Не сенсорный экран. Типы сенсорных экранов. Какой сенсорный экран лучше

Оснащенные сенсорными экранами устройства (мобильные телефоны, планшеты, нетбуки, даже персональные компьютеры) становятся все более популярными. Но если вы решились покупать устройство, экран которого реагирует на прикосновения, вам следует знать, что существуют разные типы сенсорных экранов .

Разные типы сенсорных экранов работают на разных физических принципах . Основных видов сенсорных экранов два - емкостные и резистивные. Существуют и другие типы, к примеру, экраны на поверхностно-акустических волнах, инфракрасные, оптические, тензометрические, индукционные (используются в ) и др. Но шанс столкнуться с этими типами экранов в повседневной жизни достаточно мал, поэтому поговорим о двух самых распространенных разновидностях тачскринов.

Типы сенсорных экранов: резистивный

Резистивный сенсорный экран - это более простая и дешевая технология . Такой экран состоит из двух основных частей: проводящая подложка и пластиковая мембрана. Когда вы нажимаете на мембрану, она замыкается с подложкой. При этом управляющая электроника вычисляет сопротивление, возникающее между краями мембраны и подложки, и таким образом определяет координаты точки нажатия.

Резистивные сенсорные экраны используются в КПК, коммуникаторах, некоторых моделях мобильных телефонов , POS-терминалах, планшетных компьютерах, промышленных устройствах управления, медицинском оборудовании. Обычно малогабаритные приборы, оснащенные резистивным экраном, имеют в наборе стилус, чтобы удобнее было нажимать на мембрану (при невысокой площади экрана сделать это пальцем затруднительно).

Весомое преимущество резистивных экранов - это их простота и дешевизна , что в итоге снижает цену всего устройства. Также они стойки к загрязнениям. Но главное - даже при отсутствии специального стилуса с ними можно работать практически любым твердым тупым предметом, который окажется под рукой. На прикосновения пальцев они тоже реагируют, даже если рука в перчатке, правда, прикосновение должно быть достаточно сильным.

Но есть у резистивных экранов и свои недостатки . Этот тип сенсорных экранов чувствителен к механическим повреждениям: если использовать вместо стилуса неподходящий предмет или, скажем, хранить телефон в одном кармане с ключами, можно легко его поцарапать. Поэтому для устройств с этим типом экранов лучше дополнительно приобрести специальную защитную пленку. Чувствительность резистивных экранов при низких температурах снижается. Кроме этого, прозрачность их тоже оставляет желать лучшего: они пропускают максимум 85% света, исходящего от дисплея.

Типы сенсорных экранов: емкостные

Емкостные сенсорные экраны используют тот факт, что предметы большой емкости (в данном случае - человек) проводят переменный электрический ток . Такие экраны представляют собой панель из стекла, которая покрыта прозрачным резистивным сплавом. На проводящий слой передается небольшое переменное напряжение. Если вы касаетесь пальца экраном или другим предметом, проводящим ток, происходит утечка тока, она фиксируется датчиками, и вычисляются координаты точки нажатия.

Бывают обычные емкостные экраны и проекционно-емкостные . Вторая технология - более «продвинутая». Такие экраны более чувствительны (скажем, реагируют на руку в перчатке, в зависимости от просто емкостных), поддерживают технологию мультитач (одновременное определение координат нескольких точек касания). Емкостные экраны используют в части банкоматов, информационных киосках и охраняемых помещениях. Проекционно-емкостные - в уличных электронных киосках, платежных терминалах, банкоматах, тачпадах ноутбуков, смартфонах и других устройствах с поддержкой технологи мультитач.

Достоинства таких сенсорных экранов - это долговечность, стойкость к большинству загрязнений (к тем, которые не проводят ток), высокая прозрачность экрана, возможность работы при низких температурах. При необходимости можно обеспечить высокую прочность - слой стекла на емкостном экране может быть толщиной до 2 см. Емкостные экраны реагируют на легчайшие прикосновения. Проекционно-емкостные экраны еще и поддерживают мультитач.

Недостаток емкостных экранов - более высокая стоимость по сравнению с резистивными . К тому же, такие экраны реагируют лишь на токопроводящие предметы: палец или специальный стилус (не такой, как используется с резистивными экранами). Некоторые умельцы умудряются использовать сосиски, но где гарантия, что сосиска окажется под рукой в нужный момент?

Как видите, разные типы сенсорных экранов имеют свои преимущества и недостатки , так что вам решать, какой из них более подходящий лично для вас.

Часто при неосторожном обращении с сенсорными телефонами или планшетами, на передней панели аппарата появляются трещины или так званые "паутины", после нежелаемого контакта с асфальтом или же другими твердыми предметами.Здесь мы постараемся разъяснить что делать, и как понять что разбилось.

1. Появились трещины на передней части. Можно ли ее заменить?

Часто мы заблуждаемся, думая, что передняя часть девайса и сенсор - это две разные детали. Это не так. Передней частью в сенсорных телефонах является само сенсорное стекло (тачскрин). Есть случаи, когда после падения тачскрин продолжал работать, хоть и имел видимые повреждения. Но, как правило, со временем проявляются самопроизвольные нажатия, не правильная реакция на касания или полная не работоспособность. Если у Вас разбилась передняя часть (ещё называют - защитное стекло, не путать с защитным стеклом которое клеют вместо пленки), то Вам придется менять тачскрин (сенсор), .

2. Разбит сенсор, но дисплей работает. Можно будет только сенсор поменять?



Существуют модели, имеющие модуль, где тачскрин "склеен" с дисплеем. Это зависит от модели Вашего аппарата.

3. А там меняют сенсор на модуле!


Бывают случаи, когда человек, придя в Мастерскую и услышав стоимость замены модуля, возмущается, что в какой-то Мастерской меняют всё отдельно. Замена тачскрина отдельно от дисплея, когда к Вас установлен модуль, вполне возможна и практикуется, но 100% гарантии на то что процедура снятия Вашего старого, разбитого, сенсорного стекла пройдет успешно ни один мастер не даст, часто в процессе "отклеивания" повреждается, лопает дисплей и замены модуля целиком не избежать. Да и конечная стоимость ремонта по замене сенсоного стекла в модуле существенно не отличается чем замена модуля целиком.

Коротко о главном:

1. Разбив переднюю панель на сенсорном телефоне, Вы разбили именно сам сенсор (тачскрин). Поэтому и меняется именно он или дисплейный модуль целиком (зависит от модели устройства).

2. Если после падения и появления на сенсоре трещин, он продолжает работать - помните, что это временно. Малейшые дальнейшие повреждения могут вывести его из строя. Так что, желательно заменить его в ближайшее время, пока телефон работоспособный. Или хотя бы извлеките из такого аппарата всю важную Вам информацию (фото, видео, контакты), если ремонт в дальнейшем не планируется.

3. В моделях, в которых возникли проблемы с модулем (сенсор вместе с дисплеем), лучше сразу произвести замену именно модуля.

4. Сэкономив на качестве деталей один раз, Вы рискуете в скором времени заплатить ещё раз, при чём сумму побольше.

Статья:

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Предисловие

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея "жертвенного" телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них - жидкокристаллического (LCD - liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается "thin-film transistor" - тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве "жертвенного" телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи (TFT LCD , и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки).Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из "активных" составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

В варианте же с OGS отражающая поверхность - только одна (внешняя), "воздух-стекло".

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который "всплывает", если дисплей разбить. Если в "обычном" дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые - не верно. Вероятность того, что разбилась только внешняя поверхность - довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Экран

Теперь переходим к следующей части - собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе" угла:

Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp) .

Структура дисплеев AMOLED

Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

20.07.2016 14.10.2016 by Почемучка

История создания сенсорного экрана.

Сегодня сенсорным дисплеем, а вернее экраном с возможностью введения информации посредством касания, никого не удивишь. Практически все современные смартфоны, планшетные ПК, некоторые электронные книги и другие современные гаджеты оснащены подобными устройствами. Какова же история этого чудесного устройства ввода информации?

Считается, что родителем первого в мире сенсорного устройства является американский преподаватель университета штата Кентукки, Сэмуэль Херст. В 1970 году он столкнулся с проблемой считывания информации с огромного количества лент самописцев. Его идея автоматизации этого процесса стала толчком к созданию первой в мире компании по производству сенсорных экранов – Elotouch. Первая разработка Херста и его единомышленников носила название Elograph. Она увидела свет в 1971 году и использовала четырех проводной резистивный метод определения координат точки касания.

Первой же компьютеризированным устройством с сенсорным дисплеем была система PLATO IV, появившаяся на свет в 1972 году благодаря исследованиям, проходившим в рамках компьютерного обучения в США. Она имела сенсорную панель, состоящую из 256 блоков (16×16), и работающую при помощи сетки инфракрасных лучей.

В 1974 году снова дал о себе знать Сэмюэль Херст. Образованная им компания Elographics выпустила прозрачную сенсорную панель, а еще через три года в 1977 ими была разработана пяти проводная резистивная панель. Спустя несколько лет компания объединяется с крупнейшим производителем электроники Siemens и в 1982 году они совместно выпускают первый в мире телевизор, оборудованный сенсорным экраном.

В 1983 году производитель компьютерной техники компания Hewlett-Packard выпускает компьютер HP-150, оборудованный сенсорным дисплеем, работающим по принципу инфракрасной сетки.

Первым мобильным телефоном с сенсорным устройством для ввода информации была модель Alcatel One Touch COM, выпущенная в 1998 году. Именно она стала прообразом современных смартфонов, хотя и имела по сегодняшним меркам весьма скромные возможности – небольшой монохромный дисплей. Еще одной попыткой смартфона с сенсорным экраном стала модель Ericsson R380. Она также имела монохромный дисплей и была весьма ограничена в своих возможностях.

Сенсорный экран в современном виде предстал в 2002 году в модели Qtek 1010/02 XDA, выпущенной компанией HTC. Это был полноцветный дисплей с достаточно хорошей разрешающей способностью, поддерживающий 4096 цветов. Он использовал резистивную технологию определения координат касания. На более высокий уровень сенсорные экраны вывела компания Apple. Именно благодаря ее IPhone, устройства с сенсорными дисплеями получили невероятную популярность, а их разработка Multitouch (определение касания двумя пальцами) существенно упрощала ввод информации.

Однако появление сенсорных экранов стало не только удобным новшеством, но и повлекло за собой некоторые неудобства. Электронные устройства, оснащенные сенсором, более чувствительны к неаккуратному обращению, поэтому и ломаются чаще. Ломаются даже экраны в Iphone. Благо, что заменить их может даже неквалифицированный специалист.

Как устроен сенсорный экран.

Такая диковинка как сенсорный экран – дисплей с возможностью ввода информации простым нажатием на его поверхность при помощи специального стилуса или просто пальца, давно уже перестал вызывать удивление у пользователей современных электронных гаджетов. Давайте попробуем разобраться, как же он работает.

На самом деле видов сенсорных экранов существует достаточно большое количество. Друг от друга они отличаются принципами, заложенными в их работе. Сейчас на рынке современной высокотехнологичной электроники используются в основном резистивные и емкостные сенсоры. Однако существуют также матричные, проекционно-емкостные, использующие поверхностно-акустические волны, инфракрасные и оптические. Особенность двух первых, самых распространенных в том, что сам сенсор отделен от дисплея, поэтому при поломке его с легкостью может заменить даже начинающий электромастер. Вам останется лишь купить тачскрин для сотового или любого другого электронного устройства.

Резистивный сенсорный экран состоит из гибкой пластиковой мембраны, на которую собственно мы и нажимаем пальцем, и стеклянной панели. На внутренние поверхности двух панелей нанесен резистивный материал, по сути, являющийся проводником. Между мембраной и стеклом равномерно расположен микроизолятор. Когда мы нажимаем на одну из областей сенсора, в этом месте замыкаются проводящие слои мембраны и стеклянной панели и происходит электрический контакт. Электронная схема-контроллер сенсора преобразует сигнал от нажатия в конкретные координаты на области дисплея и передает их в схему управления самим электронным устройством. Определение координат, а вернее ее алгоритм, очень сложен и основан на последовательном вычислении сначала вертикальной, а потом горизонтальной координаты контакта.

Резистивные сенсорные экраны достаточно надежны, поскольку нормально функционируют даже при загрязнении активной верхней панели. К тому же они, ввиду своей простоты более дешевы в производстве. Однако у них есть и недостатки. Одним из основных является низкая светопропускная способность сенсора. То есть поскольку сенсор наклеен на дисплей, изображение получается не таким ярким и контрастным.

Емкостный сенсорный экран. В основу его работы заложен тот факт, что любой предмет, имеющий электрическую емкость, в данном случае палец пользователя, проводит переменный электрический ток. Сам сенсор представляет собой стеклянную панель, покрытую прозрачным резистивным веществом, которое образует проводящий слой. На этот слой при помощи электродов подается переменный ток. Как только палец или стилус касается одной из областей сенсора, в этом месте происходит утечка тока. Его сила зависит от того на сколько близко к краю сенсора произведен контакт. Специальный контроллер измеряет ток утечки и по его значению вычисляет координаты контакта.

Емкостный сенсор также как и резистивный не боится загрязнений, к тому же ему не страшна жидкость. Однако по сравнению с предыдущим он имеет более высокую прозрачность, что делает изображение на дисплее более четким и ярким. Недостаток емкостного сенсора происходит из его конструктивных особенностей. Дело в том, что активная часть сенсора, по сути, находится на самой поверхности, поэтому подвержена износу и повреждениям.

Теперь поговорим о принципах работы менее популярных на сегодняшний день сенсоров.

Матричные сенсоры работают по принципу резистивных, однако отличаются от первых максимально упрощенной конструкцией. На мембрану наносятся вертикальные проводящие полосы, на стекло – горизонтальные. Или наоборот. При давлении на определенную область, замыкаются две проводящие полосы и контроллеру достаточно легко вычислить координаты контакта.

Недостаток такой технологии виден невооруженным глазом – очень низкая точность, а следовательно и невозможность обеспечить высокую дискретность сенсора. Из-за этого некоторые элементы изображения могут не совпадать с расположением полос проводника, а следовательно нажатие на эту область может либо вызвать неправильное исполнение нужной функции либо вообще не сработать. Единственным достоинством этого типа сенсоров является их дешевизна, которая собственно говоря, и выплывает из простоты. Кроме этого матричные сенсоры не прихотливы в использовании.

Проекционно-емкостные сенсорные экраны являются как бы разновидностью емкостных, однако работают немного по-другому. На внутреннюю сторону экрана наносится сетка электродов. При касании пальцем между соответствующим электродом и телом человека возникает электрическая система – эквивалент конденсатора. Контроллер сенсора подает импульс микротока и измеряет емкость образовавшегося конденсатора. В результате того что в момент касания одновременно задействованы несколько электродов, контроллеру достаточно просто вычислить точное место касания (по самой большой емкости).

Основные достоинства проекционно-емкостных сенсоров – это большая прозрачность всего дисплея (до 90 %), чрезвычайно широкий диапазон рабочих температур и долговечность. При использовании такого типа сенсора несущее стекло может достигать толщины 18 мм, что дает возможность делать ударопрочные дисплеи. К тому же сенсор устойчив к непроводящему загрязнению.

Сенсоры на поверхностно-акустических волнах – волнах, распространяющихся на поверхности твердого тела. Сенсор представляет собой стеклянную панель, по углам которой расположены пьезоэлектрические преобразователи. Суть работы такого сенсора в следующем. Пьезоэлектрические датчики генерируют и принимают акустические волны, которые распространяются между датчиками по поверхности дисплея. Если касания нет – электрический сигнал преобразуется в волны, а потом обратно в электрический сигнал. Если произошло касание часть энергии акустической волны поглотится пальцем, а следовательно не дойдет до датчика. Контроллер проанализирует полученный сигнал и посредством алгоритма вычислит место касания.

Достоинства таких сенсоров в том, что используя специальный алгоритм можно определять не только координаты касания, но и силу нажатия – дополнительная информационная составляющая. К тому же конечное устройство отображения (дисплей) имеет очень высокую прозрачность, поскольку на пути света нет полупрозрачных проводящих электродов. Однако сенсоры имеют и ряд недостатков. Во-первых, это очень сложная конструкция, а во-вторых – точности определения координат очень сильно мешают вибрации.

Инфракрасные сенсорные экраны. Принцип их работы основан на использовании координатной сетки из инфракрасных лучей (излучатели и приемники света). Примерно тоже, что и в банковских хранилищах из художественных фильмов про шпионов и грабителей. При касании в определенной точке сенсора прерывается часть лучей, а контроллер по данным от оптических приемников определяет координаты контакта.

Основной недостаток таких сенсоров – очень критичное отношение к чистоте поверхности. Любое загрязнение может привести к полной его неработоспособности. Хотя из-за простоты конструкции этот тип сенсора используется в военных целях, и даже в некоторых мобильных телефонах.

Оптические сенсорные экраны являются логическим продолжением предыдущих. Инфракрасный свет используется в качестве информационной подсветки. Если на поверхности нет сторонних предметов – свет отражается и попадает в фотоприемник. Если произошло касание – часть лучей поглощается, а контроллер определяет координаты контакта.

Недостатком технологии является сложность конструкции в виду необходимости использования дополнительного светочувствительного слоя дисплея. К достоинствам можно отнести возможность достаточно точного определения материала, с помощью которого произведено касание.

Тензометрические и сенсорные экраны DST работают по принципу деформацииповерхностного слоя. Их точность достаточно низкая, но они прекрасно выдерживают механические воздействия, поэтому применяются в банкоматах, билетных автоматах и прочих публичных электронных устройствах.

Индукционные экраны основаны на принципе формирования электромагнитного поля под верхней частью сенсора. При касании специальным пером, меняется характеристика поля, а контроллер в свою очередь вычисляет точные координаты контакта. Применяются в художественных планшетных ПК самого высокого класса, поскольку обеспечивают большую точность определения координат.

Многие думают, что эра сенсорных экранов началась в нулевых, с выходом первых КПК (надеюсь, нет таких, кто думает, что первый сенсорный экран появился в iPhone?) Однако это не так - первым потребительским устройством с сенсорным дисплеем стал... телевизор в 1982 году. Годом позже появился первый сенсорный ПК от HP. Через 10 лет, в 1993 году, появился Apple Newton - родоначальник КПК, который ввел моду на стилусы (хотя это скорее была необходимость - экран-то резистивный), и уже в 2007 году с выходом iPhone появился современный емкостный экран в том виде, в котором мы все привыкли его видеть. Так что история сенсорных экранов насчитывает 35 лет, и за это время произошло достаточно много.


Уже из названия понятно, что лежит в основе таких дисплеем - это электрическое сопротивление. Устройство такого экрана просто: над дисплеем находится подложка (дабы при сильном нажатии его не деформировать), после чего идет один резистивный слой, изолятор и второй резистивный слой уже на мембране:


На левый и правый край мембраны и нижний и верхний край резистивного слоя на подложке подведено напряжение. Что происходит, когда мы нажимаем на такой дисплей? Резистивные слои замыкаются, сопротивление меняется, а значит меняется и напряжение - а это легко зарегистрировать, после чего, зная сопротивление единицы резистивного слоя, можно легко узнать сопротивление по обеим осям до точки нажатия, а значит и высчитать саму точку нажатия:


Это - принцип действия четырехпроводного резистивного экрана, и такие уже больше не используются по одной простой причине: малейшее повреждение мембраны с резистивным слоем ведет к тому, что экран перестает корректно работать. А с учетом того, что в такой экран обычно тыкают острым стилусом, добиться повреждения отнюдь не трудно.

Тогда решили сделать по-другому: мембрана стала токопроводящей, а на резистивном слое подложки теперь расположены все 4 электрода, но уже по углам, а напряжение подведено только к мембране - то есть экран стал пятипроводным. Что происходит при нажатии? Мембрана касается резистивного слоя, начинает идти ток, который снимается с 4 электродов, что опять же позволяет, зная сопротивление резистивного слоя, определить точку касания:


Вот этот тип уже более «вандалоустойчив» - даже при порезе мембраны экран продолжит функционировать нормально (кроме, разумеется, места пореза). Но, увы, это не отменяет других проблем, общих для всех резистивных экранов, а их много.

Во-первых, такой экран воспринимает только одно касание: несложно догадаться, что при нажатии сразу двумя пальцами экран будет думать, что вы нажали в середину линии, соединяющей точки нажатия. Вторая проблема - на экран действительно нужно давить, причем желательно острым предметом (ногтем, стилусом). Разумеется, привыкнуть к этому можно, но это зачастую приводило к характерным царапинам, что красоты экрану не добавляло. Третья проблема - такой экран пропускает не более 85% светового потока, и из-за его толщины нет ощущения того, что вы касаетесь пальцем изображения напрямую.

Но, тем ни менее, у него есть и плюсы: во-первых, разбить дисплей в таком экране очень и очень сложно - у него «тройная защита» в виде мембраны, изоляторов и подложки. Второй плюс - экрану безразлично, чем вы в него тыкаете - с ним можно работать и в обычных перчатках (что зимой очень актуально). Но, увы, это достоинства не перевесили недостатки, и с выходом iPhone начался бум на емкостные экраны.

Поверхностно-емкостные экраны

Это, можно сказать, переходный тип между привычными нам емкостными экранами (которые являются проекционными) и старыми резистивными. Принцип действия тут схож с пятипроводным экраном: есть стеклянная пластина, покрытая резистивным слоем, и 4 электрода по углам, которые подают на пластину небольшое переменное напряжение (почему не постоянное - объясню чуть ниже). При нажатии на такой экран токопроводящим заземленным предметом мы получаем в месте нажатия утечку тока, которую легко можно зарегистрировать:


Тут и разгадка, почему напряжение переменное - с постоянным при плохом заземлении могут быть перебои в работе, а с переменным такого нет.

Проблем у них тоже хватает: экран теперь менее защищен, и при повреждении стеклянной пластины перестает работать весь. Опять же не поддерживается мультитач, и более того - теперь экран не реагирует на руку в перчатке или же стилусы - они в основном не проводят ток.

Единственный плюс такого экрана - он стал тоньше и прозрачнее резистивного, но в общем-то это оценили немногие. Но все изменилось с выходом iPhone, где применялся несколько другой тип сенсорного экрана, который уже поддерживал мультитач.

Проекционно-емкостные экраны

Вот мы уже и подобрались к современному типу сенсорных экранов. По принципу работы он существенно отличается от предыдущих - тут электроды расположены сеткой на внутренней стороне экрана (а не 4 электрода по углам), и при нажатии на экран палец образует с электродами конденсаторы, по емкости которых и можно определить местоположение нажатия:

С таким устройством экрана можно нажимать на него сразу несколькими пальцами - если они расположены достаточно далеко (дальше, чем два соседних электрода в сетке), то такие нажатия будут определяться как разные - именно так и появился мультитач, сначала на 2 пальца в iPhone, а сейчас уже и на 10 пальцев в планшетах. Большее количество нажатий уже не нужно (людей больше чем с 10 пальцами маловато), да и определение одновременно больше чем 5-7 нажатий накладывает серьезную нагрузку на контроллер тача.

Из плюсов такого экрана, кроме поддержки мультитача - возможность сделать OGS (One Glass Solution): защитное стекло экрана с интегрированной сеткой электродов и дисплей представляют из себя одно целое: в таком случае толщина оказывается наименьшей, и кажется, что вы пальцами касаетесь изображения. Это же приводит к проблеме хрупкости: при появлении трещины на стекле гарантированно рвется сетка электродов, и экран перестает реагировать на нажатия.

Это - основные типы сенсорных экранов, однако есть и многие другие. Начнем, пожалуй, с самого старого типа, с которого сенсорные экраны и начинались.

Инфракрасные экраны

Опять же принцип действия понятен из названия: по краям экрана расположено множество светоизлучателей и приемников в ИК-диапазоне. При нажатии палец перекрывает часть света, что и позволяет определить местоположение нажатия. Плюсами таких экранов на заре их появления было то, что ими можно было оснастить любой дисплей, что и было сделано с телевизором в 1982. Минусы также очевидны - толщина такой конструкции оказывается внушительной, а точность позиционирования - достаточно низкой.

Тензометрические экраны

Экраны, которые реагируют на нажатие (сильное нажатие). Огромный их плюс в том, что они максимально «антивандальные», поэтому их и применяют в различных банкоматах, стоящих на улице.

Индукционные экраны

Из названия опять же все понятно: внутри экрана есть катушка индуктивности и сетка проводов. При касании экрана специальным активным пером меняется напряженность созданного магнитного поля - с помощью этого и регистрируется нажатие. Самый главный плюс такого экрана - максимально возможная точность, поэтому они хорошо зарекомендовали себя в дорогих графических планшетах.

Оптические экраны

Принцип основан на полном внутреннем отражении: стекло подсвечивается инфракрасной подсветкой, и пока нажатия нет, на границе стекла и воздуха лучи света полностью отражаются (то есть нет преломленного луча). При нажатии на такой экран появляется преломленный луч, а по углу преломления (ну или отражения) можно высчитать точку нажатия.

Экраны на поверхностно-акустических волнах

Пожалуй, одни из самых сложно устроенных экранов. Принцип работы заключается в том, что в толще стекла создаются ультразвуковые колебания. При прикосновении к вибрирующему стеклу волны поглощаются, а специальные датчики по углам это регистрируют и высчитывают точку прикосновения:


Плюсом этой технологии является то, что прикасаться к экрану можно любым предметом, не обязательно токопроводящим и заземленным. Минус - экран боится любых загрязнений, так что использовать его, например, в дождь, будет невозможно.

DST экраны

Их принцип действия основан на пьезоэлектрическом эффекте - при деформации диэлектрика он поляризуется, а значит - возникает разность потенциалов - а ее уже можно посчитать. Из плюсов - очень быстрая скорость реакции и возможность работы при серьезно загрязненном экране. Минус - для определения местоположения пальца он должен постоянно двигаться.

Вот в общем-то и все типы сенсорных экранов. Конечно, большинство из них диковинные и вы вряд ли с ними столкнетесь, но само разнообразие и развитие этой технологии радует.

Понравилась статья? Поделиться с друзьями: