Микроконтроллеры MCS–51: программная модель, структура, команды. Микроконтроллеры семейства mcs51 Программирование портов мк на языке с 51

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм — производителей (таких как Intel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера К1830ВЕ751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • устройство формирования временных интервалов,
  • логика ввода-вывода,
  • регистр команд,
  • регистр управления потреблением электроэнергии,
  • дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON ) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Вместе со статьей "Архитектура микроконтроллеров MCS-51" читают:


http://сайт/MCS51/tablms.php


http://сайт/MCS51/SysInstr.php


http://сайт/MCS51/port.php

В настоящее время различными фирмами выпускается множество модификаций и аналогов этого семейства, как фирмой Intel, так и другими производителями, тактовая частота и объем памятивозросли в десятки раз и продолжают повышаться. Дополняется и набор встроенных в БИС модулей, в большое число современных моделей встроен рези- дентный быстродействующий АЦП, имеющий до 12, а сейчас может быть и более разря- дов. Но в основе семейства МСS51 БИС 8051, 80С51, 8751, 87С51, 8031, 80С31 фирмы Intel, первые образцыкоторыхбыли выпущеныв 1980 году.

Микроконтроллеры семейства MCS51 выполнены по высококачественной n-МОП технологии (серия 8ХХХ, аналог - серия 1816 в России и Белоруссии) и k-МОП техноло- гии (серия 8ХСХХ, аналог - серия 1830). Второй символ, следующий за 8 означает: 0 – РПЗУ на кристалле нет, 7 – РПЗУ объемом 4К с ультрафиолетовым стиранием. Третий символ: 3 – ПЗУ накристалленет, 5 – если нетРПЗУ, то на кристалле масочное ПЗУ.

И так 80С51 – БИС по k-МОП технологии с масочным ПЗУ на кристалле, 8031 – БИС n-МОП без памяти программ (ПЗУ, РПЗУ) на кристалле, 8751 – БИС n-МОП с ре- зидентным (размещенным на кристалле) РПЗУ с ультрафиолетовым стиранием. Мы да- лее и будем рассматривать БИС 8751, делая, если нужно оговорки об отличиях других схем, приводя те параметры, которые были опубликованы для первых серийных БИС. Дополнительную информацию о всех современных модификациях Вы, при необходимо- сти, можете найти в фирменных справочниках и технической документации.

А. Общие характеристики и назначение выводов

Основу семейство MCS51 составляет пять модификаций МК (имеющих идентич- ные основные характеристики), основное различие между которыми состоит в реали- зации памяти программ и мощности потребления (см. таблицу 3.1). Микроконтоллер восьмиразрядный, т.е. имеет команды обработки восьмиразрядных слов, имеет Гарвард- скую архитектуру, тактовая частота у базовых образцов семейства составляет 12 МГц.

Таблица 3.1.

Микро- схемы

Внутренняя память про- грамм, байт

Тип памяти программ

Внутренняя память данных, байт

Тактовая частота, МГц

Ток потреб- ления, мА

МК 8051 и 80С51 содержат масочно-программируемое при изготовлении кристалла ПЗУ памяти программ емкостью 4096 байт и рассчитаны на применение в массовой продукции. МК 8751 содержит РПЗУ емкостью 4096 байт с ультрафиолетовым стиранием и удобна на этапе разработки системы при отладке программ, а также при производстве не- большими партиями или при создании систем, требующих в процессе эксплуатации пе-

риодической подстройки.

МК 8031 и 80С31 не содержат встроенной памяти программ. Они, как и описанные ранее модификации могут использовать до 64 Кбайт внешней памяти программ и эффек- тивно использоваться в системах, требующих существенно большего по объему (чем 4 Кбайт на кристалле) ПЗУ памяти программ.

Каждый МК семейства содержит резидентную память данных емкостью 128 байт с возможностью расширения общего объема оперативной памяти данных до 64 Кбайт за счет использования внешних ИС ОЗУ.

    центральный восьмиразрядный процессор;

    память программ объемом 4 Кбайт (только 8751 и 87С51);

    память данных объемом 128 байт;

    четыре восьмиразрядных программируемых порта ввода-вывода;

    два 16-битовых многорежимных таймера/счетчика;

    систему автовекторных прерываний с пятью векторами и двумя программно управ- ляемыми уровнями приоритетов;

    последовательный интерфейс, включающий универсальный дуплексный приемопе- редатчик, способный функционировать в четырех режимах;

    тактовый генератор.

Система команд МК содержит 111 базовыхкомандс форматом1, 2, или 3 байта. Микроконтроллер имеет:

    32 регистра общего назначения РОН, организованных как четыре банка по восемь регистров с именами R0… R7, выбор того или иного банка определяется программой пу- тем установки соответствующих бит в регистре состояния программы PSW;

    128 программно-управляемых флагов (битовый процессор, см. далее);

    набор регистров специальных функций, управляющих элементами МК. Существуют следующие режимы работы микроконтроллера:

1). Общий сброс. 2).Нормальное функционирование. 3).Режим пониженно- го энергопотребления и режимхолостого хода. 4). Режим программирования ре- зидентного РПЗУ, если оно есть.

Мы здесь основное внимание уделим первым двум режимам работы, подробное описаниесоставаи работыМКвовсех режимахприведено в приложенииП1.

РОН и зона битового процессора расположены в адресном пространстве рези- дентной ОЗУ с адресами от 0 до80h.

В верхней зоне адресов резидентной оперативной памяти расположены регистры спе- циальных функций (SFR, Special Function Registers). Их назначение приведено в табл. 3.2.

Таблица 3.2.

Обозначение

Наименование

Аккумулятор

Регистр В

Регистр состояния программы

Указатель стека

Указатель данных. 2 байта:

Младший байт

Старший байт

Регистр приоритетов прерываний

Регистр разрешения прерываний

Регистр режимов таймера/счетчика

Регистр управления таймера/счетчика

Таймер/счетчик 0. Старший байт

Таймер/счетчик 0. Младший байт

Таймер/счетчик 1. Старший байт

Таймер/счетчик 1. Младший байт

Управление последовательным портом

Буфер последовательного порта

Управление потреблением

* - регистры, допускающие побитовую адресацию

Кратко рассмотрим функции регистров SFR, приведенных в таблице 3.2.

Аккумулятор АCC - регистр аккумулятора. Команды, предназначенные для рабо-

ты с аккумулятором, используют мнемонику "А", например, MOV А, Р2 . Мнемоника "АСС" используется, к примеру, при побитовой адресации аккумулятора. Так, символи- ческое имя пятого бита аккумулятора при использовании ассемблера А5М51 будет сле- дующим: АСС. 5. .

Регистр В . Используется во время операций умножения и деления. Для других инструкций регистр В может рассматриваться как дополнительный сверхоперативный регистр.

Регистр состояния программы PSW содержит информацию о состоянии про- граммы и устанавливается частично автоматически по результату выполненной опера- ции, частично пользователем. Обозначение и назначение разрядов регистра приведены соответственно в таблицах 3.3 и 3.4.

Таблица 3.3.

Обозначение

Таблица 3.4.

Обозна- чение

Назначение битов

Доступ к биту

Флаг переноса. Изменяется во время выполнения ряда арифметических и логических инструкций.

Аппаратно или программно

Флаг дополнительного переноса. Аппаратно уста- навливается/сбрасывается во время выполнения инструкций сложения или вычитания для указания переноса или заема в бите 3 при образовании младшего полубайта результата (D0-D3).

Аппаратно или программно

Флаг 0. Флаг, определяемый пользователем.

Программно

Программно

Указатель банка рабочих регистров

Программно

Банк 0 с адресами (00Н - 07Н) Банк 1 с адресами (08Н – 0FН) Банк 2 с адресами (10Н - 17Н) Банк 3 с адресами (18Н – 1FН)

Флаг переполнения. Аппаратно устанавливается или сбрасывается во время выполнения арифмети- ческих инструкций для указания состояния пере- полнения

Аппаратно или программно

Резервный. Содержит триггер, доступный по запи- си и чтению, который можно использовать

Бит четности. Аппаратно сбрасывается или уста- навливается в каждом цикле инструкций для указа- ния четного или нечетного количества разрядов ак- кумулятора, находящихся в состоянии "1".

Аппаратно или программно

Указатель стека - 8-битовый регистр, содержимое которого инкрементирует- ся перед записью данных в стек при выполнении команд PUSH и CALL. При начальном сбросе указатель стека устанавливается в 07Н, а область стека в ОЗУ данных начинается с адреса 08Н. При необходимости путем переопределения указателя стека область стека может быть расположена в любом месте внутреннего ОЗУ данных микроконтроллеры.

Указатель данных DPTR состоит из старшего байта (DPH) и младшего байта

(DPL). Содержит 16-битовый адрес при обращении к внешней памяти. Может использо-

ваться как 16-битовый регистр или как два независимых восьмибитовых регистра.

Порт0 - ПортЗ. Отдельными битами регистров специальных функций Р0, Р1, Р2, РЗ являются биты -"защелки" выводов портовР0, Р1, Р2, РЗ.

Буфер последовательного порта SBUF представляет собой два отдельных реги- стра: буфер передатчика и буфер приемника. Когда данные записываются в SBUF, они поступают в буфер передатчика, причем запись байта в SBUF автоматически иницииру- ет его передачу через последовательный порт. Когда данные читаются из SBUF, они вы- бираются из буфера приемника.

Регистры таймера. Регистровые пары (ТН0, ТL0) и (ТН1, TL1) образуют 16-

битовые счетные регистры соответственно таймера/счетчика 0 и таймера/счетчика 1.

Регистры управления. Регистры специальных функций IР, IЕ, ТМOD, ТСОN, SCON и РСОN содержат биты управления и биты состояния системы прерываний, тай-

меров/счетчиков и последовательного порта. Они будут подробно рассмотрены далее.

RxD TxD INT0 INT1 T0 T1 WR

P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

RST BQ2 BQ 1 EA

P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7

P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7

МК при функционировании обеспечивает:

    минимальное время выполнения команд сложения-1 мкс;

    аппаратное умножение и деление с минимальным време- нем выполнения - 4 мкс.

В МК предусмотрена возможность задания частоты внутреннего генератора с помощью кварца, LС-цепочки или внешнего генератора.

Расширенная система команд обеспечивает побайтовую и побитовую адресацию, двоичнуюи двоично-десятичную арифметику, индикацию пере- полнения и определения четности/нечетности, воз- можность реализации логического процессора.

Важнейшей и отличительной чертой архитек- туры семейства MCS51 является то, что АЛУ может наряду с выполнением операций над 8-разрядными типами данных манипулировать одноразрядными данными. Отдельные программно-доступные биты могут быть установлены, сброшены или заменены их дополнением, могут пересылаться, проверяться и

Рис.3.2. Внешние выводы

микроконтроллера

использоваться в логических вычислениях. Тогда как поддержка простых типов данных (при сущест-

вующей тенденции к увеличению длины слова) может с первого взгляда показаться ша- гом назад, этокачестводелает микроконтроллеры семействаMCS51 особенно удобными для применений, в которых используются контроллеры. Алгоритмы работы по- следних по своей предполагают наличие входных и выходных булевых переменных, которые сложно реализовать при помощи стандартных микропроцессоров. Все эти свой- ства в целом называются булевым процессором семейства MCS51. Благодаря такому мощному АЛУ набор инструкций микроконтроллеры семейства MCS51 одинаково хоро- шо подходит как для применений управления в реальном масштабе времени, так и для ал- горитмов с большим объемом данных.

Схемотехническое изображение микроконтроллера представлено на рис. 3.2. В ба- зовом варианте он упакован в 40-выводной DIP корпус. Рассмотрим назначение выводов.

Начнем с выводов питания «0 В» и «5 В» , по которым он получает основное пита- ние. Ток потребления приведен в табл. 3.1.

Вывод «RST» - сброс микроконтроллера. При подаче на этот вывод активного вы- сокого уровня запускается режим общего сброса и МК производит следующие действия:

Устанавливает счетчик команд PC и все регистры специальных функций, кроме защелок портов Р0-РЗ, указателя стека SP и регистра SBUF, в ноль;

    указатель стека принимает значение равное 07Н;

    запрещает все источники прерываний, работу таймеров-счетчиков и последовательного

    выбирает БАНК 0 ОЗУ, подготавливает порты Р0-РЗ для приема данных и опре-

деляет выводы ALE и РМЕ как входы для внешней синхронизации;

      в регистрах специальных функций PCON, IP и IE резервные биты при- нимают случайные значения, а все остальные биты сбрасываются в ноль;

      в регистре SBUF устанавливаются случайные значения.

      устанавливает фиксаторы-защелки портов Р0-РЗ в "1".

Состояния регистров микроконтроллера после сброса приведены в таблице 3.5.

Таблица 3.5.

Информация

Неопределенная

0ХХХ0000В для k-MOП 0XXXXXXXB для n-МОП

Вывод RST имеет и альтернативную функцию. Через него подается резервное питания для сохранения неизменным содержимого ОЗУ микроконтроллера при снятии основного.

Выводы BQ1, BQ2 предназначены для подключения кварцевого резонатора, оп- ределяющего тактовую частоту работы МК.

Вывод ЕА` (E xternal A dress внешний адрес) - предназначен для активизации ре- жима чтенияуправляющих кодов из внешней памяти программ, при подаче на этот вывод активного низкогоуровня. Вывод имеет иальтернативное назначение (функцию). На него подается напряжение программирования РПЗУ в режиме программирования.

Вывод PME (P rogram M emory E nable разрешение памяти программ ) - предна- значен для управления циклом чтения из памяти программ и автоматически активизиру- ется МК в каждом машинном цикле.

Вывод ALE (A dress L ength E nable разрешение младшего адреса) стробирует вы- вод младшей части адреса по порту Р0. Вывод используется и при программировании РПЗУ, при этом на него подается стробирующий процесс программирования импульс.

МК содержит четыре группы портов: Р0, Р1, Р2, и Р3. Это оставшиеся из 40-авыводов микроконтроллера. Эти порты могут служитьдля побитного ввода – вывода информации, но помимо этого каждый из них имеет свою специализацию. Обобщенная функциональная схе- ма порта представлена на рис. 3.3. Порт содержит выходные ключи на полевых транзисторах, подключенные к выводу, переключатель функций, защелку на D-триггере и логику управле- ния. Взащелку по внутреннейшине МК можетбытьзаписана единица илиноль. Эта инфор- мация через переключатель функций поступает на выходные ключи и вывод МК. В состоя- нии единицы оба транзистора N и N1 закрыты, но открыт N2. В состоянии нуля N открывает-

ся, а N2 закрывается. В момент, когда порт выполняет альтернативную функцию, на которую онспециализирован, состояние защелкис вывода снимается. Микроконтроллер отдельно мо- жет считать состояние защелки порта и состояние его вывода, установленное внешним сигна- лом. Для этого в ассемблере МК имеются специальные команды, активизирующие соответст- вующие линии. Для чтения состояния вывода в защелку соответствующего порта должна

быть предварительно записана

От внутрен-

Управление Защелка

Переключатель функций

Vcc

Выходные

единица. При активизации линии «чтение защелки» на выходе ячейки «И», к которой подключенаэта линияпоявля-

ней шины МК D Q

Запись в защелку C Q

Чтение защелки

Вывод порта

ется состояние защелки, по- ступающее на внутреннюю шину МК, при активизации

«чтение вывода» - состояние внешнего вывода порта.

Порт Р0 – универсаль- ный двунаправленный порт

ввода-вывода. За этим портом

закреплена функция организа- ции внешних шин адресов и

Рис. 3.3. Функциональная схема порта микроконтроллера

данных для расширенияпамя- ти программ и памяти данных

микроконтроллера. Когда идет обращение к внешней памяти программ или выполняется ко- манда обращения к внешней памяти данных, на выводах порта устанавливается младшая часть адреса (А0…А7), которая стробируется высоким уровнем на выводе ALE. Затем, при записи в память данных, записываемая информация с внутренней шины МК поступает на выводы порта Р0. В операциях чтения, наоборот, информация с выводов порта поступает на внутреннюю ши- ну. Особенностью порта Р0 является отсутствие «подтягивающего» транзистора N2, обеспечи- вающего подачу питания на вывод. При записи в защелку порта единицы он просто переводит- ся в высокоимпедансное состояние, что необходимо для нормальной работы шины данных. При необходимости запитывать через вывод какие либо внешние устройства, следует преду- сматривать внешние резисторы от цепей питания на вывод порта.

Порт Р1 – универсальный двунаправленный порт ввода-вывода без альтернатив- ных функций.

Порт Р2 – универсальный двунаправленный портввода-вывода, в качестве альтер- нативной функции осуществляющий выдачу старшей части адреса (А8…А15) при обра- щении к внешней памяти.

Порт Р3 – универсальный двунаправленный порт ввода-вывода, каждый бит кото- рого предусматривает выполнениеразличныхальтернативных функций. Приэтом альтер- нативные функции реализуются только в том случае, если в защелки выводов порта запи- саны единицы, в противном случае выполнение альтернативных функций блокируется. Перечислим их раздельно для каждого бита:

Р3.0 RxD (R ead eX ternal D ate, читать внешние данные) – вход встроенного после- довательного приемо-передатчика.

Р3.1 ТxD (T ype eX ternal D ate, передавать внешние данные) – выход встроенного последовательного приемо-передатчика.

Р3.2 INT0` (INT errupt, прерывание) – вход внешнего прерывания 0.

Р3.3 INT1` – вход внешнего прерывания 1.

Р3.4 С/T0 – вход нулевого встроенного таймера/счетчика.

Р3.5 С/T1 – вход первого встроенного таймера/счетчика.

Р3.6 WR` (W rite, писать) – вывод управления циклом записи в памяти данных.

Р3.7 RD` (R ead, читать) – вывод управления циклом чтения из памяти данных.

Выводы портаР1, Р2 и Р3 способны в единице выдавать тококоло0.2мА и принимать в нуле ток 3 мА, выводы порта Р0 мощнее и способны в единице выдавать ток около 0.8мА и при- нимать в нуле ток 5 мА. Краткая информация о назначении выводов микроконтроллера приведе- на в таблице 3.6.

Таблица 3.6.

Обозначение

Назначение вывода

8-разрядныи двунаправленный порт Р1. Вход адреса А0-А7 при проверке внутреннего ПЗУ (РПЗУ)

вход/ выход

Сигнал общего сброса. Вывод резервного пита- ния ОЗУ от внешнего источника (для 1816)

8-разрядный двунаправленный порт P3 с допол- нительными функциями

вход/ выход

Последовательные данные приемника - RхD

Последовательные данные передатчика - ТхD

Вход внешнего прерывания 0- INТ0`

Вход внешнего прерывания 1-INT1`

Вход таймера/счетчика 0: - Т0

Вход таймера/счетчика 1: - Т1

Выход стробирующего сигнала при записи во внешнюю память данных: - WR`

Выход стробирующего сигнала при чтении из внешней памяти данных – RD`

Выводы для подключения кварцевого резонато- ра.

выход вход

Общий вывод

8-разрядный двунаправленный порт Р2. Выход адреса А8-А15 в режиме работы с внешней па- мятью. В режиме проверки внутреннего ПЗУ выводы Р2.0 - Р2.6 используются как вход адреса А8-А14. Вывод Р2.7 - разрешение чтения ПЗУ.

вход/ выход

Разрешение программной памяти

Выходной сигнал разрешения фиксации адреса. При программировании РПЗУ сигнал: PROG

вход/ выход

Блокировка работы с внутренней памятью. При программировании РПЗУ подается сигнал UРR

вход/ выход

8-разрядный двунаправленный порт Р0. Шина адреса/данных г работе с внешней памятью. Вы- ход данных D7-D0 в режиме проверки внутрен- него ПЗУ (РПЗУ).

вход/ выход

Вывод питания от источника напряжения +5В

ПЛАН ЛЕКЦИИ

1. Введение

2. Арифметические и логические инструкции

3. Команды передачи данных

4. Булевы операции

5. Инструкции переходов

1. Введение

Система команд MCS-51 поддерживает единый набор инструкций, который предназначен для выполнения 8-битовых алгоритмов управления исполнительными устройствами. Существует возможность использования быстрых методов адресации к внутреннему ОЗУ, осуществления битовых операций над небольшими структурами данных. Имеется развернутая система адресации однобитовых переменных как самостоятельного типа данных, позволяющая использовать отдельные биты в логических и управляющих командах булевой алгебры.

Режимы адресации : набор команд MCS-51 поддерживает следующие режимы адресации. Прямая адресация : операнд определяется 8-битовым адресом в инструкции. Прямая адресация используется только для младшей половины внутренней памяти данных и регистров SFR . Косвенная адресация : инструкция адресует регистр, содержащий адрес операнда. Данный вид адресации используется для внешнего и внутреннего ОЗУ. Для указания 8-битовых адресов могут использоваться регистры R0 и R1 выбранного регистрового банка или указатель стека SP . Для 16-битовой адресации используется только регистр указателя данных DPTR .

Регистровые инструкции : регистры R0–R7 текущего регистрового банка могут быть адресованы через конкретные инструкции, содержащие 3-битовое поле, указывающее номер регистра в самой инструкции. В этом случае соответствующее поле адреса в команде отсутствует. Операции с использованием специальных регистров : некоторые инструкции используют индивидуальные регистры (например, операции с аккумулятором, DPTR , и т. д.). В данном случае адрес операнда вообще не указывается в команде. Он предопределяется кодом операции.

Непосредственные константы : константа может находиться прямо в команде за кодом операции.

Индексная адресация : индексная адресация может использоваться только для доступа к программной памяти и только в режиме чтения. В этом режиме осуществляется просмотр таблиц в памяти программ. 16-битовый регистр (DPTR или программный счетчик) указывает базовый адрес требуемой таблицы, а аккумулятор указывает на точку входа в нее.

Набор команд имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы. Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, вслед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений.

Систему команд условно можно разбить на пять групп: арифметические команды; логические команды; команды передачи данных; команды битового процессора; команды ветвления и передачи управления. Обозначения и символы, используемые в системе команд, приведены далее.

Таблица. Обозначения и символы, используемые в системе команд

Обозначение, символ

Назначение

Аккумулятор

Регистры текущего выбранного банка регистров

Номер загружаемого регистра, указанного в команде

direct

Прямо адресуемый 8-битовый внутренний адрес ячейки данных, который может быть ячейкой внутреннего ОЗУ данных (0–127) или регистром специальных функций SFR (128–255)

Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных

8-битовое непосредственное данное, входящее в код операции (КОП)

dataH

Старшие биты (15–8) непосредственных 16-битовых данных

dataL

Младшие биты (7­–0) непосредственных 16-битовых данных

11-битовый адрес назначения

addrL

Младшие биты адреса назначения

8-битовый байт смещения со знаком

Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или регистре специальных функций SFR

a15, a14...a0

Биты адреса назначения

Содержимое элемента Х

Содержимое по адресу, хранящемуся в элементе Х

Разряд М элемента Х


+

*
AND
OR
XOR
/X

Операции:
сложения
вычитания
умножения
деления
логического умножения (операция И)
логического сложения (операция ИЛИ)
сложения по модулю 2 (исключающее ИЛИ)
инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний.

2. Арифметические и логические инструкции

Как п ример арифметической команды , операция сложения может быть выполнена одной из нижеследующих команд.

ADD A ,7 F 16 – прибавить к содержимому регистра А число 7 F 16 и результат сохранить в регистре А;

ADD A ,@ R 0 – прибавить к содержимому регистра А число, адрес которого (@ – commercial at ) хранится в регистре R 0 (косвенная адресация), и результат сохранить в регистре А;

ADD A,R7 – прибавить к содержимому регистра А содержимое регистра R 7 и результат сохранить в регистре А;

ADD A,#127 – прибавить к содержимому регистра А число, адрес ячейки хранения которого 127 (# – символ номера), и результат сохранить в регист ­- ре А.

Все арифметические инструкции выполняются за один машинный цикл за исключением команды INC DPTR (смещение указателя данных DPTR на следующий байт), требующей два машинных цикла, а также операций умножения и деления, выполняемых за 4 машинных цикла. Любой байт во внутренней памяти данных может быть инкрементирован и декрементирован без использования аккумулятора.

Инструкция MUL AB производит умножение (multiplication – умножение) данных в аккумуляторе на данные, находящиеся в регистре B, помещая произведение в регистры A (младшая половина) и B (старшая половина).

Инструкция DIV AB делит (division – деление) содержимое аккумулятора на значение в регистре B, оставляя остаток в B, а частное – в аккумуляторе.

Инструкция DA A предназначена для двоично-десятичных арифметических операций (арифметические операции над числами, представленными в двоично-десятичном коде). Она не делает преобразования двоичного числа в двоично-десятичное , а лишь обеспечивает правильный результат при сложении двух двоично-десятичных чисел.

Пример логической команды : операция логического И может быть выполнена одной из следующих команд:

ANL A ,7 F 16 – логическое умножение содержимого регистра А на число 7 F 16 и результат сохраняется в регистре А;

ANL A ,@ R 1 – логическое умножение содержимого регистра А на число, адрес которого хранится в регистре R 1 (косвенная адресация), и результат сохранить в регистре А;

ANL A,R6 – логическое умножение содержимого регистра А на содержимое регистра R 6, и результат сохранить в регистре А;

ANL A,#53 – логическое умножение содержимого регистра А на число, адрес ячейки хранения которого 53 16 , и результат сохранить в регистре А.

Все логические операции над содержимым аккумулятора выполняются за один машинный цикл, остальные – за два. Логические операции могут производиться над любым из нижних 128 байтов внутренней памяти данных или над любым регистром SFR (регистров специальных функций) в режиме прямой адресации без использования аккумулятора.

Операции циклического сдвига RL A, RLC A и т. д. перемещают содержимое аккумулятора на один бит вправо или влево. В случае левого циклического сдвига младший бит перемещается в старшую позицию. В случае правого циклического сдвига происходит обратное .

Операция SWAP A осуществляет обмен младшей и старшей тетрад в аккумуляторе.

3. Команды передачи данных

Команда MOV dest,src позволяет пересылать данные между ячейками внутреннего ОЗУ или областью регистров специальных функций SFR без использования аккумулятора. При этом работа с верхней половиной внутреннего ОЗУ может осуществляться только в режиме косвенной адресации, а обращение к регистрам SFR – только в режиме прямой адресации.

Во всех микросхемах MCS-51 стек размещается непосредственно в резидентной памяти данных и увеличивается вверх. Инструкция PUSH вначале увеличивает значение в регистре указателя стека SP , а затем записывает в стек байт данных. Команды PUSH и POP используются только в режиме прямой адресации (записывая или восстанавливая байт), но стек является всегда доступным при косвенной адресации через регистр SP . Таким образом, стек может использовать и верхние 128 байт памяти данных. Эти же соображения исключают возможность использования стековых команд для адресации регистров SFR .

Инструкции передачи данных включают в себя 16-битовую операцию пересылки MOV DPTR,#data16 , которая используется для инициализации регистра указателя данных DPTR при просмотре таблиц в программной памяти или для доступа к внешней памяти данных.

Операция XCH A,byte применяется для обмена данными между аккумулятором и адресуемым байтом. Команда XCHD A,@Ri аналогична предыдущей , но выполняется только для младших тетрад , участвующих в обмене операндов.

Для доступа к внешней памяти данных используется только косвенная адресация. В случае однобайтных адресов используются регистры R0 или R1 текущего регистрового банка, а для 16-разрядных – регистр указателя данных DPTR . При любом методе доступа к внешней памяти данных аккумулятор играет роль источника либо приемника информации.

Для доступа к таблицам, размещённым в программной памяти, используются команды:

MOVC A,@A+DPTR ;

MOVC A,@A+PC .

В качестве базового адреса таблицы используется содержимое соответственно регистра указателя данных DPTR или PC (программного счётчика), а смещение берется из A . Эти команды используются исключительно для чтения данных из программной памяти, но не для записи в нее.

4. Булевы операции

Микросхемы MCS-51 содержат в своем составе «булевый» процессор. Внутреннее ОЗУ имеет 128 прямо адресуемых бит. Пространство регистров специальных функций SFR может также поддерживать до 128 битовых полей. Битовые инструкции осуществляют условные переходы, пересылки, сброс, инверсии, операции «И» и «ИЛИ». Все указанные биты доступны в режиме прямой адресации.

Бит переноса CF в регистре специальных функций «слово состояния программы PSW » используется как однобитный аккумулятор булевого процессора.

5. Инструкции переходов

Адреса операций переходов обозначаются на языке ассемблера меткой либо реальным значением в пространстве памяти программ. Адреса условных переходов ассемблируются в относительное смещение – знаковый байт, прибавляемый к программному счетчику PC в случае выполнения условия перехода. Границы таких переходов лежат в пределах между минус 128 и 127 относительно первого байта, следующего за инструкцией. В регистре специальных функций «слово состояния программы PSW » отсутствует флажок нуля, поэтому инструкции JZ и JNZ проверяют условие «равно нулю» как тестирование данных в аккумуляторе.

Существует три вида команды безусловного перехода: SJMP , LJMP и AJMP – различающиеся форматом адреса назначения. Инструкция SJMP кодирует адрес как относительное смещение, и занимает два байта. Дальность перехода ограничена диапазоном от минус 128 до 127 байт относительно инструкции, следующей за SJMP .

В инструкции LJMP используется адрес назначения в виде 16-битной константы. Длина команды составляет три байта. Адрес назначения может располагаться в любом месте памяти программ.

Команда AJMP использует 11-битную константу адреса. Команда состоит из двух байт. При выполнении этой инструкции младшие 11 бит адресного счетчика замещаются 11-битным адресом из команды. Пять старших бит программного счетчика PC остаются неизменными. Таким образом, переход может производиться внутри 2К-байтного блока, в котором располагается инструкция, следующая за командой AJMP .

Существует два вида команды вызовы подпрограммы: LCALL и ACALL . Инструкция LCALL использует 16-битный адрес вызываемой подпрограммы. В данном случае подпрограмма может быть расположена в любом месте памяти программ. Инструкция ACALL использует 11-битный адрес подпрограммы. В этом случае вызываемая подпрограмма должна быть расположена в одном 2К-байтном блоке с инструкцией, следующей за ACALL . Оба варианта команды кладут на стек адрес следующей команды и загружают в программный счетчик PC соответствующее новое значение.

Подпрограмма завершается инструкцией RET , позволяющей вернуться на инструкцию, следующую за командой CALL . Эта инструкция снимает со стека адрес возврата и загружает его в программный счетчик PC . Инструкция RETI используется для возврата из подпрограмм обработки прерываний. Единственное отличие RETI от RET состоит в том, что RETI информирует систему о том, что обработка прерывания завершилась. Если в момент выполнения RETI нет других прерываний, то она идентична RET .

Инструкция DJNZ предназначена для управления циклами. Для выполнения цикла N раз надо загрузить в счетчик байт со значением N и закрыть тело цикла командой DJNZ , указывающей на начало цикла.

Команда CJNE сравнивает два своих операнда как беззнаковые целые и производит переход по указанному в ней адресу, если сравниваемые операнды не равны. Если первый операнд меньше, чем второй, то бит переноса CF устанавливается в «1».

Все команды в ассемблированном виде занимают 1, 2 или 3 байта.

Система команд ОМЭВМ предоставляет большие возможности обработки данных, обеспечивает реализацию логических, арифметических операций, а также управление в режиме реалиного времени. Реализована побитовая, потетрадная (4 бита), побайтовая (8 бит) и 16-разрядная обработка данных.

БИС семейства MCS-51 - 8-разрядная ОМЭВМ: ПЗУ, ОЗУ, регистры специального назначения, АЛУ и внешние шины имеют байтовую организацию. Двухбайтовые данные используются только регистром-указателем (DPTR) и счетчиком команд (РС). Следует отметить, что регистр-указатель данных может быть использован как двухбайтовый регистр DPTR или как два однобайтовых регистра специального назначения DPH и DPL. Счетчик команд всегда используется как двухбайтовый регистр.

Набор команд ОМЭВМ имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы.

Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, всед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений.

Систему команд условно можно разбить на пять групп:

Существуют следующие типы адресации операндов-источников:

  • Косвенно-регистровая адресация по сумме базового и индексного регистров

Таблица обозначений и символов, используемых в системе команд

Обозначение, символ Назначение
А Аккумулятор
Rn Регистры текущего выбранного банка регистров
r Номер загружаемого регистра, указанного в команде
direct Прямо адресуемый 8-битовый внутренний адрес ячейка данных, который может быть ячейкой внутреннего ОЗУ данных (0-127) или SFR (128-255)
@Rr Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных
data8 8-битовое непосредственное данное, входящее в КОП
dataH Старшие биты (15-8) непосредственных 16-битовых данных
dataL Младшие биты (7-0) непосредственных 16-битовых данных
addr11 11-битовый адрес назначения
addrL Младшие биты адреса назначения
disp8 8-битовый байт смещения со знаком
bit Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или SFR
a15, a14...a0 Биты адреса назначения
(Х) Содержимое элемента Х
((Х)) Содержимое по адресу, хранящемуся в элементе Х
(Х)[M] Разряд М элемента Х

+
-
*
AND
OR
XOR
/X
Операции:
сложения
вычитания
умножения
деления
логического умножения (операция И)
логического сложения (операция ИЛИ)
сложения по модулю 2 (исключающее ИЛИ)
инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний. В таблице приведен перечень команд, упорядоченных по алфавиту.

Мнемоника Функция Флаги
Команда ACALL Абсолютный вызов подпрограммы
Сложение AC, C, OV
Сложение с переносом AC, C, OV
Команда AJMP Абсолютный переход
Логическое "И"
Логическое "И" для переменных-битов C
Сравнение и переход, если не равно C
Команда CLR A Сброс аккумулятора
Команда CLR Сброс бита C, bit
Команда CPL A Инверсия аккумулятора
Команда CPL Инверсия бита C, bit
Команда DA A Десятичная коррекция аккумулятора для сложения AC, C
Команда DEC <байт> Декремент
Команда DIV AB Деление C, OV
Команда DJNZ <байт>, <смещение> Декремент и переход, если не равно нулю
Команда INC <байт> Инкремент
Команда INC DPTR Инкремент указателя данных
Команда JB , Переход, если бит установлен
Команда JBC , Переход, если бит установлен и сброс этого бита
Команда JC Переход, если перенос установлен
Команда JMP @A+DPTR Косвенный переход
Команда JNB , Переход, если бит не установлен
Команда JNC Переход, если перенос не установлен
Команда JNZ Переход, если содержимое аккумулятора не равно нулю
Команда JZ Переход, если содержимое аккумулятора равно 0
Команда LCALL Длинный вызов
Команда LJMP Длинный переход
Переслать переменную-байт
Переслать бит данных C
Команда MOV DPTR,#data16 Загрузить указатель данных 16-битовой константой
Команда MOVC A,@A+() Переслать байт из памяти программ
Переслать во внешнюю память (из внешней памяти) данных

Министерство общего и профессионального образования Российской Федерации Новосибирский Государственный Технический Университет В.Н. Веприк, В.А. Афанасьев, А.И. Дружинин, А.А. Земсков, А.Р. Исаев, О.В. Малявко МИКРОКОНТРОЛЛЕРЫ СЕМЕЙСТВА MCS-51 Учебное пособие по курсам "Микропроцессорные системы" и "Проектирование микропроцессорных систем" для студентов старших курсов факультета автоматики и вычислительной техники всех форм обучения Новосибирск 1997 В.Н. Веприк, В.А. Афанасьев, А.И. Дружинин, А.А. Земсков, А.Р. Исаев, О.В. Малявко. Микроконтроллеры семейства MCS-51: Учебное пособие. - Новосибирск. Предлагаемое Вашему вниманию учебное пособие содержит общее описание архитектуры, функциональных возможностей и системы команд семейства однокристальных микроконтроллеров (Embedded Microcontrollers) MCS-51, производимых фирмой INTEL. Во второй части пособия приводится описание учебного микропроцессорного контроллера УМПК- 51, предлагаемого студентам в качестве объекта исследования при выполнении цикла лабораторных работ. Материал пособия может использоваться при курсовом и дипломном проектировании, а также может быть полезным для инженеров - схемотехников, занимающихся разработкой и эксплуатацией электронной аппаратуры. Авторы выражают глубокую признательность АОЗТ "Новые технологии"- официальному дистрибьютору фирмы INTEL за предоставление материалов, на основе которых выполнена данная работа. Табл.15, ил.25, список лит. 12 назв. Рецензенты: Е.Д. Баран, Г.Г. Матушкин. Работа подготовлена на кафедре вычислительной техники Новосибирский государственный © технический университет 2 ВВЕДЕНИЕ. Семейство 8-разрядных однокристальных микроконтроллеров MCS-51 появилось на мировом рынке в начале восьмидесятых годов. Первые модификации кристаллов (около 7) были выполнены по высококачественной n-МОП (HMOS) технологии и являлись функционально завершенными однокристальными микроЭВМ гарвардской архитектуры, один из основных принципов которой состоит в логическом разделении адресных пространств памяти программ и данных. С развитием полупроводниковой технологии последующие версии микросхем MCS-51 стали изготавливать по более совершенной и низкопотребляющей КМОП (CHMOS) технологии (в активном режиме потребление кристаллов было доведено до 10 50 мА). Система команд MCS-51, ориентированная на реализацию различных цифровых алгоритмов управления, при сохранении некоторой внешней схожести с системой команд предыдущего семейства MCS-48, качественно расширилась, в ней появились принципиальные нововведения: битово-ориентированные операции и адресуемые в памяти данных битовые поля, что дало возможность говорить о реализации на кристалле битового процессора; реализовано исполнение команд умножения, деления и вычитания; усовершенствована работа со стеком; расширена группа команд передачи управления; Система команд стала выглядеть более симметричной, то есть менее зависимой от пересылок данных через аккумулятор. Функциональные возможности встроенных периферийных устройств также расширились за счет введения: двух 16-разрядных таймеров-счетчиков; аппаратного последовательного дуплексного порта; двухуровневой системы прерываний; четырех 8-битовых портов ввода-вывода. Принципиальные изменения в структуре временного цикла работы процессора привели к ускорению работы с внешней памятью программ и данных, а также реакций на внешние и внутренние прерывания. Суммарный размер адресного пространства внешней памяти программ и данных увеличился до 128 Кбайт. 16-разрядные регистры счетчика команд (Program Counter) и указателя данных (Data Pointer) позволили напрямую обращаться ко всему диапазону адресов, что дало разработчикам возможность реализации алгоритмов быстрой обработки крупных массивов данных. Все программно-доступные узлы микроконтроллера были сведены в специальную область памяти данных (Special Function Register), что позволило обращаться к ним почти так же, как и к обычным ячейкам резидентного ОЗУ. В более поздних модификациях кристаллов усовершенствование шло по пути наращивания дополнительных функциональных возможностей с сохранением полной программной совместимости с более ранними версиями. Особенностями последних модификаций микроконтроллеров семейства MCS-51 являются: полностью статический дизайн; 3- и 5-вольтовые версии кристаллов; широкий спектр встроенных периферийных устройств; максимальная тактовая частота - 24 мГц; для отдельных групп кристаллов - 33 мГц. В настоящее время в состав MCS-51 входит около 60 версий кристаллов, кроме того, имеется и доступна подробная фирменная документация (к сожалению, пока мало переведенная на русский язык). Для подготовки математического обеспечения микроконтроллеров MCS-51 используются в основном языки "ASM-51", "С", для которых существуют ряд достаточно хорошо зарекомендовавших себя компиляторов, библиотек стандартных подпрограмм и программных эмуляторов, производимых различными зарубежными и отечественными фирмами. 3 Несмотря на достаточную "древность" семейства (более 15 лет) и появление на мировом рынке за последние годы однокристальных микроконтроллеров большей производительности и усовершенствованной архитектуры - MCS-51, MCS-251, MCS-96, контроллеры MCS-51 еще достаточно долго будут широко использоваться в сравнительно простых встроенных системах управления . 4 1. СИСТЕМА ОБОЗНАЧЕНИЙ КОМПОНЕНТОВ ФИРМЫ INTEL И ФУНКЦИОНАЛЬНЫЙ СОСТАВ СЕМЕЙСТВА MCS-51 Для маркировки микросхем фирмой INTEL применяется система обозначений из нескольких полей: 1 2 3 4 Х ХХ ХХХХХХХХХХХХХХХ ХХХХХХ Первое поле содержит однобуквенный префикс, отражающий температурный диапазон микросхемы: А (Automotive), автомобильное исполнение для расширенного температурного диапазона (-40/+125 С) М (Military), исполнение по военным стандартам (-55/+125 С) Q или С (Commercial), "коммерческий" температурный диапазон (0/+70 С) с (160 8)- часовой динамической термотренировкой; L или Е (Extended), "расширенный" температурный диапазон (-40/+85 С) с (160 8)- часовой динамической термотренировкой; Т (Extended), "расширенный" температурный диапазон (-40/+85 С) без термотренировки; I (Industrial), исполнение по промышленным стандартам. Второе поле содержит одно- или двухбуквенный префикс, указывающий на вариант исполнения корпуса микросхемы (Package Type). Различных типов корпусов микросхем на сегодняшний день несколько десятков, поэтому в качестве примера приведем лишь некоторые обозначения: A Ceramic Pin Grid Array, (PGA); C Ceramic Dual In-Line Package, (CDIP); K Ceramic Quad Flatpack Package, (QFP); KD Plastic Quad Flatpack Package, Fine Pitch, Die Down, (PQFP); KU Plastic Quad Flatpack Package, Fine Pitch, Die Up, (PQFP); N Plastic Leaded Chip Carrier, (PLCC); P Plastic Dual In-Line Package, (PDIP); SM Single In-Line Leadless Memory Module, (SIMM); U Plastic Dual In-Line Package, Shrink Dip, (PDIPS); Z Zigzag In-Line Package, (ZIP). Третье поле может содержать до 15 цифровых и буквенных символов, указывающих на тип конкретного устройства, расположенного на кристалле. Четвертое поле может включать до шести цифровых и буквенных символов, отражающих различные особенности и варианты исполнения микросхем . Дополнительную информацию по типам корпусов и их конструктивному исполнению можно найти в книге: Packaging Order Number 240800. Применительно к описываемым микроконтроллерам семейства MCS-51, первый символ третьего поля традиционно (для фирмы Intel) равен "8". Второй символ третьего поля обычно указывает на тип встроенного ПЗУ: 0 масочное ПЗУ программ; кристалл без ПЗУ (для поздних версий кристаллов); 1 масочное ПЗУ программ (Standard ROM Code, Firmware); 3 масочное ПЗУ (для поздних версий кристаллов), (Customizable ROM Code); 7 УФРПЗУ или однократно-программируемое ПЗУ (EPROM or OTP ROM); 8 ЭСППЗУ (Flash - память на кристалле) Далее может следовать буква, указывающая на технологические особенности изготовления: отсутствие буквы технология HMOS, питание 5В; С технология СHMOS, питание 5В; L технология СHMOS, питание 3В; 5 Следующими символами третьего поля для микроконтроллеров семейства MCS-51 являются номера (например, 31,32,51,54,58,152) и от одной до четырех букв, которые отражают функциональные особенности кристаллов (например, объем ПЗУ, специфику группы кристаллов, наличие системы защиты памяти программ от несанкционированного доступа, возможность использования более совершенного алгоритма программирования "Quick Pulse" и тому подобное). В оригинальной технической документации фирмы Intel все микроконтроллеры семейства MCS-51 скомпонованы по группам ("Product Line"), каждая из которых объединяет наиболее близкие по своим функциональным возможностям и электрическим параметрам версии кристаллов. Поскольку наименования микросхем одной группы различаются незначительно, то для обозначения каждой отдельной группы применяется обобщенная символика, образованная из маркировки конкретных микросхем, путем замены различающихся символов на "Х". Таким образом, можно выделить следующие группы микроконтроллеров. 1. Группа 8Х5Х (8051 Product Line и 8052 Product Line): 8031АН, 8051АН, 8751Н, 8051АНР, 8751Н-8, 8751ВН, 8032АН, 8052АН, 8752ВН. 2. Группа 8ХС51 (80С51 Product Line): 80С31ВН, 80С51ВН, 87С51. 3. Группа 8ХС5Х (8ХС52/54/58 Product Line): 80С32, 80С52, 87С52, 80С54, 87С54, 80С58, 87С58. 4. Группа 8ХС51FX (8XC51FA/FB/FC Product Line): 80C51FA, 83C51FA, 87C51FA, 83C51FB, 87C51FB, 83C51FC, 87C51FC. 5. Группа 8ХL5X (8XL52/54/58 Product Line): 80L52, 87L52, 80L54, 87L54, 80L58, 87L58. 6. Группа 8XL51FX (8XL51FA/FB/FC Product Line): 80L51FA, 83L51FA, 87L51FA, 83L51FB, 87L51FB, 83L51FC, 87L51FC. 7. Группа 8ХС51RX (8XC51RA/RB/RC Product Line): 80C51RA, 83C51RA, 87C51RA, 83C51RB, 87C51RB, 83C51RC, 87C51RC. 8. Группа 8ХC51GB (8XC51GX Product Line): 80C51GB, 83C51GB, 87C51GB. 9. Группа 8ХС152JX (8XC152 Product Line): 80C152JA, 83C152JA, 80C152JB, 80C152JC, 83C152JC, 80C152JD. 10. Группа 8XC51SL (8XC51SL Product Line): 80C51SL-BG, 81C51SL-BG, 83C51SL-BG, 80C51-AH, 81C51SL-AH, 83C51SL-AH, 87C51SL- AH, 80C51SL-AL, 81C51SL-AL, 83C51SL-AL, 87C51SL-AL. Первая группа микроконтроллеров включает в себя младшие модели семейства, выполненные по n-МОП технологии и не рекомендуемые к использованию в новых разработках, все остальные группы выполнены по современной КМОП технологии. Микросхемы второй, третьей и четвертой групп являются на сегодняшний день классическими представителями семейства MCS-51. В пятую и шестую группы входят 3- вольтовые версии кристаллов (Low-Voltage). Кристаллы седьмой группы оснащены расширенным ОЗУ (Expanded RAM), объем которого равен 512 байт. Микросхемы восьмой, девятой и десятой групп представляют собой специализированные по применению микроконтроллеры (Application Specific). Многие современные приложения требуют высокопроизводительных управляющих микроконтроллеров, использующих расширенные возможности адресации, регистровую архитектуру, большой объем внутреннего ОЗУ и стека, а также эффективно поддерживающих программирование на языке высокого уровня. К таким микроконтроллерам относятся микроконтроллеры новой архитектуры (New Architecture) семейств MCS-5 и MCS-251, к производству которых компания Intel приступила в 1995 году. Функциональный состав и ключевые особенности микроконтроллера MCS-51/MCS-251 приведены в приложении. 6 2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ БАЗОВОЙ МОДЕЛИ СЕМЕЙСТВА МИКРОКОНТРОЛЛЕРОВ MCS-51. Базовой моделью семейства микроконтроллеров MCS-51 и основой для всех последующих модификаций является микроконтроллер I-8051. Его основные характеристики следующие: восьмиразрядный ЦП, оптимизированный для реализации функций управления; встроенный тактовый генератор; адресное пространство памяти программ - 64 К; адресное пространство памяти данных - 64 К; внутренняя память программ - 4 К; внутренняя память данных - 128 байт; дополнительные возможности по выполнению операций булевой алгебры (побитовые операции); 32 двунаправленные и индивидуально адресуемые линии ввода/вывода; 2 шестнадцатиразрядных многофункциональных таймера/счетчика; полнодуплексный асинхронный приемопередатчик; векторная система прерываний с двумя уровнями приоритета и шестью источниками событий . Структурная схема I-8051 показана на рис.1, назначение выводов микросхемы - на рис.2. External interrupts Interrupts 128 bytes T/C 0 counter 4K ROM control RAM T/C 1 inputs CPU BUS 4 I/O Serial OSC control Ports Port P0 P1 P2 P3 T D R D Address/Data Рис.1. Структурная схема I-8051 Вся серия MCS-51 имеет гарвардскую архитектуру, то есть раздельные адресные пространства памяти программ и данных. Организация памяти изображена на рис.3. Объем внутренней (резидентной) памяти программ (ROM, EPROM или OTP ROM), располагаемой на кристалле, в зависимости от типа микросхемы может составлять 0 (ROMless), 4К (базовый кристалл), 8К, 16К или 32К. При необходимости пользователь может расширять память программ установкой внешнего ПЗУ. Доступ к внутреннему или внешнему ПЗУ определяется значением сигнала на выводе ЕА (External Access): EA=Vcc (напряжение питания) - доступ к внутреннему ПЗУ; EA=Vss (потенциал земли) - доступ к внешнему ПЗУ. Для кристаллов без ПЗУ (ROMless) вывод ЕА должен быть постоянно подключен к Vss. Строб чтения внешнего ПЗУ - PS EN (Program Store Enable) генерируется при обращении к внешней памяти программ и является неактивным во время обращения к ПЗУ, расположенному на кристалле. 7 Область нижних адресов памяти программ используется системой прерываний, архитектура микросхемы 8051обеспечивает поддержку пяти источников прерываний: двух внешних прерываний; двух прерываний от таймеров; прерывания от последовательного порта. P1.0 1 40 Vcc P1.1 2 39 P0.0 (AD0) P1.2 3 38 P0.1 (AD1) P1.3 4 37 P0.2 (AD2) P1.4 5 36 P0.3 (AD3) P1.5 6 35 P0.4 (AD4) P1.6 7 34 P0.5 (AD5) P1.7 8 33 P0.6 (AD6) RESET 9 32 P0.7 (AD7) (R D) P3.0 10 31 EA/Vpp (T D) P3.1 11 30 ALE/PROG (INT0) P3.2 12 29 PSEN (INT1) P3.3 13 28 P2.7 (A15) (T0) P3.4 14 27 P2.6 (A14) (T1) P3.5 15 26 P2.5 (A13) (WR) P3.6 16 25 P2.4 (A12) (RD) P3.7 17 24 P2.3 (A11) XTAL2 18 23 P2.2 (A10) XTAL1 19 22 P2.1 (A9) Vss 20 21 P2.0 (A8) Рис.2. Назначение выводов I-8051 Память программ (Чтение) Память данных (Чтение/Запись) FFFFH Внешнее ПЗУ FFFFH Внешняя @DPTR RD память PSEN WR данных @PC MOVC EA=0 Внутренняя память @DPTR данных @PC Внешнее Внутреннее FFH upper 128 SFR MOVX ПЗУ ПЗУ 80H EA=0 0000H EA=1 lower 128 00H 0000H PSEN Рис.3. Организация памяти семейства MCS-51 8 На рис.4 изображена карта нижней области программной памяти. ROM Память программ 0033Н 002BН Serial Port 0023Н Вектора Timer1 001BН прерываний EINT1 0013Н Timer0 000BH EINT0 0003Н Стартовый адрес 0000H (Reset) Рис.4. Программная память Адреса векторов прерываний расположены с интервалом в 8 байт: - 0003Н внешнее прерывание 0 (External Interrupt 0) - вывод IN T 0 ; - 000BН прерывание от таймера 0 (по флагу переполнения таймера - T F 0); - 0013Н внешнее прерывание 1 (External Interrupt 1) - вывод IN T 1 ; - 001BH прерывание от таймера 1 (по флагу переполнения таймера - T F 1); - 0023H прерывание от последовательного порта (Serial Interrupt = Receive Interrupt or Transmit Interrupt); и так далее. Память данных отделена от памяти программ. В этой области возможна адресация 64К внешнего ОЗУ. При обращении к внешней памяти данных ЦП микроконтроллера генерирует соответствующие сигналы чтения (R D) или записи (W R), взаимодействие с внутренней памятью данных осуществляется на командном уровне, при этом сигналы R D и W R не вырабатываются. Внешняя память программ и внешняя память данных могут комбинироваться путем совмещения сигналов R D и PS EN по схеме "логического И" для получения строба внешней памяти (программ/данных). Нижние 128 байт внутренней памяти данных (lower 128) присутствуют на всех кристаллах MCS-51 и показаны на рис.5. Первые 32 байта представляют собой 4 банка (Register Bank) по 8 регистров (R7...R0). Регистры R0 и R1 в любом из банков могут использоваться в качестве регистров косвенного адреса. Следующие за регистровыми банками 16 байт образуют блок побитно-адресуемого пространства. Набор инструкций MCS-51 содержит широкий выбор операций над битами, а 128 бит в этом блоке адресуются прямо и адреса имею значения от 00Н до 7FH. Все байты в нижней 128-байтной половине памяти могут адресоваться как прямо, так и косвенно. Верхняя 128 байтная половина памяти ОЗУ (upper 128) в микросхеме I-8051 отсутствует, но имеется в версиях кристаллов с 256 байтами ОЗУ. В этом случае область "Upper 128" доступна только при косвенной адресации. Область SFR (Special Function Register) доступна только при прямой адресации. Размещение регистров специальных функций в пространстве SFR показано на рис.6. Они включают в себя регистры портов, таймеры, средства управления периферией и так далее. 9 7FH Побайтно-адресуемая область ОЗУ 30H (direct, indirect) 2FH 7FH 7EH 7DH 7CH 7BH 7AH 79H 78H 2EH 77H 76H 75H 74H 73H 72H 71H 70H Побитно-адресуемая область ОЗУ (direct) 21H 0FH 0EH 0DH 0CH 0BH 0AH 09H 08H 20H 07H 06H 05H 04H 03H 02H 01H 00H 1FH RB3 18H 17H RB2 10H 0FH RB1 08H 07H SP после RESET 00H RB0(R7+R0) Рис.5. Нижние 128 байт внутреннего ОЗУ. побитовая адресация 8 байт F8H FFH F0H B F7H E8H EFH E0H ACC E7H D8H DFH D0H PSW D7H C8H CFH C0H C7H B8H IP BFH B0H P3 B7H A8H IE AFH A0H P2 A7H 98H SCON SBUF 9FH 90H P1 97H 88H TCON TMOD TL0 TL1 TH0 TH1 8FH 80H P0 SP DPL DPH PCO 87H N 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F Рис.6. Размещение регистров специальных функций в пространстве SFR. Для 16 адресов в пространстве SFR имеется возможность как байтовой, так и битовой адресации. Для побитно-адресуемых регистров шестнадцатеричный адрес заканчивается на "0Н" или на "8Н". Битовые адреса в этой области имеют значения от 80Н до FFH. Вся серия кристаллов семейства MCS-51 имеет базовый набор SFR, как и в микросхеме I- 8051, расположенный по тем же адресам. Однако в кристаллах, представляющих собой дальнейшее развитие семейства в область SFR, добавляются новые регистры для расширения 10

Понравилась статья? Поделиться с друзьями: