Правильное охлаждение системного блока. Как правильно организовать охлаждение в игровом компьютере

Прежде чем начать разговор о том, каковы тонкости и нюансы системы охлаждения, стоит отметить некоторые наиболее значимые аспекты для дальнейшего понимания механизма охлаждения как целостной (единой) системы, поддерживающей стабильную работу компьютера.

Итак, все корпуса системных блоков компьютеров собираются производителями по единому стандарту (так называемый стандарт АТХ). В более широком смысле этот стандарт отвечает за устройство всего компьютера (включая отдельные компоненты: распиновка разъемов питания, размеры материнских плат и т.д.). Нас же интересуют только принципы и порядок размещения технологических отверстий и вентиляторов внутри системного блока. Как видно на фото 1 воздух в системном блоке всегда движется в строго определенном направлении, т.е. от передней к задней стенке (фото 1).

Вот за обеспечение движения воздуха в системном блоке как раз и отвечают вентиляторы (их еще называют «кулеры»).

Распределение кулеров в системном блоке

Кулер в передней части системного блока служит для нагнетания воздуха вовнутрь. Именно поэтому при установке вентиляторов следует обращать внимание на то, в какую сторону будет двигаться воздух, ведь если повернуть кулер другой стороной, то он будет выдувать, а не нагнетать воздух (некоторые производители специальной стрелкой на боковой поверхности вентилятора указывают направление движения воздуха при его работе). Фото 2.

Кулер в боковой стенке не является обязательным атрибутом, но если он присутствует, то он также отвечает за нагнетание воздуха вовнутрь системного блока.

Что касается движения воздуха через нижнюю и верхнюю части блока, что здесь, как правило, есть специальные технологические отверстия, через которые также проходит воздух. В зависимости от конструкции блока и его начинки (размещение деталей и узлов, нависание жгутов проводов и т.п.) через эти отверстия воздух либо поступает, либо отводится естественным образом.

За отвод воздуха из блока отвечает вентилятор, расположенный на задней стенке корпуса. И это место выбрано не случайно. Еще помните, что теплый воздух всегда поднимается вверх? Так вот именно поэтому данный кулер находится в верхней части системного блока. Кстати, стоит заметить, что в хороших системниках блок питания находится внизу (как на фото 1), а отводящий кулер - вверху (т.е. на том месте, где у большинства стандартных системников устанавливается блок питания).

Примечание: Многие пользователи любят устанавливать дополнительные вентиляторы в верхней крышке корпуса для нагнетания воздуха вовнутрь. В результате они только снижают эффективность всей системы охлаждения.

Как правильно подобрать необходимый кулер

Для системных блоков существует три самых распространенных типоразмера вентиляторов:

  1. 80х80х25 мм
  2. 92х92х25 мм
  3. 120х120х25 мм

Все они различаются типом (по типу используемого подшипника) и видом устанавливаемых электродвигателей: они обеспечивают разную скорость вращения крыльчатки (при этом потребляют различный ток). Кроме того, вентиляторы имеют разную полезную площадь лопастей. А уже от скорости вращения лопастей и размеров самого вентилятора зависит его производительность, а именно величина статического давления (т.е. нагнетание в замкнутую систему под давлением) и максимальный объём этого нагнетенного воздуха за единицу времени. Объём переносимого воздуха обозначается как CFM (cubic feet per minute), а скорость вращения - RPM (rotates per minute).

При выборе вентиляторов следует обращать внимание на размер его крыльчатки (т.е. диаметральная площадь, по которой вращаются лопасти). Ведь при одной и той же скорости вращения кулер с большей площадью крыльчатки, другими словами больше размером, является более эффективным. Кроме того, такой вентилятор меньше шумит, так как может работать при меньших оборотах (а объем прокачивать тот же). Фото 3.

Примечание: если в задней части корпуса вентилятор работает интенсивнее (т.е. имеет более высокую скорость вращения, чем вентилятор спереди и при условии, что он не меньше по типоразмеру), то таким образом через всю систему прокачивается намного больший объем воздуха. Тем самым охлаждение является более эффективным.

Кулер и радиатор для процессора

Что касается требований к радиаторам для процессора, то здесь стоит выбирать радиаторы из меди или с медным сердечником. Если вы готовы приобрести радиатор на тепловых трубках, то такая система охлаждения будет еще эффективней, так как в таких радиаторах отвод тепла происходит по тепловым трубкам до самых дальних ребер.

Вообще стоит отметить, что эффективность охлаждения процессора является проблемой комплексной. Так если радиатор имеет низкую теплопроводность (его основание греется быстрее, чем концы его ребер) или если он обладает высоким гидравлическим сопротивлением (т.е. более густое оребрение радиатора требует большего давления, чтобы прокачать сквозь него воздух), то данные проблемы одним только увеличением скорости вращения вентилятора не решишь. Мнение, чем быстрее вращается кулер, тем лучше – является не верным. В таких случаях решение выглядит таким образом (фото 4): радиатор на тепловых трубках с двумя кулерами от Venom.

Если вы обладатель только лишь боксового варианта радиатора (от англ. Box – коробка, т.е. коробочный вариант, стандартный, заводской), не стоит отчаиваться. Помните, что правильная организация воздушного потока внутри корпуса прекрасно справится с охлаждением всей системы.

Относительно вентилятора для радиатора следует знать, что кулер должен соответствовать габаритам радиатора. Нет смысла на боксовый радиатор от AMD лепить чудо 120х120 мм, так как необходимо не обдувать сам радиатор, а именно продувать воздух сквозь ребра радиатора, что, согласитесь, невозможно при несоответствии размеров кулера (площади его крыльчатки) и радиатора (поперечной площади его ребер).

Немаловажным является выбор типа подшипника вертушки. Так подшипники качения (ball bearing) являются самыми долговечными и тихими, однако подшипники скольжения (slide bearning) менее долговечны, но при этом имеют меньшую стоимость.

Вопрос, с какой скоростью должен вращаться кулер, является довольно тривиальным. Дело в том, что чем выше скорость вращения, тем интенсивнее воздушный поток. И вместе с тем трудно сказать, достаточен ли этот поток процессору в данный момент, пока не узнаешь текущую температуру ядра. Другими словами температуру нужно отслеживать и в зависимости от нагрузки регулировать скорость вращения кулера. Заниматься этим вручную (если вы не фанат оверлокинга) нет никакого смысла. Материнские платы уже давно регулируют скорость вращения кулеров автоматически.

На что стоит обратить внимание, так это на максимальную скорость вращения вентилятора. Современные кулеры поддерживают максимальную скорость вращения от 2000 до 8000 оборотов в минуту. А вот обычное (штанное) значение для боксовых кулеров Intel находится в пределах от 3000 до 4000 оборотов в минуту.

Радиаторы для материнской платы

Кроме всего прочего, охлаждению также подлежат компоненты материнской платы. Так, например, производители устанавливают уже готовый комплект радиаторов на южный и северный мост, а также на группу силовых транзисторов (фото 5).

Такое решение, очевидно, очень повышает эффективность всей системы охлаждения в целом. Ведь рассеянное тепло легче отвести даже слабым воздушным потоком.

Как видеокарта снижает эффективность охлаждения

Как ни странно, но видеокарта, несмотря на наличие собственной системы охлаждения, также может негативно влиять на всю остальную систему охлаждения системного блока.

Это происходит от того, что отводя тело от графического процессора, система охлаждения выбрасывает его внутрь системного блока. А некоторые и вовсе просто перемешивают воздух внутри корпуса компьютера. Кроме того, из-за большой площади самой платы видеокарты внутренний объем системного блока становится как бы разделенным пополам, что препятствует свободному движению воздуха (фото 6). Для решения этой проблемы рекомендуется устанавливать дополнительный вентилятор на боковой стенке кожуха.

Любой компьютер или ноутбук для нормального функционирования нуждается в хорошей системе охлаждения. Во время работы такие элементы, как процессор (ЦПУ), видеокарта, материнская плата выделяют большое количество тепла, сильно нагреваются. Чем выше показатель производительности ЦПУ, тем больше он отдает тепла. Если ПК не будет быстро удалять воздух, это может привести к различным системным сбоям, некорректному функционированию техники, снижению производительности, стать причиной выхода из строя важных элементов. Почему греется процессор? Как охладить ЦПУ в ПК и ноутбуках? Какой кулер выбрать для оптимального охлаждения ПК? На эти вопросы постараемся ответить в этой статье.

Причины перегрева ЦПУ

Если компьютер начинает выключаться, глючить, зависать, это может быть связано с перегревом ЦПУ. Причины, по которым начинается перегреваться процессор ПК, имеют самый различный характер. Поэтому рассмотрим основные из них, а также приведем простые способы решения проблем.

В большинстве ПК, ноутбуков основными элементами системы охлаждения являются кулер (вентилятор) и радиатор, которые установлены на процессоре. Благодаря максимально плотному контакту теплоотдача между поверхностью радиатора и процессора минимальна, что в свою очередь обеспечивает быстрый, эффективный теплоотвод.

Радиатор может быть монолитным или состоять из двух частей. В первом случае он полностью зафиксирован на процессоре (бюджетный вариант), во втором случае на ЦПУ крепится только небольшая его часть, внутри которой расположены тепловые трубы, которые передают нагретый воздух в основной радиатор.

Первоначальную роль в системе вентиляции корпуса и охлаждения ПК играет вентилятор. Независимо от его расположения он охлаждает весь радиатор или его основную часть. Чем эффективнее он будет работать, тем лучше будет теплоотвод от ЦП, а соответственно и меньше его температура. Кулеры на основе тепловых труб обеспечивают большее охлаждение процессора.

Если процессор начинает греться, к основным причинам можно отнести:

  • ухудшение контакта между процессором и радиатором;
  • уменьшение скорости работы кулера (вентилятора);
  • использование неэффективной системы охлаждения ;
  • отсутствие системы вентиляции в корпусе, в блоке питания ПК;
  • загрязнение вентиляционных отверстий корпуса пылью;
  • выход из строя системы охлаждения ;
  • неправильная фиксация радиатора .

Повышение температуры процесса также может быть вызвано тем, что кулер банально забит пылью . По этой причине снижается его скорость, эффективность работы. Вентилятор просто не способен отводить тепло. Чтобы увеличить теплоотдачу, после замены ЦПУ стоит приобрести и установить новую модель корпусного кулера.

Еще одной причиной является апгрейд ПК. К примеру, после замены старого ЦПУ был установлен новый, более мощный, производительный. Но при этом вентилятор в системе охлаждения остался прежним. По причине увеличения мощности кулер для процессора попросту не справляется в полном объеме со своей задачей.

Если греется процессор, рассмотрим, что делать в этой ситуации.

Как можно охладить процессор ПК, ноутбука

Перегрев процессора в ноутбуках, настольных компьютерах существенно увеличивает нагрузку на все системные элементы. Чтобы уменьшить тепловыделение, снизить энергопотребление, необходимо:

  • проверить состояние системы охлаждения, выполнить очистку;
  • уменьшить нагрузку на ЦПУ;
  • разогнать кулер процессора;
  • заменить термопасту;
  • установить дополнительные кулеры.

Уменьшить тепловыделение процессора можно также в настройках BIOS операционной системы. Это наиболее простой и доступный способ, не требующий особых временных затрат, физических усилий.

Существуют специальные технологии, которые снижают частоту работы ЦП при простое. Для AMD процессоров технология получила название Cool’n’Quite , для Intel - Enhanced SpeedStep Technology . Рассмотри, как ее активировать.

В Windows 7 необходимо перейти в «Панель управления », выбрать раздел «Электропитание ». В открывшемся окне проверить, какой режим активный: «Сбалансированный », «Высокая производительность », «Экономия энергии ». Для активации технологии можно выбрать любой, за исключением «Высокая производительность». В Виндовс ХР необходимо выбрать «Диспетчер энергосбережения ».

Настройки энергосбережения должны быть включены в БИОСе, если их нет, то можно загрузить параметры по умолчанию.

Не менее важно уделить внимание системе вентиляции корпуса . Если система охлаждения работает исправно, регулярно выполняется ее очистка, но ЦПУ по-прежнему греется, то необходимо посмотреть, нет ли на пути выхода потоков воздуха препятствий, к примеру, не закрыты ли они толстыми шлейфами проводов.

В системном блоке, корпусе ПК должно быть два–три вентилятора. Один - на вдув на передней стенке, второй - на выдув на задней панели, что в свою очередь обеспечивает хороший воздухопоток. Дополнительно можно установить вентилятор на боковую стенку системного блока.

Если системный блок ПК стоит в тумбочке внутри стола, то не закрывайте дверцы, чтобы нагретый воздух выходил наружу. Не стоит закрывать вентиляционные отверстия корпуса. Располагайте компьютер в нескольких сантиметрах от стены, мебели.

Для ноутбука можно приобрести специальную охлаждающую подставку.

В продаже имеется большой выбор универсальных моделей подставок, которые подстраиваются под габариты, размер лептопа. Теплоотводящая поверхность, встроенные в нее кулеры будут способствовать более эффективному теплоотводу, охлаждению.

Работая на ноутбуке, всегда следите за чистотой рабочего места. Вентиляционные отверстия не должны быть ничем закрыты. Лежащие рядом предметы не должны препятствовать циркуляции воздуха.

Для ноутбуков также можно выполнить разгон кулера . Поскольку в ПК установлено минимум три вентилятора (на ЦПУ, видеокарте, встроенном накопителе), а в большинстве моделей лептопов имеется только один. Второй может быть установлен, если стоит мощная видеокарта. При этом разогнать кулеры можно:

  • через специальные утилиты;
  • через BIOS.

Перед увеличением скорости вентилятора в первую очередь нужно провести чистку кулера, элементов материнской платы от пыли.

Очищение системы охлаждения ноутбука, стационарного ПК стоит проводить хотя бы раз в шесть–семь месяцев.

Чистка системы охлаждения

Если процессор нагревается, проверьте состояние вентилятора, всей системы охлаждения ПК. Пыль - серьезный враг любой техники. Забившись между гранями радиатора, пыль, ворсинки, шерсть домашних питомцев ухудшают циркуляцию воздуха.

Чтобы тщательно выполнить очистку, необходимо отсоединить кулер от питания и разобрать его. Сняв вентилятор, можно также почистить пыль, скопившуюся на радиаторе. Чистку радиатора, лопастей кулера можно выполнить специальной пластиковой лопаточкой, жесткой щеткой. После устранения пыли протрите радиатор влажной салфеткой.

Помимо удаления пыли с радиатора, кулера протрите от пыли провода, находящие в корпусе. Продуйте или протрите вентиляционные отверстия на корпусе.

Замена термопасты

Снизить тепловыделение процессора поможет обновление, замена термопасты на процессоре. Термопаста - не что иное, как смазка для охлаждения процессора. Она является теплопроводником между ЦПУ и радиатором, устраняет микроскопические неровности соприкасающихся поверхностей, удаляет между ними воздух, который препятствует теплоотводу. Хорошая, качественная термопаста снизит температуру на 5–10 градусов.

Со временем паста высыхает, теряет все свои свойства, не охлаждает процессор. Поэтому ее замену нужно проводить раз в полгода. Если на ПК установлен более современный ЦПУ, теплопроводную пасту можно менять реже. Приобрести ее можно в любом магазине компьютерной техники. Термопаста должна быть качественной, хорошей.

Перед тем, как будет нанесена термопаста, которая охлаждает ЦПУ, нужно добраться до самого процессора. Для этого:


Как выбрать хорошую термопасту

Учитывая большой выбор термопаст, многих интересует вопрос, какая термопаста лучше. Отметим, что разница между пастами различных производителей может составлять от десяти до двадцати градусов. Все зависит от качественных характеристик, теплопроводящих свойств термоинтерфейсов. Хорошая теплопроводящая паста должна иметь низкое тепловое сопротивление, высокую теплопроводность.

По мнению экспертов для охлаждения процессора можно приобрести:

  • Arctic Cooling MX-4.
  • Arctic Silver Ceramique.
  • Noctua NT-H1.
  • Prolimatech PK-1.
  • Thermalright Chill Factor III.
  • Zalman ZM-STG2.
  • Glacialtech IceTherm II.
  • Coollaboratory Liquid Pro.

Некоторые пасты можно использовать также для разгона процессора. К примеру, Arctic Cooling MX-4, Glacialtech IceTherm II, Thermalright Chill Factor III, Coollaboratory Liquid Pro. Зная, какая термопаста лучше, как часто и как правильно выполнять ее замену, можно существенно снизить температуру ЦП, тем самым продлив его эксплуатационный ресурс.

Как отменить разгон процессора

Многие пользователи с целью улучшения производительности, ускорения работы ЦПУ выполняют разгон процессора (оверклокинг). Но в некоторых случаях эта процедура существенно увеличивает нагрузку на ЦП, что негативно может сказаться на его функционировании, привести к снижению эксплуатационного ресурса.

Чтобы проверить работоспособность ЦП после разгона, необходимо выполнить прогрев процессора, используя специальные утилиты.

Если вас интересует, как убрать разгон процессора, перейдите в CMOS и BIOS. Отмените все настройки напряжения материнской платы, возвратите их к нормальной конфигурации.

Действия выполняются в следующей последовательности:

  1. Заходим в БИОС, нажав нужную кнопку при запуске компьютера.
  2. Выбираем пункт «Set BIOS Default/Use Default Settings », наживаем Enter .
  3. Высветится окошко, в котором нужно нажать клавишу Y .
  4. После этого будут возвращены исходные настройки, которые были установлены до проведения разгона ЦП.
  5. Теперь сохраняем все внесенные изменения, выходим из настроек.
  6. Перезагружаем компьютер.

Также это можно сделать, выбрав опцию «Restore Fail Safe Defaults », предварительно узнав в Интернете точные спецификации установленной материнской платы, ЦПУ. Это необходимо для того, чтобы внести изменения, установив базовые настройки частоты, напряжения.

Помимо этого до базового значения можно поменять настройку частоты системной шины, множителя, вернув обратно все параметры, которые были изменены во время разгона.

Можно также удалить дополнительное оборудование охлаждения, которое установили для предотвращения перегрева ЦП.

Управлять, контролировать работу процессора можно посредством специальной утилиты - CPU Core , где нужно указать, установить нужные значения множителя, частоты шины.

Установка дополнительных вентиляторов

Если ЦПУ после чистки, отмены разгона продолжает нагреваться, то, чтобы повысить эффективность охлаждения, рекомендуем установить дополнительные вентиляторы на корпус для усиления воздушной циркуляции. Это необходимо в том случае, если внутри системного блока имеется множество нагревающихся элементов или же внутри него довольно маленький объем свободного пространства.

Отдавайте предпочтение кулерам большого диаметра, которые обеспечат больший поток воздуха при меньших оборотах. Такие модели работают эффективно, но шумно. При установке учитывайте направление их работы.

Кулеры для процессоров классифицируют на:

  • Боксовые, без тепловых трубок. Самые обычные модели. Состоят из алюминиевой пластинки с ребрами. Могут иметь медное основание с прикрепленным к нему вентилятором.
  • Системы охлаждения на тепловых алюминиевых, медных трубках. Функционируют за счет отвода тепла, который осуществляется за счет циркулирующей в них жидкости. Имеют высокие показатели эффективности.

При выборе вентиляторов для системы охлаждения, ознакомьтесь с инструкцией по установке, уточните его совместимость с сокетом, материнской платой, какой разъем есть под процессор. Учитывайте вес, размер вентилятора, тип радиатора.

Слишком большие, высокомощные вентиляторы будут создавать дополнительную нагрузку на материнскую плату, могут спровоцировать ее деформацию. Что касается размера, подбирайте под шину корпуса, учитывайте расположение других комплектующих. Выбирайте продукцию известных, проверенных производителей.

Если установлено большое количество жестких дисков, то дополнительно можно установить вентилятор на переднюю панель корпуса, а также на задней верхней части системного блока для удаления теплого воздуха наружу. Современные корпуса позволяют установить минимум два вентилятора: снизу, если нет перфорации на передней панели, и напротив расположения жестких дисков.

Если ПК имеет сильно продвинутое «железо», процессор нагревается, то можно снять боковую крышку системного блока. В этом случае эффективность охлаждения будет повышена в разы.

Как разогнать кулер

Разогнать кулер, как уже было отмечено, можно через БИОС или посредством специальных бесплатных утилит, которые позволят контролировать, управлять скоростью работы вентиляторов. Программы предназначены для различных типов процессоров.

Рассмотрим, как выполнить разгон кулеров через БИОС:


Для процессоров Intel уменьшить или увеличить скорость вращения кулера позволят программы Riva Tuner , SpeedFan . Имеют большой функционал, выбор настроек, понятный интерфейс, не занимают много места, автоматически контролируют работу кулеров.

Если сторонний на ПК софт не позволяет проводить регулировку скорости оборотов вентиляторов, кулер для процессора можно контролировать посредством оригинальных утилит от производителей. К примеру, в лептотах НР есть программа Notebook Fan Control , в Acer - Smart Fan , ACFanControl . В Леново - Fan Control .

К современным «продвинутым» системам охлаждения, которые чаще всего используют в оверклокинге, можно отнести: радиаторные, фреонные, жидкоазотные, жидкогелевые. Принцип действия их основан на циркуляции теплоносителя. Сильно нагревающиеся элементы греют воду, которая охлаждается в радиаторе. Он может находиться снаружи корпуса или быть пассивным, работая без вентилятора.

Заключение

В этой статье были рассмотрены разнообразные причины перегрева процессора и варианты решения данной проблемы. Иногда поводом ее возникновения могут стать обыкновенная пыль, которую периодически требуется убирать, или последствия неопытного разгона оборудования, а также его апгрейд. При замене термопасты необходимо быть внимательным и аккуратным, чтобы не повредить оборудование.

Видео по теме

Системы охлаждения компьютера бывают разных типов и разной эффективности. Вне зависимости от этого, у них у всех одна и та же цель: остудить устройства внутри системного блока, чем предохранить их от сгорания и повысить эффективность работы. Разные системы предназначены для охлаждения разных устройств и делают они это при помощи разных способов. Это, конечно, не самая захватывающая тема, но меньше важной она от этого не становится. Сегодня мы подробно разберемся какие системы охлаждения нужны нашему компьютеру, и как добиться максимальной эффективности их работы.

Для начала предлагаю быстренько пробежаться по системам охлаждения вообще, дабы к изучению компьютерных их разновидностей мы подошли максимально подготовленными. Надеюсь, что это сэкономит наше время и упростит понимание. Итак. Системы охлаждения бывают…

Воздушные системы охлаждения

Сегодня это наиболее распространенный тип систем охлаждения. Принцип его действия очень прост. Тепло от нагревающего компонента передается на радиатор с помощью теплопроводящих материалов (может быть прослойка воздуха или специальная теплопроводящая паста). Радиатор получает тепло и отдает его в окружающее пространство, которое при этом либо просто рассеивается (пассивный радиатор), либо сдувается вентилятором (активный радиатор или кулер). Такие системы охлаждения устанавливаются непосредственно в системный блок и практически на все греющиеся компьютерные компоненты. Эффективность охлаждения зависит от размеров эффективной площади радиатора, металла из которого он сделан (медь, аллюминий), скорости проходящего потока воздуха (от мощности и размеров вентилятора) и его температуры. Пассивные радиаторы устанавливаются на те компоненты компьютерной системы, которые не очень сильно греются в процессе работы, и возле которых постоянно циркулируют естественные воздушные потоки. Активные системы охлаждения или кулеры разработаны в основном для процессора, видеоадаптера и прочих постоянно и напряженно работающих внутренних компонентов. Для них иногда могут устанавливаться и пассивные радиаторы, но обязательно с более эффективным чем обычно отводом тепла при низкой скорости воздушных потоков. Это дороже стоит и применяется в специальных бесшумных компьютерах.

Жидкостные системы охлаждения

Чудо-диво-изобретение последней десятилетки, используется в основном для серверов, но в связи с бурным развитием техники, со временем имеет все шансы перебраться и в домашние системы. Дорого и немного страшно, если представить, но достаточно эффективно, поскольку вода проводит тепло в 30 (или около того) раз быстрее воздуха. Такой системой можно практически без шума одновременно охлаждать несколько внутренних компонентов. Над процессором помещается специальная металлическая пластинка (теплосъемник), которая собирает тепло с процессора. Поверх теплосъемника периодически прокачивается дистиллированная вода. Собирая с него тепло, вода попадает в радиатор охлажденный воздухом, остывает и начинает свой второй круг с металлической пластины над процессором. Радиатор при этом рассеивает собранное тепло в окружающую среду, охлаждается и ждет новую порцию нагретой жидкости. Вода в таких системах может быть специальная, например, с бактерицидным либо антигальваническим эффектом. Вместо такой воды может использоваться антифриз, масла, жидкие металлы или еще какая-нибудь жидкость, обладающая высокой теплопроводностью и высокой удельной теплоемкостью, дабы обеспечить максимальную эффективность охлаждения при наименьшей скорости циркуляции жидкости. Конечно, такие системы более дорогие и сложные. Они состоят из помпы, теплосъемника (ватерблок или головка охлаждения), прикрепленного к процессору, радиатора (может быть как активным, так и пассивным), обычно прикрепленного к задней части корпуса компьютера, резервуара для рабочей жидкости, шлангов и датчикв потока, разнообразных измерителей, фильтров, сливных кранов и пр. (перечисленные компоненты, начиная от датчиков, опциональны). Кстати, замена такой системы - занятие не для слабонервных. Это вам не вентилятор с радиатором поменять.

Фреоновая установка

Маленький холодильник, устанавливаемый прямо на нагревающийся компонент. Они эффективны, но в компьютерах применяются в основном, исключительно для разгона. Знающие люди говорят, что у него больше недостатков, чем достоинств. Во-первых, конденсат, который появляется на детальках, более холодных, чем окружающая среда. Как вам перспектива появления жидкости внутри святая святых? Повышенное энергопотребление, сложность и немалая цена – меньшие недостатки, но от этого достоинствами тоже не становятся.

Системы открытого охлаждения

В них используется сухой лед, жидкий азот либо гелий в специальном резервуаре (стакане), установленном прямо на охлаждаемом компоненте. Используется Кулибиными для самого экстремального разгона или оверклокинга, по нашему. Недостатки те же – дороговизна, сложность и пр. + 1 очень существенный. Стакан надо постоянно наполнять и периодически бегать в магазин за его содержимым.


Системы каскадного охлаждения

Две и более последовательно подключенные системы охлаждения (например, радиатор + фреон). Это самые сложные в реализации системы охлаждения, которые в состоянии работать без перерывов, в отличие от всех остальных.

Комбинированные системы охлаждения

Такие сочетают в себе элементы охлаждения систем различных типов. В пример комбинированных можно привести Ватерчпперы. Ватерчипперы = жидкость + фреон. Антифриз циркулирует в системе жидкостного охлаждения и кроме нее охлаждается еще и фреоновой установкой в теплообменнике. Еще более сложно и дорого. Сложность в том, что теплоизоляция понадобится и всей этой системе, зато этот агрегат можно применять для одновременного эффективного охлаждения сразу нескольких компонентов, что довольно сложно реализуется в других случаях.

Системы с элементами Пельтелье

Они никогда не используются самостоятельно и кроме этого, имеют наименьшую эффективность. Их принцип работы описал Чебурашка, когда предложил Гене понести чемоданы (“Давай я понесу чемоданы, а ты понесешь меня”). Элемент Пельтелье устанавливают на нагревающий компонент, а другую сторону элемента охлаждают другой, обычно воздушной или жидкостной системой охлаждения. Поскольку возможно охлаждение до температуры ниже окружающей среды, то проблема конденсата актуальна и в этом случае. Элементы Пельтелье менее эффективны, чем фреоновое охлаждение, но при этом тише и не создают вибраций, как холодильники (фреон).

Если вы никогда не замечали, то внутри вашего системного блока постоянно кипит бурнейшая деятельность: ток бегает туда-сюда, процессор считает, память запоминает, программы работают, жесткий диск вертится. Компьютер работает, одним словом. Из школьного курса физики мы знаем, что проходящий ток нагревает устройство, а если устройство греется, то это – нехорошо. В худшем случае оно просто перегорит, а в лучшем будет просто туго работать. (Это действительно частая причина не слабо тормозящей системы). Именно во избежание таких вот неприятностей внутри вашего системного блока предусмотрено несколько видов разнообразных систем охлаждения. По крайней мере, для самых важных компонентов.

Охлаждение системного блока

Как производится охлаждение? В основном – воздухом. Когда вы включаете компьютер, он начинает гудеть – включается вентилятор (очень часто их несколько), потом он затихает. Через несколько минут работы, когда ваша система достигла определенного порогового температурного значения, вентилятор включается вновь. И так все время работы. Самый большой и самый заметный вентилятор внутри системного блока просто выдувает из коробки нагревшийся воздух, чем и охлаждает все вместе взятое, включая компоненты, на которые трудно установить собственную систему охлаждения, например, жесткий диск. По законам той самой физики, на место нагретого воздуха через специальные вентиляционные отверстия в передней части системного блока, поступает охлажденный воздух. Точнее тот, который еще просто не успел нагреться. Охлаждая собой внутренние части компьютера, он нагревается сам и выходит через отверстия в боковой и/ или задней панели системного блока.

Охлаждение процессора

У процессора, как у очень важного и постоянно загруженного компонента вашего железного друга есть личная система охлаждения. Она состоит аж из двух компонентов – радиатора и вентилятора, конечно же меньших размеров, чем тот о котором мы только что говорили. Радиатор иногда называют теплосъемником, в соответствии с его основной функциональной деятельностью – он рассеивает тепло от процессора (пассивное охлаждение), а маленький вертилятор сверху сдувает тепло с радиатора (активное охлаждение). Кроме этого, процессор смазывается специальной термопастой, способствующей максимальной передаче тепла от процессора к радиатору. Дело в том, что поверхности и процессора, и радиатора даже после полировки имеют зазубрины около 5 мкм. В результате таких зазубрин между ними остается тончайший воздушный слой с очень низкой теплопроводимостью. Именно эти промежутки и замазываются пастой из вещества с высоким коэффициентом теплопроводности. У пасты ограниченный срок действия, соответственно, ее нужно менять. Это удобно делать одновременно с чисткой системного блока, о которой мы поговорим чуть ниже, тем более, что старая паста вообще может давать обратный эффект.

Охлаждение видеокарты

Современная видеокарта – это компьютер внутри компьютера. Система охлаждения крайне необходима и ей. У простеньких и дешевых видеокарт системы охлаждения может и не быть, а вот современные видеоадаптеры для игровых монстров в обязательном порядке нуждаются в освежающей прохладе, пожалуй, даже больше чем вы в сорокаградусную жару.

Загрязнение пылью

Вместе с воздухом из комнаты внутрь вашего системного блока поступает пыль. Причем, даже в регулярно убираемом и проветриваемом помещении, пыли, на диво, достаточно, чтобы за несколько месяцев ежедневной работы опутать вашу новенькую крутилку неизвестно откуда взявшимися длинными, малоприятными для глаз шерстяными лохмами. Это дает обратный эффект – забиваются вентиляционные отверстия, а “лохмы” (кроме того, что они физически не позволяют крутиться вентилятору) не хуже норковой шубы согреют ваш компьютер до самого процессора, причем не только в тропический зной, но и в полярную вьюгу. Человек, насколько я знаю, болеет от переохлаждения, компьютер же вполне может заболеть от перегрева. Лечим бедолагу приблизительно раз в пол года не антибиотиками и горячим чаем с малиной, а пылесосом. Желательно приобретенном в специальном магазине компьютерной техники. Привычный, в очень крайнем случае, сойдет, но следует быть предельно осторожным со статическим электричеством. Его очень не любят внутренние компоненты.

Чистка системы охлаждения

Первый признак плохо работающей или не работающей совсем системы – “не гудит” вентилятор и греется системный блок. Кстати, это частая причина самовыключения компьютера или слишком медленной работы системы, а диагноз настолько прост, что может банально не прийти в голову. И начинается: обновление драйверов, сканирование антивирусом, аппаратное обновление системы, покупка дополнительных модулей оперативной памяти и прочие невеселые телодвижения. Смешно? Скорее печально. Срочно вскрываем пациента и смотрим, что у него внутри. Желательно перед этим поискать точный алгоритм проведения процедуры в технической документации у производителей материнки.

В принципе, в чистке системного блока нет ничего сложного. Нужно выключить компьютер, не забыв вытянуть шнур из розетки, разобрать системный блок и аккуратно очистить все внутренности от пыли. В магазинах продаются специальные пылесосы, которыми это делать лучше всего. Больше всего пыли скапливается на радиаторе с вентилятором и возле вентиляционных отверстий на системном блоке. Аккуратно удаляем с них пылевые накопления и смазываем при необходимости (у вентилятора нужно снять наклейку и капнуть несколько капель на ось вентилятора). Неплохо подойдет масло для швейных машинок. Кроме этого, необходимо очистить процессор от старой термопасты и намазать на него новую. Аналогичные действия повторяем с видеокартой и вентилятором системного блока. Осталось собрать компьютер и пользоваться им еще несколько месяцев перед проведением повторной чистки системного блока. Ноутбуки чистить тоже нужно, причем судя по моему опыту – несколько чаще, чем стационарные (малые расстояния между компонентами внутри ноута и потребление печенюшек и бутербродов рядом с ним любимым делают свое черное дело). Многие пользователи легко справляются с этой процедурой без помощи компьютерных специалистов, но лучше не спешить, особенно с ноутбуками, если вы не чувствуете себя достаточно уверенно. Риски: статическое электричество может вывести из строя материнку, процессор или что-нибудь еще, а также вы сами, в силу неопытности, запросто можете повредить что-нибудь важное. Шутки-шутками, но делать это действительно нужно, иначе проблем может появиться просто немерянное количество.

Если же вы почистили компьютер, но заметного облегчения это не принесло, возможно вам придется установить более сильную систему охлаждения. В самом легком случае может помочь дополнительный вентилятор. Чтобы узнать степень нагрева системных компонентов, можно заглянуть на сайт производителя материнской платы. Вполне возможно, что там вы найдете специальное программное обеспечение, которое поможет это определить. Усредненные показатели для процессора это 30-50 градусов, а в режиме нагрузки до 70-ти. Винчестер не должен греться более чем на 40 градусов. Более точные показатели следует проверить в технической документации.

В завершение описанного, хочу сказать, что в 90 (если не больше) процентах случаев вполне подойдет стандартная штатная система охлаждения. Метаться между качеством и ценой, а также внедрять систему охлаждения в свой компьютер (иногда это довольно рискованно и совсем не просто) действительно нужно владельцам серверов, мощных игровых компьютеров и любителям экспериментов с разгоном. Если же вы покупаете компьютер для дома или офиса, вам нужно просто поинтересоваться, что у него внутри, дабы возможная экономия производителя не вылезла для вас боком.

Доброго дня, дорогие читатели!

Как я и обещал в комментариях к статье «Что нужно знать о накопителях и безопасности данных - 20 самых важных моментов» , сегодняшняя статья будет посвящена вопросам охлаждения компьютеров.

Актуальность вопроса очень высока. Об этом свидетельствует хотя бы то, какой поток писем я получаю на данную тему. И дело здесь не только в том, что уже совсем скоро придет солнечное и жаркое лето…

Вопрос актуален применительно и к настольным компьютерам, и к ноутбукам, потому как совершенно любой компьютер совершенно любого уровня нуждается в охлаждении для нормальной работы. Разница лишь в том, что одни устройства выделяют больше тепла, а другие - меньше…

Сегодняшнюю статью я предлагаю вам в виде сборника наиболее важных вопросов и нюансов, как это было в предыдущем материале про жесткие диски, чтобы вы могли, не тратя много времени, сразу же понять самое важное и главное.

Да, всех аспектов не затронешь в рамках одной статьи, но я постарался собрать всё особенно важное под одним заголовком, чтобы получившийся материал дал ответы на самые критичные вопросы.

Итак, начнем!

Настольные компьютеры

Начнем с самого главного. Несмотря на то, что сегодня ноутбуков продается больше, чем настольных ПК, тем не менее - от «настольников» никто не отказывался и отказываться в будущем не собирается. В конце концов, пока заменить полноценную настольную рабочую станцию ноутбуком или чем-то другим просто невозможно.

Как следствие своей мощности, вопрос охлаждения настольных ПК не снимается с повестки дня обычных пользователей никогда.

1. Основные источники тепла.

Таковыми в настольном ПК являются: процессор, видеокарта, элементы системной платы (такие как чипсет, питание процессора…) и блок питания. Тепловыделение остальных элементов не так значительно, по сравнению с вышеприведенными.

Да, многое зависит от конкретной конфигурации и ее мощности, но все же в пропорциональном отношении мало что меняется.

Процессоры средне-производительного сегмента могут выделять от 65 до 135 ватт тепла; обычная видеокарта игрового уровня в процессе работы может разогреваться до 80-90 градусов Цельсия и это является абсолютно нормальным для таких производительных решений; блок питания может запросто разогреться до 50 градусов; чипсет на системной плате так же может разогреваться до 50-60 градусов и т.п.

Всегда стоит помнить, что чем мощнее используемые компоненты, тем больше тепла они выделяют.

Процессор и видеочип графической карты можно сравнить с конфорками электрической плиты. В плане тепловыделения - аналогия абсолютная. Всё то же самое, только чипы способны разогреваться гораздо быстрее, чем конфорка современной печи: всего за секунды…

2. Насколько это важно?

По сути, если, скажем, графический чип работает без охлаждения, то он может выйти из строя за считанные секунды, максимум - за несколько минут. То же самое касается процессоров.

Другое дело - что все современные чипы оснащаются защитой от перегрева. При превышении определенного порога температуры он просто выключиться. Но не стоит испытывать судьбу - здесь это правило верно как никогда, поэтому, проблем с охлаждением лучше не допускать.

3. Всё замыкается на корпус…

Нельзя забывать, что все эти «жаркие» компоненты находятся в рамках довольно ограниченного пространства корпуса системного блока:

Следовательно: все эти большие объемы тепла не должны «застаиваться» и «прогревать» весь компьютер. Отсюда вытекает небольшое важное правило, которого нужно всегда придерживаться при организации охлаждения:

«Внутри корпуса всегда должен быть «сквозняк».

Да, только так, когда горячий воздух выбрасывается за пределы корпуса можно исправить ситуацию.

4. Следите за температурами.

Старайтесь хотя бы иногда интересоваться температурами компонентов компьютера. Это поможет вам вовремя выявить и устранить проблему.

В этом вам может помочь программа EVEREST или SiSoftware Sandra Lite (бесплатная). В этих системных утилитах есть соответствующие модули, которые выводят температуру устройств.

Приемлемые «градусы»:

Процессор: рабочая температура в 40-55 градусов Цельсия считается нормальной.

Видеокарта: все зависит от ее мощности. Бюджетные недорогие модели могут не прогреваться и до 50 градусов, а для топовых решений, класса Radeon HD 4870X2 и 5970 - 90 градусов при нагрузке может считаться нормой.

Жесткий диск: 30-45 градусов (полный диапазон).

Примечание: По своему опыту могу сказать, что относительно точно можно измерить программным способом только температуру вышеприведенных устройств. А состояние всех остальных компонентов (чипсет, память, окружение видеокарты и системной платы) довольно часто определяется ошибочно измерительными утилитами.

Например, достаточно часто можно встретить, что какая-то программа показывает температуру чипсета, скажем, в 120 градусов или температуру окружения в 150 градусов. Естественно - это не реальные значения, при которых компьютер уже бы давно не работал исправно.

Однако, если Вы организуете правильное охлаждение внутри корпуса, используя дальнейшие советы, то я могу гарантировать - что измерять что-либо кроме температуры процессора, видеокарты и диска попросту не придется, т.к. при правильных условиях охлаждения они не будут перегреваться.

Так что вполне достаточно будет временами поглядывать на значения температур основных компонентов, приведенных выше, для отслеживания общей ситуации…

5. Хороший корпус…

Да, тепловыделение компонентов компьютера может сильно различаться. Если вести речь про маломощные машины «офисного» уровня, то да - тепловыделение будет небольшим.

Что касается средне-производительных и «топовых» решений, которые составляют большинство современных домашних настольных ПК, то здесь системный блок может вполне себе играть роль обогревателя.

В современных условиях наличие корпуса, с достаточным внутренним пространством для циркуляции воздуха - необходимость. Причем не важно, какова производительность вашего компьютера.

В любом случае - и офисный и игровой ПК нуждается в нормальной циркуляции воздуха внутри корпуса. Иначе, даже простой офисный ПК из-за образования так называемых “воздушных пробок” внутри корпуса может начать перегреваться.

Воздушные пробки внутри корпуса - “бытовое” название явления, когда воздушные потоки (вызываемые вентиляторами и кулерами) циркулируют неправильно. Например: когда нагретый воздух не выводится наружу; или если отсутствует подача свежего воздуха в корпус; или когда какие-либо вентиляторы установлены неправильно, скажем, если из-за особенности конструкции процессорный кулер

6. Немного о мебели…

Особый вопрос в теме качественного охлаждения касается мебели - вашего рабочего стола.

Конструкция стола может либо сильно затруднять охлаждение, либо же наоборот способствовать максимальной вентиляции.

Одно дело, когда системный блок просто стоит рядом со столом - здесь претензий никаких, за исключением разве что того, что категорически не рекомендуется размещать системный блок рядом с радиатором отопления и обогревателями, не рекомендуется ставить какие-либо еще предметы вплотную к системному блоку.

Если рядом находится какая-то мебель или предметы, позаботьтесь о том, чтобы со всех сторон от системного блока оставались зазоры хотя-бы 7-10 см.

Однако, в большинстве случаев системный блок расположен не рядом со столом, не на столе, а в столе:

Как видите - в этом случае пространство вокруг системного блока жестко ограничено столом и пространства для циркуляции и выхода воздуха - минимум…

Поскольку основные отверстия для вентиляции в системном блоке находятся сзади, впереди и на левой стенке, то я рекомендую сдвинуть системный блок относительно бокса стола вправо, чтобы слева (см. снимок выше) оставалась как можно бОльшее пространство.

Чтобы избежать “воздушных пробок”: когда весь нагретый воздух поднимется вверх и будет там находится - не рекомендуется закрывать дверцу бокса для системного блока вашего стола.

При соблюдении всех этих пунктов охлаждение будет вполне достойным: горячий воздух будет скапливаться вверху и выходить из стола под действием естественного перемешивания (т.к. слева имеется достаточный зазор).

В некоторых случаях, если в вашем компьютере очень производительное «железо», рекомендуется полностью снять левую сторону корпуса системного блока - в таком случае эффективность охлаждения повышается в разы.

Например, я сам сделал точно так же, поскольку мой компьютер выделяет ну очень много тепла:

7. О процессорном кулере.

Этот вопрос больше актуален для производительных ПК. Если говорить о маломощных ПК, то смысла говорить о кулерах нет, т.к. такой процессор выделяет немного тепла, и штатного (идущего в комплекте с процессором) более чем достаточно.

Если вы покупаете процессор и в его названии присутствует слово BOX - значит он поставляется в полной комплектации, которая предусматривает кулер.

Если в прайс-листе вы видите пометку ОЕМ - это значит при покупке, кроме самого процессора вы не получите больше ничего.

Здесь можно дать такой совет: если вы покупаете недорогой современный процессор - то лучше выбрать BOX-комплектацию. В конечном счете такой процессор не потребует мощного кулера - производительность невысока, а нынешние технологии обеспечивают небольшое энергопотребление, следовательно, большого выделения тепла здесь ждать не приходится.

А если вы желаете приобрести какую-либо мощную модель, скажем, для домашнего ПК, то лучше выбирать ОЕМ-комплектацию - в любом случае, штатного кулера вам будет недостаточно.

Почему так происходит?

Сегодня производители, на мой взгляд, стали крайне халатно относиться к штатным кулерам - его размеры и характеристики не всегда соответствуют мощности процессора. Например:

Такой кулер идет в комплекте с двухъядерными и четырехъядерными процессорами Intel Core 2. Ладно, для 2-ядерных моделей его, может быть, и хватит, но для 4-ядерных - явно недостаточно…

Кроме того, если затронуть устаревшие модели, то ситуация такая: если вы купили, скажем, процессор 3 года назад, то в то время технологии не обеспечивали такого энергосбережения, как сейчас.

Именно поэтому, скажем, вполне себе недорогой и маломощный Pentium D 4-х летней давности греется даже сильнее, чем современные Core i7 топового уровня.

В этом случае - хороший кулер просто необходим. И я рекомендую устанавливать кулер башенного типа на тепловых трубках:

Тепловые трубки - выполненные из меди элементы, которые пронизывают алюминиевые (как на фото выше) или медные пластины кулера и способствуют более быстрому и эффективному отводу тепла от горячего процессора. Они обеспечивают в разы более эффективное охлаждение, по сравнению с обычными кулерами.

Тепловая трубка - устройство герметичное, внутри которого находится вода, которая циркулирует по трубке естественным образом. Этому движению способствуют тысячи мельчайших «зазубрин» на внутренней стороне трубки, которые позволяют воде подниматься вверх.

Вне зависимости от того, насколько мощный процессор вы хотите охладить - я всегда рекомендую кулеры только на тепловых трубках. Покупка обычного кулера на базе алюминиевого или медного радиатора - не оправдана.

Именно башенный кулер на тепловых трубках обеспечивает наибольшую эффективность.

Еще пример такого кулера:

8. Корпусный вентилятор - обязателен.

Следующее, что необходимо для организации правильного охлаждения - наличие корпусного вентилятора.

Современные корпуса предлагают возможность установки как минимум двух вентиляторов.

На передней панели: воздух при этом может поступать через перфорацию (как на фото), либо же снизу - если передняя панель не перфорирована:

При этом получается, что вентилятор становится как раз напротив жестких дисков и поэтому выполняет две важные функции: подает свежий воздух внутрь корпуса и охлаждает жесткие диски:

Наличие как минимум одного корпусного вентилятора - обязательно для любого компьютера! Вентилятор «прокачивает» воздух внутри и препятствует образованию «воздушных пробок».

Установка вентилятора на выдув на задней стороне не является обязательным, но тем не менее в некоторых случаях помогает сделать систему охлаждения еще лучше:

Но при этом не стоит забывать, что если у вас установлен кулер башенного типа, то в этом случае вентилятор кулера в большинстве случаев будет напротив гнезда для корпусного вентилятора на задней стенке (см. фото ниже), с той лишь разницей, что вентилятор кулера может располагаться с левой или правой стороны кулера

Если (как на фото) У вас не установлено корпусного вентилятора - то все нормально. Вентилятор кулера будет либо выбрасывать горячий воздух в это отверстие, либо затягивать его оттуда (в зависимости от расположения вентилятора на кулере). При этом лучше, чтобы он выбрасывал туда уже нагретый воздух, а не затягивал его.

На фото расположение кулера неоптимальное: горячий воздух при этом выбрасывается в корпус, а не в отверстие для крепления корпусного вентилятора.

Если же вы захотите установить еще и корпусный вентилятор, убедитесь, чтобы вентилятор и кулер не «конфликтовали», т.е. не направляли воздух друг на друга. Устанавливайте корпусный вентилятор так, чтобы он помогал процессорному кулеру.

Вне зависимости от того, на какую панель вы хотите установить вентилятор, я рекомендую использовать ТОЛЬКО 140-мм вентиляторы!

9. Расположение кабелей.

Большой проблемой для охлаждения являются неправильно уложенные кабели. Находясь в разбросанном состоянии они затрудняют циркуляцию воздуха внутри корпуса, иногда до такой степени, что даже мощный вентилятор не в состоянии «прокачать» весь объем корпуса…

Но при укладке кабелей внутри корпуса - не переусердствуйте! Не стоит излишне гнуть (на излом) и создавать натяжение - это может повредить кабели и привести к ошибкам и сбоям в работе ПК! Такие случаи не редки…

Просто постарайтесь уложить кабели максимально компактно. Настолько, насколько это возможно:

10. Позаботьтесь об особо горячих поверхностях.

Таковыми в компьютере являются прежде всего видеокарты. Особенно, если говорить о таких горячих и мощных моделях, как Radeon HD 4870X2 и HD 5970.

Позаботьтесь о том, чтобы сверху на видеокарте не лежали никакие кабели:

Это очень важно! В процессе работы видеокарта может разогреваться до температуры, близкой к 100 градусам!

11. О термопасте…

Устанавливая кулер всегда используйте термопасту. Ни в коем случае не ставьте кулер «на сухую»! Эффективность охлаждения упадет в разы…

Наносить термопасту нужно только на процессор, очень тонким, полупрозрачным слоем.

«Чем больше термопасты - тем лучше охлаждение» - это самый большой миф, среди начинающих пользователей!

Термопаста является связующим звеном, она соединяет поверхность процессора с поверхностью кулера, заполняя микроскопические неровности между этими поверхностями, в которых может находится воздух. А воздух, как известно, очень сильно препятствует отводу тепла.

А если термопаста будет наложена толстым слоем, то она превращается уже не в проводник тепла, а в изолятор - толстое «одеяло» между кулером и процессором.

Наносить ее можно чем угодно: выдавливаете небольшое количество пасты в центр на процессор, и затем немного размазываете по сторонам. Затем приступайте к установке кулера. Окончательно термопаста разойдется идеальным слоем только после того, как вы установите кулер.

Примечание: подробно процедуру установки кулера я показываю в бесплатном курсе по самостоятельной сборке компьютера .

Многие спорят о том, какая паста лучше… По своему опыту могу сказать, что разница между различными ее марками минимальна. Поэтому, не стоит обращать на это внимание.

Например, термопаста TITAN, продается вот в таких маленьких тюбиках:

Один такой тюбик рассчитан, как минимум, на ДВА раза.

При условии выполнения всех вышеприведенных рекомендаций по сути никаких проблем с охлаждением у вашего ПК не будет.

Ноутбуки

12. Особенности ноутбуков.

Все компоненты внутри ноутбука собраны в крайне малом пространстве мобильного корпуса. Помимо процессора в ноутбуке может быть установлена мощная видеокарта, жесткий диск…

Эти и другие устройства отделяют друг от друга считанные сантиметры, и при этом никакого пространства для циркуляции воздуха - внутри ноутбука просто нет.

Именно поэтому компоненты практически всегда работают при повышенных температурах. Исправить это, к сожалению, никак нельзя; но однако же можно уберечь ноутбук от дополнительного нагрева, таким образом продлив ему срок службы и избавив от критического перегрева.

13. Рабочее место…

Как я уже не раз упоминал здесь на блоге - старайтесь по возможности не располагать ноутбук на мягких поверхностях и коленях, особенно - когда за ноутбуком вы работаете с ресурсоемкими задачами (например, обработка фото или видео). При несоблюдении этого простого правила перегрев компонентов ноутбука, включая батарею - обеспечен…

Старайтесь располагать ноутбук на ровной и твердой поверхности рабочего стола. При этом убедитесь, что никакие предметы, которые лежат лядом, не мешают току воздуха под- и вокруг ноутбука:

По сути - это самое главное и самое эффективное, что только можно сделать для избежание перегрева.

14. Погода…

Не работайте за ноутбуком под прямыми солнечными лучами. Они очень быстро и очень сильно нагревают его поверхность (особенно, если ноутбук темный) и быстро прогревают всё внутри корпуса.

В этом случае возможны даже повреждения отдельных компонентов от перегрева.

И последний совет, который я бы хотел дать в рамках этой статьи, для всех пользователей, в не зависимости от того, ноутбук ли у вас или же настольный ПК:

15. Регулярно выполняйте очистку от пыли!

Для настольных ПК: Они очень быстро накапливают пыль. Старайтесь по крайней мере раз в 6 месяцев открывать системный блок и очищать все внутренние компоненты от пыли.

Пыль препятствует отводу тепла от компонентов и существенно ухудшает теплообмен. Из-за пыли особенно могут перегреваться жесткие диски, видеокарта и процессор.

Отдельно хочу упомянуть о вентиляторах. Помните: забитый пылью вентилятор подает воздух намного менее эффективно:

Для очистки внутренних компонентов я обычно использую кисть и слегка влажную ткань. КАТЕГОРИЧЕСКИ не рекомендую использовать пылесос! В процессе чистки им можно случайно повредить хрупкие компоненты. Такое случается довольно часто.

Приступайте к процедуре очистки ТОЛЬКО если компьютер выключен!

Для ноутбуков: Здесь ситуация несколько сложнее…

Дело в том, что ноутбуки обладают различными корпусами: некоторые открывают сразу доступ к системе охлаждения так, что можно почистить кистью вентилятор; а в некоторых, чтобы добраться до вентиляторов нужно разобрать полноутбука…

Здесь единственный совет, который я могу вам дать: не беритесь за разбор ноутбука, если вы не уверены в том, что сможете собрать всё назад…

Лето стремительно вступило в свои права; столбик термометра ползет вверх, и все чаще приходится задумываться о том, как обеспечить комфортную температуру. Поверьте: для компьютеров проблема борьбы с жарой не менее актуальна, чем для их пользователей. Даже если условия в помещении вполне нормальные (20 - 22°С), температура в системном блоке достигает 30–32°С. И это в лучшем случае. Чем жарче на улице и в квартирах, тем острее вопрос защиты от перегрева и тем пристальнее внимание к системам охлаждения системного блока и его компонентов.

Чтобы грамотно решить проблему, необходимо хотя бы в общих чертах представлять, зачем вообще нужны компьютерам системы охлаждения, почему системные блоки перегреваются и как обезопасить «вычислительного друга» от теплового удара. В этой статье вы не найдете длинного перечня моделей кулеров, но, прочитав ее, сами сможете выбрать подходящие компоненты системы охлаждения ПК и грамотно подойти к выбору нового корпуса.

Почему он греется

Причина тривиальна: как любой электроприбор, компьютер рассеивает часть (порой весьма значительную) потребляемой электроэнергии в виде тепла – например, процессор переводит в тепло почти всю использованную энергию. Чем больше ее нужно системному блоку, тем сильнее нагреваются его компоненты. Если тепло вовремя не отводить, это может привести к самым неприятным результатам (см. «Последствия перегрева»). Особенно актуальна проблема теплоотведения и охлаждения для современных моделей процессоров (как центральных, так и графических), устанавливающих все новые рекорды производительности (а нередко и тепловыделения).

Каждый компонент ПК, рассеивающий много тепла, оснащается охлаждающим устройством. Как правило, в таких устройствах присутствуют металлический радиатор и вентилятор – именно из этих компонентов состоит типичный кулер. Важен также термоинтерфейс между ним и нагревающимся компонентом – обычно это термопаста (смесь веществ с хорошей теплопроводностью), обеспечивающая эффективную передачу тепла к радиатору кулера.

Прогресс в области систем охлаждения, благодаря которому появились такие технологические новинки, как термотрубки, обеспечил создателям компонентов для персональных компьютеров новые возможности, позволив отказаться от шумных кулеров. Некоторые компьютеры оснащаются водяными системами охлаждения – они имеют свои достоинства и недостатки. Обо всем этом рассказывается далее.

Рост тепловыделения ПК

Главная причина, по которой компьютеры выделяют все больше и больше тепла, состоит в том, что повышается их вычислительная мощность. Наиболее существенны следующие факторы:

  • рост тактовых частот процессора, чипсета, шины памяти и прочих шин;
  • рост числа транзисторов и ячеек памяти в чипах ПК;
  • увеличение мощности, потребляемой узлами ПК.

Чем мощнее компьютер, тем больше электричества он «съедает» – следовательно, неизбежен рост тепловыделения. Несмотря на применение изощренных технологических процессов при производстве чипов, их потребляемая мощность все равно растет, увеличивая количество тепла, рассеиваемого в корпусе ПК. Кроме того, возрастает площадь плат видеокарт (например, из­за того, что необходимо разместить больше микросхем памяти). Результат – рост аэродинамического сопротивления корпуса: громоздкая плата просто перекрывает доступ охлаждающего воздуха к процессору и блоку питания. Особенно актуальна эта проблема для ПК в маленьких корпусах, где расстояние между видеокартой и «корзиной» для HDD составляет 2–3 см, – а ведь в этом пространстве еще проложены шлейфы приводов и прочие кабели... Микросхемы оперативной памяти тоже становятся все «прожорливее», а современные ОС требуют все большего ОЗУ. Например, в Windows 7 для него рекомендуется 4 Гб – таким образом, рассеивается несколько десятков ватт тепла, что дополнительно усугубляет ситуацию с тепловыделением. Микросхема системной логики на материнской плате тоже является весьма «горячим» компонентом.

УЯЗВИМОСТЬ ЖЕСТКИХ ДИСКОВ

Внутри корпуса жесткого диска над поверхностью вращающихся пластин скользят подвижные магнитные головки, управляемые высокоточной механикой. Они осуществляют запись и чтение данных. При нагревании материалы, из которых сделаны компоненты диска, расширяются. В рабочем диапазоне температур механика и электроника вполне справляются с тепловым расширением. Однако при перегреве оно превышает допустимые пределы, и головки жесткого диска могут «промахиваться», записывая данные не там, где нужно, пока компьютер не будет выключен. А когда его снова включат, остывший жесткий диск не сможет найти данные, записанные в перегретом состоянии. В подобном случае информацию удается спасти только при помощи сложного и дорогого спецоборудования. Если температура превышает 45°С, для охлаждения жесткого диска рекомендуется установить дополнительный вентилятор.

Налицо парадокс: тепловая нагрузка в современных корпусах растет высокими темпами, а их конструкция почти не меняется: производители берут за основу рекомендованный Intel дизайн почти 10­летней давности. Модели, приспособленные к интенсивному тепловыделению, встречаются нечасто, а малошумные – и того реже.

Последствия перегрева

При избытке тепла компьютер в лучшем случае начнет тормозить и зависать, а в худшем – один или несколько компонентов выйдут из строя. Высокие температуры очень вредны для «здоровья» элементной базы (микросхем, конденсаторов и пр.), особенно для жесткого диска, перегрев которого чреват потерей данных.

ПРИМЕРНЫЕ ПАРАМЕТРЫ ТЕПЛОВЫДЕЛЕНИЯ

Примерные параметры тепловыделения компонентов среднестатистического системного блока компьютера (при высокой вычислительной нагрузке). Основными источниками тепла являются материнская плата, центральный процессор и графический процессор видеокарты (на их долю приходится более половины рассеиваемого тепла).

Емкость современных HDD позволяет хранить на них обширные коллекции музыки и видео, рабочие документы, цифровые фотоальбомы, игры и многое другое. Диски становятся все компактнее и быстрее, но за это приходится расплачиваться большей плотностью записи данных, хрупкостью конструкции, а значит, и уязвимостью начинки. Допуски при производстве емких накопителей измеряются микронами, так что малейший «шаг в сторону» выводит диск из строя. Потому HDD столь чувствительны к внешним воздействиям. Если диску приходится работать в неоптимальных условиях (например, с перегревом), вероятность потери записанных данных резко возрастает.

Охлаждение ПК: азы

Если температура воздуха в системном блоке держится на уровне 36°С или выше, а температура процессора – более 60°С (либо жесткий диск постоянно нагревается до 45°С), пора принимать меры по улучшению охлаждения.

Но прежде чем бежать в магазин за новым кулером, примите во внимание несколько моментов. Не исключено, что проблему перегрева можно решить более простым способом. Например, системный блок должен располагаться так, чтобы имелся свободный доступ воздуха ко всем вентиляционным отверстиям. Расстояние, на которое его тыльная часть отстоит от стены или мебели, должно быть не меньше, чем два диаметра вытяжного вентилятора. Иначе возрастает сопротивление оттоку воздуха, а главное – нагретый воздух дольше остается рядом с вентиляционными отверстиями, так что значительная его часть вновь попадает в системный блок. Если он установлен неправильно, от перегрева не спасет даже самый мощный кулер (эффективность работы которого определяется разностью между его температурой и температурой охлаждающего радиатор воздуха).

КУЛЕР, ОСНОВАННЫЙ НА ЭФФЕКТЕ ПЕЛЬТЬЕ

Одна из новейших моделей, в которой использован эффект Пельтье. Обычно в таких кулерах представлен полный набор последних технологических достижений: ТЭМ, термотрубки, вентиляторы с продвинутой аэродинамикой и эффектный дизайн. Результат впечатляющий; хватило бы места в системном блоке…

Максимально эффективное охлаждение достигается при равенстве температур воздуха в системном блоке и в помещении, где он находится. Единственный способ получить такой результат – обеспечить эффективную вентиляцию. Для этого используются кулеры всевозможных конструкций.

В стандартном современном персональном компьютере обычно устанавливается несколько кулеров:

  • в блоке питания;
  • на центральном процессоре;
  • на графическом процессоре (если в компьютере имеется дискретная видеоплата).

В отдельных случаях применяются дополнительные вентиляторы:

  • для микросхем системной логики, расположенных на материнской плате;
  • для жестких дисков;
  • для корпуса ПК.

Эффективность охлаждения

Выбирая корпус для системного блока ПК, каждый из пользователей руководствуется собственными критериями. Например, моддерам требуется оригинальное дизайнерское решение либо возможность переделки для воплощения оного. Оверклокерам нужен корпус, в котором комфортно почувствует себя до предела разогнанный процессор, видеокарта, ОЗУ (список можно продолжать). И при этом все, конечно, хотят, чтобы системный блок был тихим и небольшим по размеру.

Однако навороченный ПК может выделять до 500 Вт тепла (см. таблицу ниже). Осуществимы ли пожелания с точки зрения законов физики?

СКОЛЬКО ТЕПЛА ВЫДЕЛЯЕТ КОМПЬЮТЕР

Есть несколько способов измерить тепловыделение.

1. По значениям потребляемой мощности, указанным в документации к компонентам ПК.

  • Достоинства: доступность, простота.
  • Недостатки: высокая погрешность и как следствие – завышенные требования к системе охлаждения.

2. С помощью сайтов, предоставляющих сервис для расчета тепловыделения (и потребляемой мощности), – например, www.emacs.ru/calc.

  • Достоинства: не придется рыться в мануалах или путешествовать по сайтам производителей – нужные данные имеются в базах предлагаемых сервисов.
  • Недостатки: составители баз не поспевают за производителями узлов, поэтому базы нередко содержат недостоверные данные.

3. По значениям потребляемой узлами мощности и коэффициентам тепловыделения, найденным в документации или измеренным самостоятельно. Этот способ – для профессионалов либо больших энтузиастов оптимизации системы охлаждения.

  • Достоинства: дает самые точные результаты и позволяет наиболее эффективно оптимизировать работу ПК.
  • Недостатки: чтобы использовать данный способ, необходимы серьезные знания и немалый опыт.

Пути решения

Главный принцип: чтобы отвести тепло, необходимо пропустить через системный блок определенное количество воздуха. Причем его объем должен быть тем больше, чем жарче в помещении и чем сильнее перегрев.

Простой установкой дополнительных вентиляторов проблему не решить. Ведь чем они многочисленнее, мощнее и «оборотистее», тем «звучнее» ПК. Причем мало того, что шумят двигатели и лопасти вентиляторов, – вследствие вибраций шумит весь системный блок (особенно часто это бывает при некачественной сборке и использовании дешевых корпусов). Для исправления такой ситуации рекомендуется применять низкооборотные вентиляторы большого диаметра.

Чтобы можно было добиться эффективного охлаждения, не используя шумные вентиляторы, системный блок должен иметь низкое сопротивление для воздуха, который через него проходит (на профессиональном языке это называется аэродинамическим сопротивлением). Говоря попросту – если воздух с трудом «пролезает» сквозь тесное пространство, забитое кабелями и компонентами, приходится ставить вентиляторы с большим избыточным давлением, а они неизбежно создают сильный шум. Другая проблема – пыль: чем больше воздуха надо прокачивать, тем чаще требуется очищать внутренность корпуса (об этом поговорим отдельно).

Аэродинамическое сопротивление

Для оптимального охлаждения всегда желательно использовать большой корпус. Только так можно добиться комфортной работы без шума и перегрева даже при аномальной (свыше 40°С) жаре. Маленький корпус уместен лишь в том случае, если компьютер имеет низкое тепловыделение либо используется водяное охлаждение.

Впрочем, для минимизации шума вовсе не обязательно собирать ПК с воздушным охлаждением в морском контейнере или в холодильнике. Достаточно учесть рекомендации специалистов. Так, свободное сечение в любом разрезе корпуса должно быть в 2–5 раз больше проходного сечения вытяжных вентиляторов. Это также относится и к отверстиям для подачи воздуха.

КУЛЕР НА ТЕРМОТРУБКАХ

Кулеры на термотрубках «молчаливы» и позволяют охлаждать даже весьма горячие компоненты ПК, такие как графические процессоры видеокарт. Однако нужно непременно учитывать специфические особенности этих охлаждающих систем.

Гибридные системы включают, наряду с термотрубками и радиаторами, обычные вентиляторы. Но присутствие термотрубок, облегчающих отвод тепла, позволяет обойтись вентилятором меньших размеров либо использовать низкооборотные, а значит, не столь шумные модели.

Для того чтобы снизить аэродинамическое сопротивление, нужно:

  • обеспечить в корпусе достаточно свободного места для потоков воздуха (оно должно быть в несколько раз больше суммарного сечения вытяжных вентиляторов);
  • аккуратно уложить кабели внутри системного блока, используя стяжки;
  • в месте подачи воздуха в корпус установить фильтр, задерживающий пыль, но не оказывающий сильного сопротивления воздушному потоку;
  • фильтр следует регулярно чистить.

Соблюдение нехитрых правил позволит установить низкооборотные вытяжные вентиляторы. Как уже говорилось, корпус должен обеспечивать подачу холодного воздуха из помещения, где стоит ПК, ко всем «горячим» компонентам без больших энергетических затрат (т.е. минимальным числом вентиляторов). Объем воздуха должен быть достаточным, чтобы его температура на выходе из корпуса не оказалась слишком высокой: для эффективной теплоотдачи компонентов ПК разность температур воздуха на входе и на выходе из системного блока не должна превышать нескольких градусов.

ВАРИАНТЫ КОМПОНОВКИ ВЕНТИЛЯТОРОВ И ЭЛЕМЕНТОВ СИСТЕМНОГО БЛОКА, ОБЕСПЕЧИВАЮЩИЕ ЭФФЕКТИВНОЕ ОХЛАЖДЕНИЕ ПК

Вот одна из концепций построения системы воздушного охлаждения:

  • забор воздуха осуществляется внизу и спереди, в «холодной» зоне;
  • вывод воздуха производится вверху и сзади, через блок питания. Это соответствует естественному движению нагретого воздуха вверх;
  • при необходимости устанавливается дополнительный вытяжной вентилятор с автоматической регулировкой, расположенный рядом с БП;
  • обеспечивается дополнительный забор воздуха для видеокарты через заглушку PCI­E;
  • обеспечивается слабое вентилирование отсеков 3" и 5" дисков за счет слегка отогнутых заглушек незанятых отсеков;
  • важно пустить основной поток воздуха через самые «горячие» компоненты;
  • суммарную площадь заборных отверстий желательно довести до удвоенной площади вентиляторов (больше не требуется, поскольку эффекта это не даст, а накопление пыли увеличится).

В соответствии с данными рекомендациями можно дорабатывать корпуса самостоятельно (интересно, но хлопотно) либо при покупке выбирать соответствующие модели. Примерные варианты организации потоков воздуха через системный блок приводятся выше.

«Правильный» вентилятор

Если системный блок слабо «сопротивляется» потоку вдуваемого воздуха, можно использовать любой вентилятор, лишь бы он давал достаточный для охлаждения поток (об этом можно узнать из его паспорта, а также пользуясь онлайн­калькуляторами). Другое дело, если сопротивление воздушному потоку значительно – именно так обстоит дело с вентиляторами, монтируемыми в плотно «заселенные» корпуса, на радиаторы и в отверстия, забранные перфорацией.

Если вы решили самостоятельно заменить вышедший из строя вентилятор в корпусе или на кулере, устанавливайте такой, который обладает не меньшими значениями расхода и избыточного давления воздуха (см. паспорт). Если соответствующей информации нет, использовать подобный вентилятор в ответственных узлах (например, для охлаждения процессора) не рекомендуется.

Если уровень шума не слишком важен, можно устанавливать «оборотистые» вентиляторы большего диаметра. Более «толстые» модели позволяют снижать уровень шума, одновременно повышая давление воздуха.

В любом случае обращайте внимание на зазор между лопастями и ободом вентилятора: он не должен быть большим (оптимальная величина исчисляется десятыми долями миллиметра). Если расстояние между лопастями и ободом больше 2 мм, вентилятор окажется малоэффективным.

Воздух или вода?

Довольно широко распространено мнение, согласно которому водяные системы намного действеннее и тише обычных воздушных. Так ли это на самом деле? Действительно, теплоемкость у воды вдвое, а плотность – в 830 раз выше, чем у воздуха. Это значит, что равный объем воды способен отвести в 1658 раз больше тепла.

Однако с шумом все не так просто. Ведь теплоноситель (вода) в итоге отдает тепло все тому же «забортному» воздуху, и водяные радиаторы (за исключением огромных конструкций) оснащены такими же вентиляторами – их шум добавляется к шуму водяного насоса. Поэтому выигрыш, если он есть, не так уж велик.

Конструкция сильно усложняется, когда необходимо охладить несколько компонентов потоком воды, пропорциональным их тепловыделению. Не считая разветвленных трубок, приходится применять сложные регулирующие приборы (простыми тройниками и крестовинами не обойдешься). Альтернативный вариант – использовать конструкцию с раз и навсегда отрегулированными на заводе потоками; но в этом случае пользователь лишен возможности существенно изменить конфигурацию ПК.

Пыль и борьба с ней

Вследствие перепадов скоростей системные блоки компьютеров становятся настоящими пылесборниками. Скорость воздуха, идущего через входные отверстия, многократно превышает скорость потоков внутри корпуса. Кроме того, воздушные потоки часто меняют направление, огибая компоненты ПК. Поэтому большинство (до 70%) приносимой извне пыли оседает внутри корпуса; необходимо хотя бы раз в год производить чистку.

Впрочем, пыль может стать вашим «союзником» в борьбе за повышение эффективности системы охлаждения. Ведь активное ее оседание наблюдается как раз в тех местах, где воздушные потоки распределяются не оптимальным образом.

Воздушные фильтры

Волокнистые фильтры перехватывают более 70% пыли, что позволяет чистить корпус значительно реже. Зачастую в корпуса современных ПК устанавливают несколько вытяжных вентиляторов диаметром 120 мм, при этом воздух поступает в корпус через множество входных отверстий, рассредоточенных по всей конструкции, – их суммарная площадь много меньше площади вентиляторов. Устанавливать фильтр в такой корпус без доработки бессмысленно. Профессионалы дают здесь ряд рекомендаций:

  • входные отверстия для забора охлаждающего воздуха должны быть расположены как можно ближе к его основанию;
  • точки входа и выхода воздуха, пути его прохождения должны быть организованы так, чтобы воздушные потоки «омывали» наиболее нагретые элементы ПК;
  • площадь отверстий для забора воздуха должна в 2–5 раз превышать площадь вытяжных вентиляторов.

Кулеры на элементах Пельтье

Элементы Пельтье – или, как их еще называют, термоэлектрические модули (ТЭМ), работающие на принципе эффекта Пельтье, – выпускаются в промышленных масштабах уже много лет. Их встраивают в автомобильные холодильники, охладители для пива, промышленные кулеры для охлаждения процессоров. Существуют модели и для ПК, хотя встречаются они еще довольно редко.

Сначала – о принципе работы. Как нетрудно догадаться, эффект Пельтье открыт французом Жаном­-Шарлем Пельтье; случилось это в 1834 году. Охлаждающий модуль на основе данного эффекта включает множество последовательно соединенных полупроводниковых элементов n­ и p­типов. При прохождении постоянного тока через такое соединение одна половина p-n­контактов будет нагреваться, другая – охлаждаться.

Эти полупроводниковые элементы ориентированы так, чтобы нагревающиеся контакты выходили на одну сторону, а охлаждающиеся – на другую. Получается пластинка, которую с обеих сторон покрывают керамическим материалом. Если подать на такой модуль достаточно сильный ток, разность температур между сторонами мо жет достигать нескольких десятков градусов.

Можно сказать, что ТЭМ – своего рода «тепловой насос», который, затрачивая энергию внешнего источника питания, перекачивает выделяемое тепло от источника (например, процессора) к теплообменнику – радиатору, участвуя таким образом в процессе охлаждения.

Чтобы эффективно отводить тепло от мощного процессора, приходится использовать ТЭМ из 100–200 элементов (которые, кстати, довольно хрупки); поэтому ТЭМ оснащен дополнительной медной контактной пластиной, что увеличивает размер устройства и требует нанесения дополнительных слоев термопасты.

Это снижает эффективность теплоотведения. Проблема частично решается заменой термопасты пайкой, но в доступных на рынке моделях такой способ применяется редко. Заметим, что энергопотребление самого ТЭМ достаточно велико и сопоставимо с количеством отводимого тепла (примерно треть используемой ТЭМ энергии также превращается в тепло).

Другая трудность, возникающая при использовании ТЭМ в кулерах, – необходимость точного регулирования температуры модуля; оно обеспечивается применением специальных плат с контроллерами. Это удорожает кулер, к тому же плата занимает дополнительное место в системном блоке. Если температуру не регулировать, она может опуститься до отрицательных значений; возможно также образование конденсата, что недопустимо для электронных компонентов компьютера.

Итак, качественные кулеры на основе ТЭМ дороги (от 2,5 тыс. руб.), сложны, громоздки и не так эффективны, как можно подумать, судя по их размерам. Единственная область, в которой такие кулеры незаменимы, – охлаждение промышленных компьютеров, работающих в жарких (выше 50°С) условиях; однако к теме нашей статьи это не относится.

Термоинтерфейс и термопаста

Как уже говорилось, составной частью любой охлаждающей системы (в том числе компьютерного кулера) является термоинтерфейс – компонент, через который осуществляется термоконтакт между тепловыделяющим и теплоотводящим устройствами. Выступающая в этой роли термопаста обеспечивает эффективный перенос тепла между, например, процессором и кулером.

Зачем нужна теплопроводящая паста

Если радиатор кулера неплотно прилегает к охлаждаемому чипу, эффективность работы всей охлаждающей системы сразу снижается (воздух – хороший теплоизолятор). Сделать поверхность радиатора ровной и плоской (для идеального контакта с охлаждаемым устройством) весьма трудно, да и недешево. Здесь и приходит на помощь термопаста, заполняющая неровности на контактирующих поверхностях и тем самым значительно повышающая эффективность теплопереноса между ними.

Важно, чтобы вязкость термопасты была не слишком высокой: это необходимо для вытеснения воздуха из места термоконтакта при минимальном слое термопасты. Учтите, кстати, что полировка подошвы кулера до зеркального состояния сама по себе может и не улучшить теплообмен. Дело в том, что при ручной обработке практически нереально сделать поверхности строго параллельными, – в итоге зазор между радиатором и процессором может даже увеличиться.

Прежде чем наносить новую термопасту, старательно избавьтесь от старой. Для этого используются салфетки из нетканых материалов (они не должны оставлять волокон на поверхностях). Разводить пасту крайне нежелательно, так как это сильно ухудшает теплопроводящие свойства. Дадим еще несколько рекомендаций:

  • применяйте термопасты с теплопроводностью более 2–4 Вт/(К*м) и низкой вязкостью;
  • устанавливая кулер, каждый раз наносите свежую термопасту;
  • при установке необходимо, зафиксировав кулер креплением, сильно (но не слишком, иначе возможны повреждения) прижать его рукой и несколько раз повернуть вокруг оси в пределах существующих люфтов. В любом случае монтаж требует навыка и аккуратности.

Термотрубки

Термотрубки замечательно подходят для отвода излишков тепла. Они компактны и бесшумны. По конструкции это герметичные цилиндры (могут быть довольно длинными и произвольным образом изогнутыми), частично заполненные теплоносителем. Внутри цилиндра находится другая трубка, сделанная в виде капилляра.

Работает термотрубка следующим образом: в нагретой области теплоноситель испаряется, его пар переходит в охлаждаемую часть термотрубки и там конденсируется – а конденсат по капиллярной внутренней трубке возвращается в нагретую область.

Главное преимущество термотрубок состоит в высокой теплопроводности: скорость распространения тепла равна скорости, с которой пары теплоносителя проходят трубку из конца в конец (она весьма велика и близка к скорости распространения звука). В условиях меняющегося тепловыделения охлаждающие системы на термотрубках очень эффективны. Это важно, например, для охлаждения процессоров, которые, в зависимости от режима работы, выделяют разное количество тепла.

Выпускаемые сейчас термотрубки способны отводить 20–80 Вт тепла. При конструировании кулеров обычно применяются трубки диаметром 5–8 мм и длиной до 300 мм.

Однако при всех преимуществах термотрубок у них есть одно существенное ограничение, о котором далеко не всегда пишут в руководствах. Производители обычно не указывают температуру закипания теплоносителя в термотрубках кулера, между тем именно она определяет порог, при пересечении которого термотрубка начинает эффективно отводить тепло. До этого момента пассивный кулер на термотрубках, не имеющий вентилятора, работает как обычный радиатор. Вообще, чем ниже температура закипания теплоносителя, тем эффективнее и безопаснее кулер на термотрубках; рекомендуемое значение – 35-40°С (лучше, если температура закипания указана в документации).

Подведем итоги. Кулеры на тепловых трубках особенно полезны при высоком (более 100 Вт) тепловыделении, но их можно применять и в других случаях – если не смущает цена. При этом необходимо использовать термопасты, эффективно передающие тепло, – это позволит полностью реализовать возможности кулера. Общий принцип выбора таков: чем больше термотрубок и чем они толще, тем лучше.

Разновидности термотрубок

Термотрубки высокого давления (HTS). В конце 2005 года компания ICE HAMMER Electronics представила новый вид кулеров на тепловых трубках высокого давления, построенных по технологии Heat Transporting System (HTS). Можно сказать, что данная система занимает промежуточное положение между тепловыми трубками и жидкостными системами охлаждения. Теплоносителем в ней является вода с примесью аммиака и других химических соединений при нормальном атмосферном давлении. Благодаря подъему пузырьков, образующихся при закипании смеси, циркуляция теплоносителя значительно ускоряется. Видимо, такие системы максимально эффективно работают, когда трубки занимают вертикальное положение.

Технология NanoSpreader позволяет создавать полые теплопроводящие ленты из меди шириной 70–500 мм и толщиной 1,5–3,5 мм, заполненные теплоносителем. Роль капилляра играет полотно из медных волокон, возвращающее сконденсированный теплоноситель из зоны конденсации в зону нагрева и испарения. Форму плоской ленты поддерживает упругий крупнопористый материал, который не позволяет стенкам спадаться и обеспечивает свободное перемещение паров. Главные преимущества тепловых лент – малая толщина и возможность накрывать большие площади.

Моддинг и системы охлаждения

Слово «моддинг» образовано от английского modify (модифицировать, изменять). Моддеры (те, кто занимается моддингом) преобразуют корпуса и «внутренности» компьютеров с целью улучшения технических характеристик, а главное – внешнего вида. Как и любители автомобильного тюнинга, компьютерные пользователи хотят персонифицировать свой инструмент работы и творчества, незаменимое средство коммуникации и центр домашних развлечений. Моддинг – мощное средство самовыражения; это, безусловно, творчество, возможность поработать головой и руками, приобрести ценный опыт.

ТОВАРЫ ДЛЯ МОДДИНГА

Существует масса специализированных интернет-магазинов (как российских, так и зарубежных), которые предлагают товары для моддинга, доставляя их по всему миру. Отечественными пользоваться удобнее: с иностранными больше хлопот (например, при переводе денег), да и доставка, как правило, дорогая. Подобные специализированные ресурсы легко найти, воспользовавшись поисковыми системами.

Иногда принадлежности для моддинга совершенно неожиданно обнаруживаются в прайс-листах обычных интернет-магазинов, причем цена на них подчас ниже, чем в специализированных. Поэтому рекомендуем не спешить с покупкой того или иного аксессуара – сперва тщательно изучите несколько прайс-листов.

Что изменяют моддеры в компьютерах

Вряд ли среднестатистический моддер способен переделать сложную начинку: возможности пользователя, не обладающего специальными знаниями в области радиоэлектроники и схемотехники, все же ограниченны. Поэтому компьютерный моддинг предполагает в основном «косметическое» преображение корпуса компьютера.

ОСНОВНЫЕ ПРОИЗВОДИТЕЛИ ТОВАРОВ ДЛЯ МОДДИНГА

Чтобы лучше ориентироваться в комплектующих, имеет смысл знать имена некоторых компаний, специализирующихся на выпуске мод-товаров: Sunbeam, Floston, Gembird, Revoltec, Vizo, Sharkoon, Vantec, Spire, Hanyang, 3R System, G. M. Corporation, Korealcom, RaidMax, Sirtec (компьютерные корпуса и блоки питания), Zalman, Akasa (БП, системы охлаждения), Koolance, SwiftTech (водяное охлаждение), VapoChill (системы криогенного охлаждения), Thermaltake (в основном корпуса и мод-панели).

В частности, осуществляются так называемые blowhole-моды: в корпусе прорезаются отверстия для вентиляции, а также для установки дополнительных кулеров. Такие модификации не просто улучшают внешний вид – они полезны для общего «здоровья» компьютера, поскольку усиливают охлаждение компонентов системы.

Опытные моддеры часто сочетают приятное с полезным: устанавливают жидкостные системы охлаждения (большинство их имеет совершенно футуристический дизайн).

Построение эффективной системы водяного охлаждения (СВО) – задача не из легких и в техническом, и в финансовом смысле. Как было сказано, необходим солидный багаж специальных знаний, которые есть далеко не у каждого; да и без технических навыков не обойтись. Все это сильно стимулирует к покупке готовой СВО. Склоняясь к данному варианту, будьте готовы изрядно раскошелиться. Причем далеко не факт, что прирост производительности процессора и прочих компонентов системного блока, даже разогнанного благодаря эффективному отводу тепла новой СВО, окупит разницу в стоимости по сравнению со штатной (или даже улучшенной) системой воздушного охлаждения. Но у такого варианта есть и явные плюсы. Приобретая готовую СВО, вы не должны будете самостоятельно подбирать отдельные компоненты, заказывать их на сайтах разных производителей или продавцов, ожидать доставки и т.п. К тому же не придется заниматься модификацией корпуса ПК – часто это преимущество перевешивает все недостатки. Наконец, серийные СВО обычно дешевле моделей, собранных по частям.

Примером СВО, предоставляющей разумный компромисс между свободной творчества и простотой сборки (без ущерба для эффективности охлаждения), является система KoolanceExos-2 V2. Она позволяет использовать самые разные водоблоки (так называются полые теплообменники, накрывающие охлаждаемый элемент) из широкого ассортимента, выпускаемого компанией. Блок данной СВО объединяет радиатор-теплообменник с вентиляторами, помпу, расширительный бачок, датчики и управляющую электронику.

Процесс установки и подключения таких СВО очень прост – он подробно описан в руководстве пользователя. Учтите, что вентиляционные отверстия СВО располагаются сверху. Соответственно, над вентиляторами должно быть достаточно свободного места для оттока нагретого воздуха (не менее 240 мм при диаметре вентиляторов 120 мм). Если такого пространства сверху нет (например, мешает столешница компьютерного стола), можно просто положить блок СВО рядом с системным блоком – хотя такой вариант не описан в инструкции.

Самый простой и очевидный способ моддинга – замена штатных кулеров на моддерские с подсветкой (их выбор также достаточно широк: есть и мощные процессорные кулеры, и слабенькие – декоративные).

Главное правило: сравнивайте цены в разных поисковых системах и интернет­магазинах! Амплитуда колебаний вас немало удивит. Разумеется, следует выбирать более дешевые предложения, непременно обращая внимание на условия оплаты, доставки и гарантии.

Понравилась статья? Поделиться с друзьями: