее наблюдение за уровнем общих факторов даёт возможность обнаруживать предотказные состояния объекта на очень ранних стадиях развития дефекта. Факторный анализ позволяет отслеживать стабильность корреляционных связей между отдельными параметрами. Именно корреляционные связи между параметрами, а также между параметрами и общими факторами содержат основную диагностическую информацию о процессах. Применение инструментария пакета Statistica при выполнении факторного анализа исключает необходимость использования дополнительных вычислительных средств и делает анализ наглядным и понятным для пользователя.

Результаты факторного анализа будут успешными, если удается дать интерпретацию выявленных факторов, исходя из смысла показателей, характеризующих эти факторы. Данная стадия работы весьма ответственная; она требует чёткого представления о содержательном смысле показателей, которые привлечены для анализа и на основе которых выделены факторы. Поэтому при предварительном тщательном отборе показателей для факторного анализа следует руководствоваться их смыслом, а не стремлением к включению в анализ как можно большего их числа.

Сущность факторного анализа

Приведём несколько основных положений факторного анализа. Пусть для матрицы Х измеренных параметров объекта существует ковариационная (корреляционная) матрица C , где р – число параметров, n – число наблюдений. Путем линейного преобразования X =QY +U можно уменьшить размерность исходного факторного пространства Х до уровня Y , при этом р "<<р . Это соответствует преобразованию точки, характеризующей состояние объекта в j -мерном пространстве, в новое пространство измерений с меньшей размерностью р ". Очевидно, что геометрическая близость двух или множества точек в новом факторном пространстве означает стабильность состояния объекта.

Матрица Y содержит ненаблюдаемые факторы, которые по существу являются гиперпараметрами, характеризующими наиболее общие свойства анализируемого объекта. Общие факторы чаще всего выбирают статистически независимыми, что облегчает их физическую интерпретацию. Вектор наблюдаемых признаков Х имеет смысл следствия изменения этих гиперпараметров.

Матрица U состоит из остаточных факторов, которые включают в основном ошибки измерения признаков x (i ). Прямоугольная матрица Q содержит факторные нагрузки, определяющие линейную связь между признаками и гиперпараметрами.
Факторные нагрузки – это значения коэффициентов корреляции каждого из исходных признаков с каждым из выявленных факторов. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак – на обратную) связь данного признака с фактором.

Таким образом, данные о факторных нагрузках позволяют сформулировать выводы о наборе исходных признаков, отражающих тот или иной фактор, и об относительном весе отдельного признака в структуре каждого фактора.

Модель факторного анализа похожа на модели многомерного регрессионного и дисперсионного анализа. Принципиальное отличие модели факторного анализа в том, что вектор Y – это ненаблюдаемые факторы, а в регрессионном анализе – это регистрируемые параметры. В правой части уравнения (8.1) неизвестными являются матрица факторных нагрузок Q и матрица значений общих факторов Y.

Для нахождения матрицы факторных нагрузок используют уравнениеQQ т =S–V, где Q т – транспонированная матрица Q, V – матрица ковариаций остаточных факторов U, т.е. . Уравнение решается путем итераций при задании некоторого нулевого приближения ковариационной матрицы V(0). После нахождения матрицы факторных нагрузок Q вычисляются общие факторы (гиперпараметры) по уравнению
Y=(Q т V -1)Q -1 Q т V -1 X

Пакет статистического анализа Statistica позволяет в диалоговом режиме вычислить матрицу факторных нагрузок, а также значения нескольких заранее заданных главных факторов, чаще всего двух – по первым двум главным компонентам исходной матрицы параметров.

Факторный анализ в системе Statistica

Рассмотрим последовательность выполнения факторного анализа на примере обработки результатов анкетного опроса работников предприятия . Требуется выявить основные факторы, которые определяют качество трудовой жизни.

На первом этапе необходимо отобрать переменные для проведения факторного анализа. Используя корреляционный анализ, исследователь пытается выявить взаимосвязь исследуемых признаков, что, в свою очередь, даёт ему возможность выделить полный и безызбыточный набор признаков путём объединения сильно коррелирующих признаков.

Если проводить факторный анализ по всем переменным, то результаты могут получиться не совсем объективными, так как некоторые переменные определяется другими данными, и не могут регулироваться сотрудниками рассматриваемой организации.

Для того чтобы понять, какие показатели следует исключить, построим по имеющимся данным матрицу коэффициентов корреляции в Statistica: Statistics/ Basic Statistics/ Correlation Matrices/ Ok. В стартовом окне этой процедуры Product-Moment and Partial Correlations (рис. 4.3) для расчёта квадратной матрицы используется кнопка One variable list. Выбираем все переменные (select all), Ok, Summary. Получаем корреляционную матрицу.

Если коэффициент корреляции изменяется в пределах от 0,7 до 1, то это означает сильную корреляцию показателей. В этом случае можно исключить одну переменную с сильной корреляцией. И наоборот, если коэффициент корреляции мал, можно исключить переменную из-за того, что она ничего не добавит к общей сумме. В нашем случае сильной корреляции между какими-либо переменными не наблюдается, и факторный анализ будем проводить для полного набора переменных.

Для запуска факторного анализа необходимо вызвать модуль Statistics/ Multivariate Exploratory Techniques (многомерные исследовательские методы)/ Factor Analysis (факторный анализ). На экране появится окно модуля Factor Analysis.



Для анализа выбираем все переменные электронной таблицы; Variables (переменные): select all, Ok. В строке Input file (тип файла входных данных) указывается Raw Data (исходные данные). В модуле возможны два типа исходных данных – Raw Data (исходные данные) и Correlation Matrix – корреляционная матрица.

В разделе MD deletion задаётся способ обработки пропущенных значений:
* Casewise – способ исключения пропущенных значений (по умолчанию);
* Pairwise – парный способ исключения пропущенных значений;
* Mean substitution – подстановка среднего вместо пропущенных значений.
Способ Casewise состоит в том, что в электронной таблице, содержащей данные, игнорируются все строки, в которых имеется хотя бы одно пропущенное значение. Это относится ко всем переменным. В способе Pairwise игнорируются пропущенные значения не для всех переменных, а лишь для выбранной пары.

Выберем способ обработки пропущенных значений Casewise.

Statistica обработает пропущенные значения тем способом, который указан, вычислит корреляционную матрицу и предложит на выбор несколько методов факторного анализа.

После нажатия кнопки Ok появляется окно Define Method of Factor Extraction (определить метод выделения факторов).

Верхняя часть окна является информационной. Здесь сообщается, что пропущенные значения обработаны методом Casewise. Обработано 17 наблюдений и 17 наблюдений принято для дальнейших вычислений. Корреляционная матрица вычислена для 7 переменных. Нижняя часть окна содержит 3 вкладки: Quick, Advanced, Descriptives.

Во вкладке Descriptives (описательные статистики) имеются две кнопки:
1- просмотреть корреляции, средние и стандартные отклонения;
2- построить множественную регрессию.

Нажав на первую кнопку, можно посмотреть средние и стандартные отклонения, корреляции, ковариации, построить различные графики и гистограммы.

Во вкладке Advanced, в левой части, выберем метод (Extraction method) факторного анализа: Principal components (метод главных компонент). В правой части выбираем максимальное число факторов (2). Задаётся либо максимальное число факторов (Max no of factors), либо минимальное собственное значение: 1 (eigenvalue).

Нажимаем Ok, и Statistica быстро произвёдет вычисления. На экране появляется окно Factor Analysis Results (результаты факторного анализа). Как говорилось ранее, результаты факторного анализа выражаются набором факторных нагрузок. Поэтому далее будем работать с вкладкой Loadings.

Верхняя часть окна – информационная:
Number of variables (число анализируемых переменных): 7;
Method (метод выделения факторов): Principal components (главных компонент);
Log (10) determinant of correlation matrix (десятичный логарифм детерминанта корреляционной матрицы): –1,6248;
Number of factors extracted (число выделенных факторов): 2;
Eigenvalues (собственные значения): 3,39786 и 1,19130.
В нижней части окна находятся функциональные кнопки, позволяющие всесторонне просмотреть результаты анализа, числено и графически.
Factor rotation – вращение факторов, в данном выпадающем окне можно выбрать различные повороты осей. С помощью поворота системы координат можно получить множество решений, из которого необходимо выбрать интерпретируемое решение.

Существуют различные методы вращения координат пространства. Пакет Statistica предлагает восемь таких методов, представленных в модуле факторного анализа. Так, например, метод варимакс соответствует преобразованию координат: вращение, максимизирующее дисперсию. В методе варимакс получают упрощённое описание столбцов факторной матрицы, сводя все значения к 1 или 0. При этом рассматривается дисперсия квадратов нагрузок фактора. Факторная матрица, получаемая с помощью метода вращения варимакс, в большей степени инвариантна по отношению к выбору различных множеств переменных.

Вращение методом квартимакс ставит целью аналогичное упрощение только по отношению к строкам факторной матрицы. Эквимакс занимает промежуточное положение? при вращении факторов по этому методу одновременно делается попытка упростить и столбцы, и строки. Рассмотренные методы вращения относятся к ортогональным вращениям, т.е. в результате получаются некоррелированные факторы. Методы прямого облимина и промакс вращения относятся к косоугольным вращениям, в результате которых получаются коррелированные между собой факторы. Термин?normalized? в названиях методов указывает на то, что факторные нагрузки нормируются, то есть делятся на квадратный корень из соответствующей дисперсии.

Из всех предлагаемых методов, мы сначала посмотрим результат анализа без вращения системы координат – Unrotated. Если полученный результат окажется интерпретируемым и будет нас устраивать, то на этом можно остановиться. Если нет, можно вращать оси и посмотреть другие решения.

Щёлкаем по кнопке "Factor Loading" и смотрим факторные нагрузки численно.



Напомним, что факторные нагрузки – это значения коэффициентов корреляции каждой из переменных с каждым из выявленных факторов.

Значение факторной нагрузки, большее 0,7 показывает, что данный признак или переменная тесно связан с рассматриваемым фактором. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак? на обратную) связь данного признака с фактором.
Итак, из таблицы факторных нагрузок было выявлено два фактора. Первый определяет ОСБ – ощущение социального благополучия. Остальные переменные обусловлены вторым фактором.

В строке Expl. Var (рис. 8.5) приведена дисперсия, приходящаяся на тот или иной фактор. В строке Prp. Totl приведена доля дисперсии, приходящаяся на первый и второй фактор. Следовательно, на первый фактор приходится 48,5 % всей дисперсии, а на второй фактор – 17,0 % всей дисперсии, всё остальное приходится на другие неучтенные факторы. В итоге, два выявленных фактора объясняют 65,5 % всей дисперсии.



Здесь мы также видим две группы факторов – ОСБ и остальное множество переменных, из которых выделяется ЖСР – желание сменить работу. Видимо, имеет смысл исследовать это желание более основательно на основе сбора дополнительных данных.

Выбор и уточнение количества факторов

Как только получена информация о том, сколько дисперсии выделил каждый фактор, можно возвратиться к вопросу о том, сколько факторов следует оставить. По своей природе это решение произвольно. Но имеются некоторые общеупотребительные рекомендации, и на практике следование им даёт наилучшие результаты.

Количество общих факторов (гиперпараметров) определяется путём вычисления собственных чисел (рис. 8.7) матрицы Х в модуле факторного анализа. Для этого во вкладке Explained variance (рис. 8.4) необходимо нажать кнопку Scree plot.


Максимальное число общих факторов может быть равно количеству собственных чисел матрицы параметров. Но с увеличением числа факторов существенно возрастают трудности их физической интерпретации.

Сначала можно отобрать только факторы, с собственными значениями, большими 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий используется наиболее широко. В приведённом выше примере на основе этого критерия следует сохранить только 2 фактора (две главные компоненты).

Можно найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только "факториальная осыпь". В соответствии с этим критерием можно оставить в примере 2 или 3 фактора.
Из рис. видно, что третий фактор незначительно увеличивает долю общей дисперсии.

Факторный анализ параметров позволяет выявить на ранней стадии нарушение рабочего процесса (возникновение дефекта) в различных объектах, которое часто невозможно заметить путём непосредственного наблюдения за параметрами. Это объясняется тем, что нарушение корреляционных связей между параметрами возникает значительно раньше, чем изменение одного параметра. Такое искажение корреляционных связей позволяет своевременно обнаружить факторный анализ параметров. Для этого достаточно иметь массивы зарегистрированных параметров.

Можно дать общие рекомендации по использованию факторного анализа вне зависимости от предметной области.
* На каждый фактор должно приходиться не менее двух измеренных параметров.
* Число измерений параметров должно быть больше числа переменных.
* Количество факторов должно обосновываться, исходя из физической интерпретации процесса.
* Всегда следует добиваться того, чтобы количество факторов было намного меньше числа переменных.

Критерий Кайзера иногда сохраняет слишком много факторов, в то время как критерий каменистой осыпи иногда сохраняет слишком мало факторов. Однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике более важен вопрос о том, когда полученное решение может быть интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее осмысленное.

Пространство исходных признаков должно быть представлено в однородных шкалах измерения, т. к. это позволяет при вычислении использовать корреляционные матрицы. В противном случае возникает проблема "весов" различных параметров, что приводит к необходимости применения при вычислении ковариационных матриц. Отсюда может появиться дополнительная проблема повторяемости результатов факторного анализа при изменении количества признаков. Следует отметить, что указанная проблема просто решается в пакете Statistica путем перехода к стандартизированной форме представления параметров. При этом все параметры становятся равнозначными по степени их связи с процессами в объекте исследования.

Плохо обусловленные матрицы

Если в наборе исходных данных имеются избыточные переменные и не проведено их исключение корреляционным анализом, то нельзя вычислить обратную матрицу (8.3). Например, если переменная является суммой двух других переменных, отобранных для этого анализа, то корреляционная матрица для такого набора переменных не может быть обращена, и факторный анализ принципиально не может быть выполнен. На практике это происходит, когда пытаются применить факторный анализ к множеству сильно зависимых переменных, что иногда случается, например, в обработке вопросников. Тогда можно искусственно понизить все корреляции в матрице путём добавления малой константы к диагональным элементам матрицы, и затем стандартизировать её. Эта процедура обычно приводит к матрице, которая может быть обращена, и поэтому к ней применим факторный анализ. Более того, эта процедура не влияет на набор факторов, но оценки оказываются менее точными.

Факторное и регрессионное моделирование систем с переменными состояниями

Системой с переменными состояниями (СПС) называется система, отклик которой зависит не только от входного воздействия, но и от обобщенного постоянного во времени параметра, определяющего состояние. Регулируемый усилитель или аттенюатор? это пример простейшей СПС, в котором коэффициент передачи может дискретно или плавно изменяться по какому-либо закону. Исследование СПС обычно проводится для линеаризованных моделей, в которых переходный процесс, связанный с изменением параметра состояния, считается завершённым.

Аттенюаторы, выполненные на основе Г-, Т- и П-образного соединения последовательно и параллельно включённых диодов получили наибольшее распространение. Сопротивление диодов под воздействием управляющего тока может меняться в широких пределах, что позволяет изменять АЧХ и затухание в тракте. Независимость фазового сдвига при регулировании затухания в таких аттенюаторах достигается с помощью реактивных цепей, включенных в базовую структуру. Очевидно, что при разном соотношении сопротивлений параллельных и последовательных диодов может быть получен один и тот же уровень вносимого ослабления. Но изменение фазового сдвига будет различным.

Исследуем возможность упрощения автоматизированного проектирования аттенюаторов, исключающего двойную оптимизацию корректирующих цепей и параметров управляемых элементов. В качестве исследуемой СПС будем использовать электрически управляемый аттенюатор, схема замещения которого приведена на рис. 8.8. Минимальный уровень затухания обеспечивается в случае малого сопротивления элемента Rs и большого сопротивления элемента Rp. По мере увеличения сопротивления элемента Rs и уменьшения сопротивления элемента Rp вносимое ослабление увеличивается.

Зависимости изменения фазового сдвига от частоты и затухания для схемы без коррекции и с коррекцией приведены на рис. 8.9 и 8.10 соответственно. В корректированном аттенюаторе в диапазоне ослаблений 1,3-7,7 дБ и полосе частот 0,01?4,0 ГГц достигнуто изменение фазового сдвига не более 0,2°. В аттенюаторе без коррекции изменение фазового сдвига в той же полосе частот и диапазоне ослаблений достигает 3°. Таким образом, фазовый сдвиг уменьшен за счет коррекции почти в 15 раз.


Будем считать параметры коррекции и управления независимыми переменными или факторами, влияющими на затухание и изменение фазового сдвига. Это даёт возможность с помощью системы Statistica провести факторный и регрессионный анализ СПС с целью установления физических закономерностей между параметрами цепи и отдельными характеристиками, а также упрощения поиска оптимальных параметров схемы.

Исходные данные формировались следующим образом. Для параметров коррекции и сопротивлений управления, отличающихся от оптимальных в большую и меньшую стороны на сетке частот 0,01?4 ГГц, были вычислены вносимое ослабление и изменение фазового сдвига.

Методы статистического моделирования, в частности, факторный и регрессионный анализ, которые раньше не использовались для проектирования дискретных устройств с переменными состояниями, позволяют выявить физические закономерности работы элементов системы. Это способствует созданию структуры устройства исходя из заданного критерия оптимальности. В частности, в данном разделе рассматривался фазоинвариантный аттенюатор как типичный пример системы с переменными состояниями. Выявление и интерпретация факторных нагрузок, влияющих на различные исследуемые характеристики, позволяет изменить традиционную методологию и существенно упростить поиск параметров коррекции и параметров регулирования.

Установлено, что использование статистического подхода к проектированию подобных устройств оправдано как для оценки физики их работы, так и для обоснования принципиальных схем. Статистическое моделирование позволяет существенно сократить объём экспериментальных исследований.

Результаты

  • Наблюдение за общими факторами и соответствующими факторными нагрузками – это необходимое выявление внутренних закономерностей процессов.
  • С целью определения критических значений контролируемых расстояний между факторными нагрузками следует накапливать и обобщать результаты факторного анализа для однотипных процессов.
  • Применение факторного анализа не ограничено физическими особенностями процессов. Факторный анализ является как мощным методом мониторинга процессов, так и применим к проектированию систем самого различного назначения.

Дисперсионный анализ факторов

Факторная матрица

Переменная Фактор А Фактор Б

Как видно из матрицы, факторные нагрузки (или веса) А и Б для различных потребительских требований значительно отличаются. Факторная нагрузка А для требования Т 1 соответствует тесноте связи, характеризующейся коэффициентом корреляции, равным 0,83, т.е. хорошая (тесная) зависимость. Факторная нагрузка Б для того же требования дает r k = 0,3, что соответствует слабой тесноте связи. Как и предполагалось, фактор Б очень хоро­шо коррелируется с потребительскими требованиями Т 2 , Т 4 и Т 6 .

Учитывая, что факторные нагрузки как А, так и Б влияют на не относящиеся в их группу потребительские требования с теснотой связи не более 0,4 (т.е. слабо), можно считать, что представленная выше матрица интеркорреляций определяется двумя независимыми факторами, которые в свою очередь определяют шесть потребительских требований (за исключением Т 7).

Переменную Т 7 можно было выделить в самостоятельный фактор, так как ни с одним потребительским требованием она не имеет значимой корреляционной нагрузки (более 0,4). Но, на наш взгляд, этого не следует делать, так как фактор «дверь не должна ржаветь» не имеет непосредственного отношения к потребительским требованиям по конструкции двери.

Таким образом, при утверждении технического задания на проектирование конструкции дверей автомобиля именно названия полученных факторов будут вписаны как потребительские требования, по которым необходимо найти конструктивное решение в виде инженерных характеристик.

Укажем на одно принципиально важное свойство коэффициента корреляции между переменными: возведенный в квадрат, он показывает, какая часть дисперсии (разброса) признака является общей для двух переменных, насколько сильно эти переменные перекрываются. Так, например, если две переменные Т 1 и Т 3 с корреляцией 0,8 перекрываются со степенью 0,64 (0,8 2), то это означает, что 64% дисперсий той и другой переменной являются общими, т.е. совпадают. Можно также сказать, что общность этих переменных равна 64%.

Напомним, что факторные нагрузки в факторной матрице являются тоже коэффициентами корреляции, но между факторами и переменными (потребительскими требованиями).

Переменная Фактор А Фактор Б

Поэтому возведенная в квадрат факторная нагрузка (дисперсия) характеризует степень общности (или перекрытия) данной переменной и данного фактора. Определим степень перекрытия (дисперсию D) обоих факторов с переменной (потребительским требованием) Т 1 . Для этого необходимо вычислить сумму квадратов весов факторов с первой переменной, т.е. 0,83 х 0,83 + 0,3 х 0,3 = 0,70. Таким образом, общность переменной Т 1 с обоими факторами составляет 70%. Это достаточно значимое перекрытие.


В то же время низкая общность может свидетельствовать о том, что переменная измеряет или отражает нечто, качественно отличающеёся от других переменных, включенных в анализ. Это подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо она измеряет другое понятие (как, например, переменная Т 7), либо имеет большую ошибку измерения, либо существуют искажающие дисперсию признаки.

Следует отметить, что значимость каждого фактора также определяется величиной дисперсии между переменными и факторной нагрузкой (весом). Для того чтобы вычислить собственное значение фактора, нужно найти в каждом столбце факторной матрицы сумму квадратов факторной нагрузки для каждой переменной. Таким образом, например, дисперсия фактора А (D А) составит 2,42 (0,83 х 0,83 + 0,3 х 0,3 + 0,83 х 0,83 + 0,4 х 0,4 + 0,8 х 0,8 + 0,35 х 0,35). Расчет значимости фактора Б показал, что D Б = 2,64, т.е. значимость фактора Б выше, чем фактора А.

Если собственное значение фактора разделить на число переменных (в нашем примере их семь), то полученная величина покажет, какую долю дисперсии (или объем информации) γ в исходной корреляционной матрице составит этот фактор. Для фактора А γ ~ 0,34 (34%), а для фактора Б - γ = 0,38 (38%). Просуммировав результаты, получим 72%. Таким образом, два фактора, будучи объединены, заполняют только 72% дисперсии показателей исходной матрицы. Это означает, что в результате факторизации часть информации в исходной матрице была принесена в жертву построения двухфакторной модели. В результате упущено 28% информации, которая могла бы восстановиться, если бы была принята шестифакторная модель.

Где же допущена ошибка, учитывая, что все рассмотренные пере­менные, имеющие отношение к требованиям по конструкции двери, учтены? Наиболее вероятно, что значения коэффициентов корреляции переменных, относящихся к одному фактору, несколько занижены. С учетом проведенного анализа можно было бы вернуться к формированию иных значений коэффициентов корреляции в матрице интеркорреляций (см. табл. 2.2).

На практике часто сталкиваются с такой ситуацией, при которой число независимых факторов достаточно велико, чтобы их все учесть в решении проблемы или с технической или экономической точки зрения. Существует ряд способов по ограничению числа факторов. Наиболее известный из них - анализ Парето. При этом отбираются те факторы (по мере уменьшения значимости), которые попадают в 80-85%-ную границу их суммарной значимости.

Факторный анализ можно использовать при реализации метода структурирования функции качества (QFD), широко применяемого за рубежом при формировании технического задания на новое изделие.

Понравилась статья? Поделиться с друзьями: