Виды хакерских атак. Что такое сетевая атака

Существуют четыре основных категории атак:

· атаки доступа;

· атаки модификации;

· атаки на отказ в обслуживании;

· атаки на отказ от обязательств.

Рассмотрим подробнее каждую категорию. Существует множество способов выполнения атак: при помощи специально разработанных средств, методов социального инжиниринга, через уязвимые места компьютерных систем. При социальном инжиниринге для получения несанкционированного доступа к системе не используются технические средства. Злоумышленник получает информацию через обычный телефонный звонок или проникает внутрь организации под видом ее служащего. Атаки такого рода наиболее разрушительны.

Атаки, нацеленные на захват информации, хранящейся в электронном виде, имеют одну интересную особенность: информация не похищается, а копируется. Она остается у исходного владельца, но при этом ее получает и злоумышленник. Таким образом, владелец информации несет убытки, а обнаружить момент, когда это произошло, очень трудно.

Атаки доступа

Атака доступа – это попытка получения злоумышленником информации, для просмотра которой у него нет разрешений. Осуществление такой атаки возможно везде, где существует информация и средства для ее передачи. Атака доступа направлена на нарушение конфиденциальности информации. Различают следующие виды атаки доступа:

· подсматривание;

· подслушивание;

· перехват.

Подсматривание (snooping) – это просмотр файлов или документов для поиска интересующей злоумышленника информации. Если документы хранятся в виде распечаток, то злоумышленник будет вскрывать ящики стола и рыться в них. Если информация находится в компьютерной системе, то он будет просматривать файл за файлом, пока не найдет нужные сведения.

Подслушивание (eavesdropping) – это несанкционированное прослушивание разговора, участником которого злоумышленник не является. Для получения несанкционированного доступа к информации, в этом случае, злоумышленник должен находиться поблизости от нее. Очень часто при этом он использует электронные устройства. Внедрение беспроводных сетей увеличило вероятность успешного прослушивания. Теперь злоумышленнику не нужно находиться внутри системы или физически подключать подслушивающее устройство к сети.

В отличие от подслушивания перехват (interception) – это активная атака. Злоумышленник захватывает информацию в процессе ее передачи к месту назначения. После анализа информации он принимает решение о разрешении или запрете ее дальнейшего прохождения.

Атаки доступа принимают различные формы в зависимости от способа хранения информации: в виде бумажных документов или в электронном виде на компьютере. Если необходимая злоумышленнику информация хранится в виде бумажных документов, ему потребуется доступ к этим документам. Они, возможно, отыщутся в следующих местах: в картотеках, в ящиках столов или на столах, в факсе или принтере в мусоре, в архиве. Следовательно, злоумышленнику необходимо физически проникнуть во все эти места.

Таким образом, физический доступ – это ключ к получению данных. Следует заметить, что надежная защита помещений оградит данные только от посторонних лиц, но не от служащих организации или внутренних пользователей.

Информация в электронном виде хранится: на рабочих станциях, на серверах, в портативных компьютерах, на флоппи-дисках, на компакт-дисках, на резервных магнитных лентах.

Злоумышленник может просто украсть носитель данных (дискету, компакт-диск, резервную магнитную ленту или портативный компьютер). Иногда это сделать легче, чем получить доступ к файлам, хранящимся в компьютерах.

Если злоумышленник имеет легальный доступ к системе, он будет анализировать файлы, просто открывая один за другим. При должном уровне контроля над разрешениями доступ для нелегального пользователя будет закрыт, а попытки доступа зарегистрированы в журналах.

Правильно настроенные разрешения предотвратят случайную утечку информации. Однако серьезный злоумышленник постарается обойти систему контроля и получить доступ к нужной информации. Существует большое количество уязвимых мест, которые помогут ему в этом.

При прохождении информации по сети к ней можно обращаться, прослушивая передачу. Злоумышленник делает это, устанавливая в компьютерной системе сетевой анализатор пакетов (sniffer). Обычно это компьютер, сконфигурированный для захвата всего сетевого трафика (не только трафика, адресованного данному компьютеру). Для этого злоумышленник должен повысить свои полномочия в системе или подключиться к сети. Анализатор настроен на захват любой информации, проходящей по сети, но особенно – на пользовательские идентификаторы и пароли.

Подслушивание выполняется и в глобальных компьютерных сетях типа выделенных линий и телефонных соединений. Однако такой тип перехвата требует наличия соответствующей аппаратуры и специальных знаний.

Перехват возможен даже в системах оптико-волоконной связи с помощью специализированного оборудования, обычно выполняется квалифицированным злоумышленником.

Информационный доступ с использованием перехвата – одна из сложнейших задач для злоумышленника. Чтобы добиться успеха, он должен поместить свою систему в линии передачи между отправителем и получателем информации. В Internet это выполняется посредством изменения разрешения имени, в результате чего имя компьютера преобразуется в неправильный адрес. Трафик перенаправляется к системе атакующего вместо реального узла назначения. При соответствующей настройке такой системы отправитель так и не узнает, что его информация не дошла до получателя.

Перехват возможен и во время действительного сеанса связи. Такой тип атаки лучше всего подходит для захвата интерактивного трафика. В этом случае злоумышленник должен находиться в том же сегменте сети, где расположены клиент и сервер. Злоумышленник ждет, когда легальный пользователь откроет сессию на сервере, а затем с помощью специализированного программного обеспечения занимает сессию уже в процессе работы.

Атаки модификации

Атака модификации – это попытка неправомочного изменения информации. Такая атака возможна везде, где существует или передается информация. Она направлена на нарушение целостности информации.

Одним из видов атаки модификации является замена существующей информации, например, изменение заработной платы служащего. Атака замены направлена как против секретной, так и общедоступной информации.

Другой тип атаки – добавление новых данных, например, в информацию об истории прошлых периодов. В этом случае злоумышленник выполняет операцию в банковской системе, в результате чего средства со счета клиента перемещаются на его собственный счет.

Атака удаления означает перемещение существующих данных, например, аннулирование записи об операции из балансового отчета банка, в результате чего снятые со счета денежные средства остаются на нем.

Как и атаки доступа, атаки модификации выполняются по отношению к информации, хранящейся в виде бумажных документов или в электронном виде на компьютере.

Документы сложно изменить так, чтобы этого никто не заметил: при наличии подписи (например, в контракте) нужно позаботиться о ее подделке, скрепленный документ необходимо аккуратно собрать заново. При наличии копий документа их тоже нужно переделать, как и исходный. А поскольку практически невозможно найти все копии, подделку заметить очень легко.

Очень трудно добавлять или удалять записи из журналов операций. Во-первых, информация в них расположена в хронологическом порядке, поэтому любое изменение будет сразу замечено. Лучший способ - изъять документ и заменить новым. Для атак такого рода необходим физический доступ к информации.

Модифицировать информацию, хранящуюся в электронном виде, значительно легче. Учитывая, что злоумышленник имеет доступ к системе, такая операция оставляет после себя минимум улик. При отсутствии санкционированного доступа к файлам атакующий сначала должен обеспечить себе вход в систему или изменить параметры разграничения доступа к файлу.

Изменение файлов базы данных или списка транзакций должно выполняться очень осторожно. Транзакции нумеруются последовательно, и удаление или добавление неправильных операционных номеров будет замечено. В этих случаях необходимо основательно поработать во всей системе, чтобы воспрепятствовать обнаружению.

Основополагающими концепциями кибер-безопасности являются доступность, целостность и конфиденциальность. Атаки «отказ в обслуживании» (DoS) влияют на доступность информационных ресурсов. Отказ в обслуживании считается успешным, если он привел к недоступности информационного ресурса. Успешность атаки и влияние на целевые ресурсы отличаются тем, что влияние наносит жертве урон. Например, если атакуется интернет-магазин, то длительный отказ в обслуживании может причинить финансовые убытки компании. В каждом конкретном случае DoS-активность может либо непосредственно причинить вред, либо создать угрозу и потенциальный риск нанесения убытков.

Первая D в DDoS означает distributed : распределённая атака типа «отказ в обслуживании» . В этом случае речь идёт об огромной массе злонамеренных запросов, поступающих на сервер жертвы из множества разных мест. Обычно такие атаки организуются посредством бот-сетей.

В этой статье мы подробно рассмотрим, какие типы DDoS-трафика и какие виды DDoS-атак существуют. Для каждого вида атак будут приведены краткие рекомендации по предотвращению и восстановлению работоспособности.

Типы DDoS-трафика

Самый простой вид трафика - HTTP-запросы. С помощью таких запросов, например, любой посетитель общается с вашим сайтом посредством браузера. В основе запроса лежит HTTP-заголовок.

HTTP-заголовок . HTTP заголовки - это поля, которые описывают, какой именно ресурс запрашивается, например, URL-адрес или форма, или JPEG. Также HTTP заголовки информируют веб-сервер, какой тип браузера используется. Наиболее распространенные HTTP заголовки: ACCEPT, LANGUAGE и USER AGENT.

Запрашивающая сторона может использовать сколько угодно заголовков, придавая им нужные свойства. Проводящие DDoS-атаку злоумышленники могут изменять эти и многие другие HTTP-заголовки, делая их труднораспознаваемыми для выявления атаки. В добавок, HTTP заголовки могут быть написаны таким образом, чтоб управлять кэшированием и прокси-сервисами. Например, можно дать команду прокси-серверу не кэшировать информацию.

HTTP GET

  • HTTP(S) GET-запрос - метод, который запрашивает информацию на сервере. Этот запрос может попросить у сервера передать какой-то файл, изображение, страницу или скрипт, чтобы отобразить их в браузере.
  • HTTP(S) GET-флуд - метод DDoS атаки прикладного уровня (7) модели OSI, при котором атакующий посылает мощный поток запросов на сервер с целью переполнения его ресурсов. В результате сервер не может отвечать не только на хакерские запросы, но и на запросы реальных клиентов.

HTTP POST

  • HTTP(S) POST-запрос - метод, при котором данные помещаются в тело запроса для последующей обработки на сервере. HTTP POST-запрос кодирует передаваемую информацию и помещает на форму, а затем отправляет этот контент на сервер. Данный метод используется при необходимости передавать большие объемы информации или файлы.
  • HTTP(S) POST-флуд - это тип DDoS-атаки, при котором количество POST-запросов переполняют сервер так, что сервер не в состоянии ответить на все запросы. Это может привести к исключительно высокому использованию системных ресурсов, и, в последствии, к аварийной остановке сервера.

Каждый из описанных выше HTTP-запросов может передаваться по защищенному протоколу HTTPS . В этом случае все пересылаемые между клиентом (злоумышленником) и сервером данные шифруются. Получется, что «защищенность» тут играет на руку злоумышленникам: чтобы выявить злонамеренный запрос, сервер должен сначала расшифровать его. Т.е. расшифровывать приходится весь поток запросов, которых во время DDoS-атаки поступает очень много. Это создает дополнительную нагрузку на сервер-жертву.

SYN-флуд (TCP/SYN) устанавливает полуоткрытые соединения с узлом. Когда жертва принимает SYN-пакет через открытый порт, она должна послать в ответ SYN-ACK пакет и установить соединение. После этого инициатор посылает получателю ответ с ACK-пакетом. Данный процесс условно называется рукопожатием. Однако, во время атаки SYN-флудом рукопожатие не может быть завершено, т.к. злоумышленник не отвечает на SYN-ACK сервера-жертвы. Такие соединения остаются полуоткрытыми до истечения тайм-аута, очередь на подключение переполняется и новые клиенты не могут подключиться к серверу.

UDP-флуд чаще всего используются для широкополосных DDoS-атак в силу их бессеансовости, а также простоты создания сообщений протокола 17 (UDP) различными языками программирования.

ICMP-флуд . Протокол межсетевых управляющих сообщений (ICMP) используется в первую очередь для передачи сообщений об ошибках и не используется для передачи данных. ICMP-пакеты могут сопровождать TCP-пакеты при соединении с сервером. ICMP-флуд - метод DDoS атаки на 3-м уровне модели OSI, использующий ICMP-сообщения для перегрузки сетевого канала атакуемого.

MAC-флуд - редкий вид атаки, при котором атакующий посылает множественные пустые Ethernet-фреймы с различными MAC-адресами. Сетевые свитчи рассматривают каждый MAC-адрес в отдельности и, как следствие, резервируют ресурсы под каждый из них. Когда вся память на свитче использована, он либо перестает отвечать, либо выключается. На некоторых типах роутеров атака MAC-флудом может стать причиной удаления целых таблиц маршрутизации, таким образом нарушая работу целой сети.

Классификация и цели DDoS-атак по уровням OSI

Интернет использует модель OSI. Всего в модели присутствует 7 уровней, которые охватывают все среды коммуникации: начиная с физической среды (1-й уровень) и заканчивая уровнем приложений (7-й уровень), на котором «общаются» между собой программы.

DDoS-атаки возможны на каждом из семи уровней. Рассмотрим их подробнее.

7-й уровень OSI: Прикладной

Что делать: Мониторинг приложений - систематический мониторинг ПО, использующий определенный набор алгоритмов, технологий и подходов (в зависимости от платформы, на котором это ПО используется) для выявления 0day-уязвимостей приложений (атаки 7 уровня). Идентифицировав такие атаки, их можно раз и навсегда остановить и отследить их источник. На данном слое это осуществляется наиболее просто.

6-й уровень OSI: Представительский

Что делать: Для уменьшения вреда обратите внимание на такие средства, как распределение шифрующей SSL инфраструктуры (т.е. размещение SSL на отличном сервере, если это возможно) и проверка трафика приложений на предмет атак или нарушение политик на платформе приложений. Хорошая платформа гарантирует, что трафик шифруется и отправляется обратно начальной инфраструктуре с расшифрованным контентом, находившимся в защищенной памяти безопасного узла-бастиона.

5-й уровень OSI: Сеансовый

Что делать: Поддерживать прошивки аппаратного обеспечения в актуальном состоянии для уменьшения риска появления угрозы.

4-й уровень OSI: Транспортный

Что делать: Фильтрация DDoS-трафика, известная как blackholing - метод, часто используемый провайдерами для защиты клиентов (мы и сами используем этот метод). Однако этот подход делает сайт клиента недоступным как для трафика злоумышленника, так и для легального трафика пользователей. Тем не менее, блокировка доступа используется провайдерами в борьбе с DDoS-атаками для защиты клиентов от таких угроз, как замедление работы сетевого оборудования и отказ работы сервисов.

3-й уровень OSI: Сетевой

Что делать: Ограничить количество обрабатываемых запросов по протоколу ICMP и сократить возможное влияние этого трафика на скорость работы Firewall и пропускную способность интернет-полосы.

2-й уровень OSI: Канальный

Что делать: Многие современные свитчи могут быть настроены таким образом, что количество MAC адресов ограничивается надежными, которые проходят проверку аутентификации, авторизации и учета на сервере (протокол ААА) и в последствии фильтруются.

1-й уровень OSI: Физический

Что делать: использовать систематический подход к мониторингу работы физического сетевого оборудования.

Устранение крупномасштабных DoS/DDoS-атак

Хотя атака возможна на любом из уровней, особой популярностью пользуются атаки на 3-4 и 7 уровнях модели OSI.

  • DDoS-атаки на 3-м и 4-м уровне - инфраструктурные атаки - типы атак, основанные на использовании большого объема, мощного потока данных (флуд) на уровне инфраструктуры сети и транспортном уровне с целью замедлить работу веб-сервера, «заполнить» канал, и в конечном счете помешать доступу других пользователей к ресурсу. Эти типы атак как правило включают ICMP-, SYN- и UDP-флуд.
  • DDoS атака на 7-м уровне - атака, заключающаяся в перегрузке некоторых специфических элементов инфраструктуры сервера приложений. Атаки 7-го уровня особенно сложны, скрыты и трудны для выявления в силу их сходства с полезным веб-трафиком. Даже самые простенькие атаки 7-го уровня, например, попытка входа в систему под произвольным именем пользователя и паролем или повторяющийся произвольный поиск на динамических веб-страницах, могут критически загрузить CPU и базы данных. Также DDoS злоумышленники могут неоднократно изменять сигнатуры атак 7-го уровня, делая их еще более сложными для распознавания и устранения.

Некоторые действия и оборудование для устранения атак:

  • Брандмауэры с динамической проверкой пакетов
  • Динамические механизмы SYN прокси
  • Ограничение количества SYN-ов за секунду для каждого IP-адреса
  • Ограничение количества SYN-ов за секунду для каждого удаленного IP-адреса
  • Установка экранов ICMP флуда на брандмауэре
  • Установка экранов UDP флуда на брандмауэре
  • Ограничение скорости роутеров, примыкающих к брандмауэрам и сети

В лекции рассматриваются некоторые виды атак на информационные ресурсы предприятия, использующие определенные уязвимости. Довольно часто входной точкой для атаки служит общедоступный интернет сайт, используя который злоумышленник может получить доступ к областям сайта, предназначенным для ограниченного числа лиц, и к закрытым данным.

Подбор – автоматизированный процесс проб и ошибок, использующийся для того, чтобы угадать имя пользователя, пароль, номер кредитной карточки, ключ шифрования и т.д. Существует два вида подбора: прямой и обратный. При прямом подборе используются различные варианты пароля для одного имени пользователя. При обратном перебираются различные имена пользователей, а пароль остается неизменным.

Традиционным методом борьбы с подбором пароля является, ограничение на количество ошибочных вводов пароля. Существует множество вариантов реализаций этой идеи, от самых простых – статическое ограничение, например не более трех ошибок, до сложно реализованных динамических, с увеличивающимся промежутком времени запрета между запросами.

Небезопасное восстановление паролей. Эта уязвимость возникает, когда Веб-сервер позволяет атакующему несанкционированно получать, модифицировать или восстанавливать пароли других пользователей. Например, многие серверы требуют от пользователя указать его email в комбинации с домашним адресом и номером телефона. Эта информация может быть легко получена из сетевых справочников. В результате, данные, используемые для проверки, не являются большим секретом. Кроме того, эта информация может быть получена злоумышленником с использованием других методов, таких как межсайтовое выполнение сценариев или фишинг (phishing).

Наиболее эффективным является следующее решение: пользователь нажимает кнопку "Восстановить пароль" и попадает на страницу, где у него спрашивают его логин в системе и почтовый ящик, указанный при регистрации. Далее на почтовый ящик высылается уведомление о запросе восстановления пароля и уникальная псевдослучайно сгенерированная ссылка на страницу смены пароля. В таком случае пароль изменить может действительно только владелец почтового ящика, на который зарегистрирован аккаунт.

Недостаточная авторизация. Возникает, когда Веб-сервер позволяет атакующему получать доступ к важной информации или функциям, доступ к которым должен быть ограничен. То, что пользователь прошел аутентификацию не означает, что он должен получить доступ ко всем функциям и содержимому сервера.

Например, некоторые серверы, после аутентификации, сохраняют в cookie или скрытых полях идентификатор "роли" пользователя в рамках Веб-приложения. Если разграничение доступа основывается на проверке данного параметра без верификации принадлежности к роли при каждом запросе, злоумышленник может повысить свои привилегии, просто модифицировав значение cookie. Методы борьбы – четкое разграничение прав пользователей и их возможностей.



Отсутствие таймаута сессии. В случае если для идентификатора сессии или учетных данных не предусмотрен таймаут или его значение слишком велико, злоумышленник может воспользоваться старыми данными для авторизации.

Например, при использовании публичного компьютера, когда несколько пользователей имеют неограниченный физический доступ к машине, отсутствие таймаута сессии позволяет злоумышленнику просматривать страницы, посещенные другим пользователем. Метод борьбы – ограничение таймаута сессии.

Межсайтовое выполнение сценариев (Cross-site Scripting, XSS). Наличие уязвимости XSS позволяет атакующему передать серверу исполняемый код, который будет перенаправлен браузеру пользователя. Этот код обычно создается на языках HTML/JavaScript, но могут быть использованы VBScript, ActiveX, Java, Flash, или другие поддерживаемые браузером технологии. Переданный код исполняется в контексте безопасности (или зоне безопасности) уязвимого сервера. Используя эти привилегии, код получает возможность читать, модифицировать или передавать важные данные, доступные с помощью браузера.

Существует два типа атак, приводящих к межсайтовому выполнению сценариев: постоянные (сохраненные) и непостоянные (отраженные). Основным отличием между ними является то, что в отраженном варианте передача кода серверу и возврат его клиенту осуществляется в рамках одного HTTP-запроса, а в хранимом – в разных. Осуществление непостоянной атаки требует, чтобы пользователь перешел по ссылке, сформированной злоумышленником (ссылка может быть передана по email, ICQ и т.д.). В процессе загрузки сайта код, внедренный в URL или заголовки запроса, будет передан клиенту и выполнен в его браузере. Сохраненная разновидность уязвимости возникает, когда код передается серверу и сохраняется на нем на некоторый промежуток времени. Наиболее популярными целями атак в этом случае являются форумы, почта с Веб-интерфейсом и чаты. Для атаки пользователю не обязательно переходить по ссылке, достаточно посетить уязвимый сайт.

Проверить сайт на XSS уязвимость можно, передав в любое поле ввода HTML-код, содержащий JavaScript. Например:

">alert()

Если появится диалоговое окно, то JavaScript alert() выполнился, а значит, может выполниться любой вредоносный код.

На данный момент самый распространенный вид атаки, в связи с ростом популярности Веб 2.0 интернет наполнился различными формами обратной связи, к сожалению многие из них не фильтруются должным образом, особую сложность представляют формы, в которых разрешены некоторые теги или какие-либо конструкции форматирования, защитится же от XSS можно только путем тщательного анализа и фильтрации пришедших в запросах данных.

Внедрение операторов SQL (SQL Injection). Эти атаки направлены на Веб-серверы, создающие SQL запросы к серверам СУБД на основе данных, вводимых пользователем. Если информация, полученная от клиента, должным образом не верифицируется, атакующий получает возможность модифицировать запрос к SQL-серверу, отправляемый приложением. Запрос будет выполняться с тем же уровнем привилегий, с каким работает компонент приложения, выполняющий запрос (сервер СУБД, Веб-сервер и т.д). В результате злоумышленник может получить полный контроль на сервере СУБД и даже его операционной системой.

Возможность атаки возникает, когда SQL запрос к базе данных формируется в коде Веб-страницы посредством сложения основной части и переданного пользователем значением. Например, в коде Веб-страницы присутствует следующий код:

“Select * from Students where firstneme = ” + name + “; “

При стандартном варианте использования, запрос должен вернуть всю информацию из таблицы Students для учеников с именем, хранящимся в переменной name. Но что произойдет, если вместо имени переменная name будет содержать SQL-запрос, модифицирующий данные и схему базы данных?

Еще один пример из области автоматического распознавания автомобильных номеров:

Средства борьбы – грамотная фильтрация получаемых данных, разграничение прав доступа к базе данных.

Отказ в обслуживании (Denial of Service, DoS). Данный класс атак направлен на нарушение доступности Веб-сервера. Обычно атаки, направленные на отказ в обслуживании реализуются на сетевом уровне, однако они могут быть направлены и на прикладной уровень. Используя функции Веб-приложения, злоумышленник может исчерпать критичные ресурсы системы, или воспользоваться уязвимостью, приводящий к прекращению функционирования системы. Обычно DoS атаки направлены на исчерпание критичных системных ресурсов, таких как вычислительные мощности, оперативная память, дисковое пространство или пропускная способность каналов связи. Если какой-то из ресурсов достигнет максимальной загрузки, приложение целиком будет недоступно.Атаки могут быть направлены на любой из компонентов Веб-приложения, например, такие как сервер СУБД, сервер аутентификации и т.д.

Средствами защиты является оптимизация кода и ввод ограничений на количество посылаемых данных в единицу времени.

Доп. литература: http://www.intuit.ru/department/internet/mwebtech/

Удалённая сетевая атака - информационное разрушающее воздействие на распределённую вычислительную систему, осуществляемое программно по каналам связи.

Введение

Для организации коммуникаций в неоднородной сетевой среде применяются набор протоколов TCP/IP, обеспечивая совместимость между компьютерами разных типов. Данный набор протоколов завоевал популярность благодаря совместимости и предоставлению доступа к ресурсам глобальной сети Интернет и стал стандартом для межсетевого взаимодействия. Однако повсеместное распространение стека протоколов TCP/IP обнажило и его слабые стороны. В особенности из-за этого удалённым атакам подвержены распределённые системы, поскольку их компоненты обычно используют открытые каналы передачи данных, и нарушитель может не только проводить пассивное прослушивание передаваемой информации, но и модифицировать передаваемый трафик.

Трудность выявления проведения удалённой атаки и относительная простота проведения (из-за избыточной функциональности современных систем) выводит этот вид неправомерных действий на первое место по степени опасности и препятствует своевременному реагированию на осуществлённую угрозу, в результате чего у нарушителя увеличиваются шансы успешной реализации атаки.

Классификация атак

По характеру воздействия

  • Пассивное
  • Активное

Пассивное воздействие на распределённую вычислительную систему (РВС) представляет собой некоторое воздействие, не оказывающее прямого влияния на работу системы, но в то же время способное нарушить её политику безопасности. Отсутствие прямого влияния на работу РВС приводит именно к тому, что пассивное удалённое воздействие (ПУВ) трудно обнаружить. Возможным примером типового ПУВ в РВС служит прослушивание канала связи в сети.

Активное воздействие на РВС - воздействие, оказывающее прямое влияние на работу самой системы (нарушение работоспособности, изменение конфигурации РВС и т. д.), которое нарушает политику безопасности, принятую в ней. Активными воздействиями являются почти все типы удалённых атак. Связано это с тем, что в саму природу наносящего ущерб воздействия включается активное начало. Явное отличие активного воздействия от пассивного - принципиальная возможность его обнаружения, так как в результате его осуществления в системе происходят некоторые изменения. При пассивном же воздействии, не остается совершенно никаких следов (из-за того, что атакующий просмотрит чужое сообщение в системе, в тот же момент не изменится собственно ничего).

По цели воздействия

  • нарушение функционирования системы (доступа к системе)
  • нарушение целостности информационных ресурсов (ИР)
  • нарушение конфиденциальности ИР

Этот признак, по которому производится классификация, по сути есть прямая проекция трех базовых разновидностей угроз - отказа в обслуживании, раскрытия и нарушения целостности.

Главная цель, которую преследуют практически при любой атаке - получение несанкционированного доступа к информации. Существуют два принципиальных варианта получения информации: искажение и перехват. Вариант перехвата информации означает получение к ней доступа без возможности ее изменения. Перехват информации приводит, следовательно, к нарушению ее конфиденциальности. Прослушивание канала в сети - пример перехвата информации. В этом случае имеется нелегитимный доступ к информации без возможных вариантов ее подмены. Очевидно также, что нарушение конфиденциальности информации относится к пассивным воздействиям.

Возможность подмены информации следует понимать либо как полный контроль над потоком информации между объектами системы, либо возможность передачи различных сообщений от чужого имени. Следовательно, понятно, что подмена информации приводит к нарушению её целостности. Такое информационное разрушающее воздействие есть характерный пример активного воздействия. Примером же удалённой атаки, предназначенной для нарушения целостности информации, может послужить удалённая атака (УА) «Ложный объект РВС».

По наличию обратной связи с атакуемым объектом

  • с обратной связью
  • без обратной связи (однонаправленная атака)

Атакующий отправляет некоторые запросы на атакуемый объект, на которые ожидает получить ответ. Следовательно между атакующим и атакуемым появляется обратная связь, позволяющая первому адекватно реагировать на всяческие изменения на атакуемом объекте. В этом суть удалённой атаки, осуществляемой при наличии обратной связи с атакующим объектом. Подобные атаки наиболее характерны для РВС.

Атаки без обратной связи характерны тем, что им не требуется реагировать на изменения на атакуемом объекте. Такие атаки обычно осуществляются при помощи передачи на атакуемый объект одиночных запросов. Ответы на эти запросы атакующему не нужны. Подобную УА можно назвать также однонаправленной УА. Примером однонаправленных атак является типовая УА «DoS-атака».

По условию начала осуществления воздействия

Удалённое воздействие, также как и любое другое, может начать осуществляться только при определённых условиях. В РВС существуют три вида таких условных атак:

  • атака по запросу от атакуемого объекта
  • атака по наступлению ожидаемого события на атакуемом объекте
  • безусловная атака

Воздействие со стороны атакующего начнётся при условии, что потенциальная цель атаки передаст запрос определённого типа. Такую атаку можно назвать атакой по запросу от атакуемого объекта. Данный тип УА наиболее характерен для РВС. Примером подобных запросов в сети Интернет может служить DNS- и ARP-запросы, а в Novell NetWare - SAP-запрос.

Атака по наступлению ожидаемого события на атакуемом объекте. Атакующий непрерывно наблюдает за состоянием ОС удалённой цели атаки и начинает воздействие при возникновении конкретного события в этой системе. Атакуемый объект сам является инициатором начала атаки. Примером такого события может быть прерывание сеанса работы пользователя с сервером без выдачи команды LOGOUT в Novell NetWare.

Безусловная атака осуществляется немедленно и безотносительно к состоянию операционной системы и атакуемого объекта. Следовательно, атакующий является инициатором начала атаки в данном случае.

При нарушении нормальной работоспособности системы преследуются другие цели и получение атакующим незаконного доступа к данным не предполагается. Его целью является вывод из строя ОС на атакуемом объекте и невозможность доступа для остальных объектов системы к ресурсам этого объекта. Примером атаки такого вида может служить УА «DoS-атака».

По расположению субъекта атаки относительно атакуемого объекта

  • внутрисегментное
  • межсегментное

Некоторые определения:

Источник атаки (субъект атаки) - программа (возможно оператор), ведущая атаку и осуществляющая непосредственное воздействие.

Хост (host) - компьютер, являющийся элементом сети.

Маршрутизатор (router) - устройство, которое обеспечивает маршрутизацию пакетов в сети.

Подсетью (subnetwork) называется группа хостов, являющихся частью глобальной сети, отличающихся тем, что маршрутизатором для них выделен одинаковый номер подсети. Так же можно сказать, что подсеть есть логическое объединение хостов посредством маршрутизатора. Хосты внутри одной подсети могут непосредственно взаимодействовать между собой, не задействовав при этом маршрутизатор.

Сегмент сети - объединение хостов на физическом уровне.

С точки зрения удалённой атаки крайне важным является взаимное расположение субъекта и объекта атаки, то есть находятся ли они в разных или в одинаковых сегментах. Во время внутрисегментной атаки, субъект и объект атаки располагаются в одном сегменте. В случае межсегментной атаки субъект и объект атаки находятся в разных сетевых сегментах. Этот классификационный признак дает возможность судить о так называемой «степени удалённости» атаки.

Далее будет показано, что практически внутрисегментную атаку осуществить намного проще, чем межсегментную. Отметим так же, что межсегментная удалённая атака представляет куда большую опасность, чем внутрисегментная. Это связано с тем, что в случае межсегментной атаки объект её и непосредственно атакующий могут находиться на расстоянии многих тысяч километров друг от друга, что может существенно воспрепятствовать мерам по отражению атаки.

По уровню эталонной модели ISO/OSI, на котором осуществляется воздействие

  • физический
  • канальный
  • сетевой
  • транспортный
  • сеансовый
  • представительный
  • прикладной

Международной организацией по стандартизации (ISO) был принят стандарт ISO 7498, который описывает взаимодействие открытых систем (OSI), к которым принадлежат также и РВС. Каждый сетевой протокол обмена, также как и каждую сетевую программу, удаётся так или иначе спроецировать на эталонную 7-уровневую модель OSI. Такая многоуровневая проекция даёт возможность описать в терминах модели OSI использующиеся в сетевом протоколе или программе функции. УА - сетевая программа, и логично рассматривать её с точки зрения проекции на эталонную модель ISO/OSI .

Краткое описание некоторых сетевых атак

Фрагментация данных

При передаче пакета данных протокола IP по сети может осуществляться деление этого пакета на несколько фрагментов. Впоследствии, при достижении адресата, пакет восстанавливается из этих фрагментов. Злоумышленник может инициировать посылку большого числа фрагментов, что приводит к переполнению программных буферов на приемной стороне и, в ряде случаев, к аварийному завершению системы.

Атака Ping flooding

Данная атака требует от злоумышленника доступа к быстрым каналам в Интернет.

Программа ping посылает ICMP-пакет типа ECHO REQUEST, выставляя в нем время и его идентификатор. Ядро машины-получателя отвечает на подобный запрос пакетом ICMP ECHO REPLY. Получив его, ping выдает скорость прохождения пакета.

При стандартном режиме работы пакеты высылаются через некоторые промежутки времени, практически не нагружая сеть. Но в «агрессивном» режиме поток ICMP echo request/reply-пакетов может вызвать перегрузку небольшой линии, лишив ее способности передавать полезную информацию.

Нестандартные протоколы, инкапсулированные в IP

Пакет IP содержит поле, определяющее протокол инкапсулированного пакета (TCP, UDP, ICMP). Злоумышленники могут использовать нестандартное значение данного поля для передачи данных, которые не будут фиксироваться стандартными средствами контроля информационных потоков.

Атака smurf

Атака smurf заключается в передаче в сеть широковещательных ICMP запросов от имени компьютера – жертвы.

В результате компьютеры, принявшие такие широковещательные пакеты, отвечают компьютеру-жертве, что приводит к существенному снижению пропускной способности канала связи и, в ряде случаев, к полной изоляции атакуемой сети. Атака smurf исключительно эффективна и широко распространена.

Противодействие: для распознавания данной атаки необходимо анализировать загрузку канала и определять причины снижения пропускной способности.

Атака DNS spoofing

Результатом данной атаки является внесение навязываемого соответствия между IP-адресом и доменным именем в кэш DNS сервера. В результате успешного проведения такой атаки все пользователи DNS сервера получат неверную информацию о доменных именах и IP-адресах. Данная атака характеризуется большим количеством DNS пакетов с одним и тем же доменным именем. Это связано с необходимостью подбора некоторых параметров DNS обмена.

Противодействие: для выявления такой атаки необходимо анализировать содержимое DNS трафика либо использовать DNSSEC.

Атака IP spoofing

Большое количество атак в сети Интернет связано с подменой исходного IP-адреса. К таким атакам относится и syslog spoofing, которая заключается в передаче на компьютер-жертву сообщения от имени другого компьютера внутренней сети. Поскольку протокол syslog используется для ведения системных журналов, путем передачи ложных сообщений на компьютер-жертву можно навязать информацию или замести следы несанкционированного доступа.

Противодействие: выявление атак, связанных с подменой IP-адресов, возможно при контроле получения на одном из интерфейсов пакета с исходным адресом этого же интерфейса или при контроле получения на внешнем интерфейсе пакетов с IP-адресами внутренней сети.

Навязывание пакетов

Злоумышленник отправляет в сеть пакеты с ложным обратным адресом. С помощью этой атаки злоумышленник может переключать на свой компьютер соединения, установленные между другими компьютерами. При этом права доступа злоумышленника становятся равными правам того пользователя, чье соединение с сервером было переключено на компьютер злоумышленника.

Sniffing - прослушивание канала

Возможно только в сегменте локальной сети.

Практически все сетевые карты поддерживают возможность перехвата пакетов, передаваемых по общему каналу локальной сети. При этом рабочая станция может принимать пакеты, адресованные другим компьютерам того же сегмента сети. Таким образом, весь информационный обмен в сегменте сети становится доступным злоумышленнику. Для успешной реализации этой атаки компьютер злоумышленника должен располагаться в том же сегменте локальной сети, что и атакуемыйкомпьютер.

Перехват пакетов на маршрутизаторе

Сетевое программное обеспечение маршрутизатора имеет доступ ко всем сетевым пакетам, передаваемым через данный маршрутизатор, что позволяет осуществлять перехват пакетов. Для реализации этой атаки злоумышленник должен иметь привилегированный доступ хотя бы к одному маршрутизатору сети. Поскольку через маршрутизатор обычно передается очень много пакетов, тотальный их перехват практически невозможен. Однако отдельные пакеты вполне могут быть перехвачены и сохранены для последующего анализа злоумышленником. Наиболее эффективен перехват пакетов FTP, содержащих пароли пользователей, а также электронной почты.

Навязывание хосту ложного маршрута с помощью протокола ICMP

В сети Интернет существует специальный протокол ICMP (Internet Control Message Protocol), одной из функцией которого является информирование хостов о смене текущего маршрутизатора. Данное управляющее сообщение носит название redirect. Существует возможность посылки с любого хоста в сегменте сети ложного redirect-сообщения от имени маршрутизатора на атакуемый хост. В результате у хоста изменяется текущая таблица маршрутизации и, в дальнейшем, весь сетевой трафик данного хоста будет проходить, например, через хост, отославший ложное redirect-сообщение. Таким образом возможно осуществить активное навязывание ложного маршрута внутри одного сегмента сети Интернет.

Наряду с обычными данными, пересылаемыми по TCP-соединению, стандарт предусматривает также передачу срочных (Out Of Band) данных. На уровне форматов пакетов TCP это выражается в ненулевом urgent pointer. У большинства ПК с установленным Windows присутствует сетевой протокол NetBIOS, который использует для своих нужд три IP-порта: 137, 138, 139. Если соединиться с Windows машиной по 139 порту и послать туда несколько байт OutOfBand данных, то реализация NetBIOS-а, не зная, что делать с этими данными, попросту вешает или перезагружает машину. Для Windows 95 это обычно выглядит как синий текстовый экран, сообщающий об ошибке в драйвере TCP/IP, и невозможность работы с сетью до перезагрузки ОС. NT 4.0 без сервис-паков перезагружается, NT 4.0 с ServicePack 2 паком выпадает в синий экран. Судя по информации из сети подвержены такой атаке и Windows NT 3.51 и Windows 3.11 for Workgroups.

Посылка данных в 139-й порт приводит к перезагрузке NT 4.0, либо выводу «синего экрана смерти» с установленным Service Pack 2. Аналогичная посылка данных в 135 и некоторые другие порты приводит к значительной загрузке процесса RPCSS.EXE. На Windows NT WorkStation это приводит к существенному замедлению работы, Windows NT Server практически замораживается.

Подмена доверенного хоста

Успешное осуществление удалённых атак этого типа позволит злоумышленнику вести сеанс работы с сервером от имени доверенного хоста. (Доверенный хост - станция легально подключившаяся к серверу). Реализация данного вида атак обычно состоит в посылке пакетов обмена со станции злоумышленника от имени доверенной станции, находящейся под его контролем.

Технологии обнаружения атак
Сетевые и информационные технологии меняются настолько быстро, что статичные защитные механизмы, к которым относятся системы разграничения доступа, МЭ, системы аутентификации во многих случаях не могут обеспечить эффективной защиты. Поэтому требуются динамические методы, позволяющие оперативно обнаруживать и предотвращать нарушения безопасности. Одной из технологий, позволяющей обнаруживать нарушения, которые не могут быть идентифицированы при помощи традиционных моделей контроля доступа, является технология обнаружения атак.

По существу, процесс обнаружения атак является процессом оценки подозрительных действий, которые происходят в корпоративной сети. Иначе говоря, обнаружение атак (intrusion detection) - это процесс идентификации и реагирования на подозрительную деятельность, направленную на вычислительные или сетевые ресурсы

Методы анализа сетевой информации

Эффективность системы обнаружения атак во многом зависит от применяемых методов анализа полученной информации. В первых системах обнаружения атак, разработанных в начале 1980-х годов, использовались статистические методы обнаружения атак. В настоящее время к статистическому анализу добавился ряд новых методик, начиная с экспертных систем и нечёткой логики и заканчивая использованием нейронных сетей.

Статистический метод

Основные преимущества статистического подхода - использование уже разработанного и зарекомендовавшего себя аппарата математической статистики и адаптация к поведению субъекта.

Сначала для всех субъектов анализируемой системы определяются профили. Любое отклонение используемого профиля от эталонного считается несанкционированной деятельностью. Статистические методы универсальны, поскольку для проведения анализа не требуется знания о возможных атаках и используемых ими уязвимостях. Однако при использовании этих методик возникают и проблемы:

  • «статистические» системы не чувствительны к порядку следования событий; в некоторых случаях одни и те же события в зависимости от порядка их следования могут характеризовать аномальную или нормальную деятельность;
  • трудно задать граничные (пороговые) значения отслеживаемых системой обнаружения атак характеристик, чтобы адекватно идентифицировать аномальную деятельность;
  • «статистические» системы могут быть с течением времени «обучены» нарушителями так, чтобы атакующие действия рассматривались как нормальные.

Следует также учитывать, что статистические методы не применимы в тех случаях, когда для пользователя отсутствует шаблон типичного поведения или когда для пользователя типичны несанкционированные действия.

Экспертные системы

Экспертные системы состоят из набора правил, которые охватывают знания человека-эксперта. Использование экспертных систем представляет собой распространенный метод обнаружения атак, при котором информация об атаках формулируется в виде правил. Эти правила могут быть записаны, например, в виде последовательности действий или в виде сигнатуры. При выполнении любого из этих правил принимается решение о наличии несанкционированной деятельности. Важным достоинством такого подхода является практически полное отсутствие ложных тревог.

БД экспертной системы должна содержать сценарии большинства известных на сегодняшний день атак. Для того чтобы оставаться постоянно актуальными, экспертные системы требуют постоянного обновления БД. Хотя экспертные системы предлагают хорошую возможность для просмотра данных в журналах регистрации, требуемые обновления могут либо игнорироваться, либо выполняться администратором вручную. Как минимум, это приводит к экспертной системе с ослабленными возможностями. В худшем случае отсутствие надлежащего сопровождения снижает степень защищенности всей сети, вводя ее пользователей в заблуждение относительно действительного уровня защищенности.

Основным недостатком является невозможность отражения неизвестных атак. При этом даже небольшое изменение уже известной атаки может стать серьёзным препятствием для функционирования системы обнаружения атак.

Нейронные сети

Большинство современных методов обнаружения атак используют некоторую форму анализа контролируемого пространства на основе правил или статистического подхода. В качестве контролируемого пространства могут выступать журналы регистрации или сетевой трафик. Анализ опирается на набор заранее определённых правил, которые создаются администратором или самой системой обнаружения атак.

Любое разделение атаки во времени или среди нескольких злоумышленников является трудным для обнаружения при помощи экспертных систем. Из-за большого разнообразия атак и хакеров даже специальные постоянные обновления БД правил экспертной системы никогда не дадут гарантии точной идентификации всего диапазона атак.

Использование нейронных сетей является одним из способов преодоления указанных проблем экспертных систем. В отличие от экспертных систем, которые могут дать пользователю определённый ответ о соответствии рассматриваемых характеристик заложенным в БД правилам, нейронная сеть проводит анализ информации и предоставляет возможность оценить, согласуются ли данные с характеристиками, которые она научена распознавать. В то время как степень соответствия нейросетевого представления может достигать 100 %, достоверность выбора полностью зависит от качества системы в анализе примеров поставленной задачи.

Сначала нейросеть обучают правильной идентификации на предварительно подобранной выборке примеров предметной области. Реакция нейросети анализируется и система настраивается таким образом, чтобы достичь удовлетворительных результатов. В дополнение к начальному периоду обучения, нейросеть набирается опыта с течением времени, по мере того, как она проводит анализ данных, связанных с предметной областью.

Важным преимуществом нейронных сетей при обнаружении злоупотреблений является их способность «изучать» характеристики умышленных атак и идентифицировать элементы, которые не похожи на те, что наблюдались в сети прежде.

Каждый из описанных методов обладает рядом достоинств и недостатков, поэтому сейчас практически трудно встретить систему, реализующую только один из описанных методов. Как правило, эти методы используются в совокупности.

Виды обнаруживаемых сетевых атак

В настоящее время существует множество различных видов сетевых атак. Эти атаки используют уязвимости операционной системы, а также иного установленного программного обеспечения системного и прикладного характера.

Чтобы своевременно обеспечивать безопасность компьютера, важно знать, какого рода сетевые атаки могут ему угрожать. Известные сетевые атаки можно условно разделить на три большие группы:

  • Сканирование портов – этот вид угроз сам по себе не является атакой, но обычно предшествует ей, поскольку это один из основных способов получить сведения об удаленном компьютере. Данный способ заключается в сканировании UDP- / TCP-портов, используемых сетевыми сервисами на интересующем злоумышленника компьютере, для выяснения их состояния (закрытые или открытые порты).

    Сканирование портов позволяет понять, какие типы атак на данную систему могут оказаться удачными, а какие нет. Кроме того, полученная в результате сканирования информация (“слепок” системы) даст злоумышленнику представление о типе операционной системы на удаленном компьютере. Это еще более ограничивает круг потенциальных атак и, соответственно, время, затрачиваемое на их проведение, а также позволяет использовать специфические для данной операционной системы уязвимости.

  • DoS-атаки , или атаки, вызывающие отказ в обслуживании, – это атаки, в результате которых атакуемая система приводится в нестабильное либо полностью нерабочее состояние. Последствиями такого типа атак может стать отсутствие возможности использовать информационные ресурсы, на которые они направлены (например, невозможность доступа в интернет).

    Существует два основных типа DoS-атак:

    • отправка компьютеру-жертве специально сформированных пакетов, не ожидаемых этим компьютером, что приводит к перезагрузке или остановке системы;
    • отправка компьютеру-жертве большого количества пакетов в единицу времени, которые этот компьютер не в состоянии обработать, что приводит к исчерпанию ресурсов системы.

    Яркими примерами данной группы атак могут служить следующие:

    • Атака Ping of death – состоит в посылке ICMP-пакета, размер которого превышает допустимое значение в 64 КБ. Эта атака может привести к аварийному завершению работы некоторых операционных систем.
    • Атака Land – заключается в передаче на открытый порт вашего компьютера запроса на установление соединения с самим собой. Атака приводит к зацикливанию компьютера, в результате чего сильно возрастает загрузка процессора, а кроме того, возможно аварийное завершение работы некоторых операционных систем.
    • Атака ICMP Flood – заключается в отправке на ваш компьютер большого количества ICMP-пакетов. Атака приводит к тому, что компьютер вынужден отвечать на каждый поступивший пакет, в результате чего сильно возрастает загрузка процессора.
    • Атака SYN Flood – заключается в отправке на ваш компьютер большого количества запросов на установку соединения. Система резервирует определенные ресурсы для каждого из таких соединений, в результате чего полностью расходует свои ресурсы и перестает реагировать на другие попытки соединения.
  • Атаки-вторжения , целью которых является “захват” системы. Это самый опасный тип атак, поскольку в случае их успешного выполнения система полностью переходит под контроль злоумышленника.

    Данный тип атак применяется, когда злоумышленнику необходимо получить конфиденциальную информацию с удаленного компьютера (например, номера кредитных карт, пароли) либо просто закрепиться в системе для последующего использования ее вычислительных ресурсов в своих целях (использование захваченной системы в зомби-сетях либо как плацдарма для новых атак).

    В эту группу входит самое большое количество атак. Их можно разделить на три подгруппы в зависимости от установленной на компьютер пользователя операционной системы: атаки на Microsoft Windows, атаки на Unix, а также общая группа для сетевых сервисов, использующихся в обеих операционных системах.

    Наиболее распространенные виды атак, использующих сетевые сервисы операционной системы:

    • Атаки на переполнение буфера . Переполнение буфера возникает из-за отсутствия контроля (либо в случае его недостаточности) при работе с массивами данных. Это один из самых ст
      арых типов уязвимостей; он наиболее прост для эксплуатации злоумышленником.
    • Атаки, основанные на ошибках форматных строк . Ошибки форматных строк возникают из-за недостаточного контроля значений входных параметров функций форматного ввода-вывода типа printf() , fprintf() , scanf() и прочих из стандартной библиотеки языка Си. Если подобная уязвимость присутствует в программном обеспечении, то злоумышленник, имеющий возможность посылать специальным образом сформированные запросы, может получить полный контроль над системой.

      Система обнаружения вторжений автоматически анализирует и предотвращает использование подобных уязвимостей в наиболее распространенных сетевых сервисах (FTP, POP3, IMAP), если они функционируют на компьютере пользователя.

    • Атаки, ориентированные на компьютеры с установленной операционной системой Microsoft Windows, основаны на использовании уязвимостей установленного на компьютере программного обеспечения (например, таких программ, как Microsoft SQL Server, Microsoft Internet Explorer, Messenger, а также системных компонентов, доступных по сети, – DCom, SMB, Wins, LSASS, IIS5).

    Кроме того, частными случаями атак-вторжений можно назвать использование различного вида вредоносных скриптов, в том числе скриптов, обрабатываемых Microsoft Internet Explorer, а также разновидности червя Helkern. Суть атаки последнего типа заключается в отправке на удаленный компьютер UDP-пакета специального вида, способного выполнить вредоносный код.

Понравилась статья? Поделиться с друзьями: