Защита прибора от несанкционированного доступа. Защита информации от несанкционированного доступа: средства, требования, виды и способы. Способы нарушения конфиденциальности сведений

Несанкционированный доступ (НД) - это преднамеренное противоправное овладение конфиденциальной информацией лицом, не имеющим права доступа к охраняемым сведениям. Наиболее распространенными путями НД к информации являются:

  • применение подслушивающих устройств;
  • дистанционное фотографирование;
  • хищение носителей информации и документальных отходов;
  • чтение остаточной информации в памяти системы после выполнения санкционированных запросов;
  • незаконное подключение к аппаратуре и линиям связи специально разработанных аппаратных средств, обеспечивающих доступ к информации;
  • злоумышленный вывод из строя механизмов защиты;
  • копирование носителей информации с преодолением мер защиты;
  • маскировка под зарегистрированного пользователя;
  • расшифровка зашифрованной информации;
  • информационные инфекции и др.

Некоторые из перечисленных способов НД требуют достаточно больших технических знаний и соответствующих аппаратных или программных разработок, другие - достаточно примитивны. Независимо от путей утечка информации может привести к значительному ущербу для организации и пользователей.

Большинство из перечисленных технических путей НД поддаются надежной блокировке при правильно разработанной и реализованной на практике системе обеспечения безопасности. Однако зачастую ущерб наносится не из-за «злого умысла», а из-за элементарных ошибок пользователей, которые случайно портят или удаляют жизненно важные данные.

Несмотря на существенное различие размеров наносимого материального ущерба, нельзя не отметить, что проблема защиты информации актуальна не только для юридических лиц. С ней может столкнуться любой пользователь как на работе, так и дома. В связи с этим всем пользователям необходимо осознавать меру ответственности и соблюдать элементарные правила обработки, передачи и использования информации.

К защитным механизмам, направленным на решение проблемы НД к информации, относятся:

  • управление доступом - методы защиты информации регулированием использования всех ресурсов информационной системы;
  • регистрация и учет - ведение журналов и статистики обращений к защищаемым ресурсам;
  • использование различных механизмов шифрования (криптографическое закрытие информации) - эти методы защиты широко применяются при обработке и хранении информации на магнитных носителях, а также ее передаче по каналам связи большой протяженности;
  • законодательные меры - определяются законодательными актами страны, которыми регламентируются правила пользования, обработки и передачи информации ограниченного доступа и устанавливаются меры ответственности за нарушение этих правил;
  • физические меры - включают в себя различные инженерные устройства и сооружения, препятствующие физическому

проникновению злоумышленников на объекты защиты и осуществляющие защиту персонала, материальных средств, информации от противоправных действий.

Управление доступом

Можно выделить три обобщенных механизма управления доступом к данным: идентификация пользователя, непосредственная (физическая) защита данных и поддержка прав доступа пользователя к данным с возможностью их передачи.

Идентификация пользователей определяет шкалу доступа к различным базам данных или частям баз данных (отношениям или атрибутам). Это, по существу, информационный табель о рангах. Физическая защита данных больше относится к организационным мероприятиям, хотя отдельные вопросы могут касаться непосредственно данных, например их кодирование. И, наконец, средства поддержки и передачи прав доступа должны строго задавать характер дифференцированного общения с данными.

Метод защиты при помощи программных паролей. Согласно этому методу, реализуемому программными средствами, процедура общения пользователя с ПК построена так, что запрещается доступ к операционной системе или определенным файлам до тех пор, пока не будет введен пароль. Пароль держится пользователем в тайне и периодически меняется, чтобы предотвратить несанкционированное его использование.

Метод паролей является самым простым и дешевым, однако не обеспечивает надежной защиты. Не секрет, что пароль можно подсмотреть или подобрать, используя метод проб и ошибок или специальные программы, и получить доступ к данным. Более того, основная уязвимость метода паролей заключается в том, что пользователи зачастую выбирают очень простые и легкие для запоминания (и тем самым для разгадывания) пароли, которые не меняются длительное время, а нередко остаются прежними и при смене пользователя. Несмотря на указанные недостатки, применение метода паролей во многих случаях следует считать рациональным даже при наличии других аппаратных и программных методов защиты. Обычно метод программных паролей сочетается с другими программными методами, определяющими ограничения по видам и объектам доступа.

Проблема защиты информации от несанкционированного доступа особо обострилась с широким распространением локальных и, особенно, глобальных компьютерных сетей. В связи с этим, помимо контроля доступа, необходимым элементом защиты информации в компьютерных сетях является разграничение полномочий пользователей.

В компьютерных сетях при организации контроля доступа и разграничения полномочий пользователей чаще всего используются встроенные средства сетевых операционных систем (ОС). Использование защищенных операционных систем является одним из важнейших условий построения современных информационных систем. Например, ОС UNIX позволяет владельцу файлов предоставлять права другим пользователям - только читать или записывать, для каждого из своих файлов. Наибольшее распространение в нашей стране получает ОС Windows NT, в которой появляется все больше возможностей для построения сети, действительно защищенной от НД к информации. ОС NetWare помимо стандартных средств ограничения доступа, таких как система паролей и разграничения полномочий, имеет ряд новых возможностей, обеспечивающих первый класс защиты данных, предусматривает возможность кодирования данных по принципу «открытого ключа» (алгоритм RSA) с формированием электронной подписи для передаваемых по сети пакетов.

В то же время в такой системе организации защиты все равно остается слабое место: уровень доступа и возможность входа в систему определяются паролем. Для исключения возможности неавторизованного входа в компьютерную сеть в последнее время используется комбинированный подход - пароль + идентификация пользователя по персональному «ключу». В качестве «ключа» может использоваться пластиковая карта (магнитная или со встроенной микросхемой - smart-card) или различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза или отпечатков пальцев, размерам кисти руки и т. д.

Пластиковые карточки с магнитной полосой можно легко подделать. Более высокую степень надежности обеспечивают смарт-карты - так называемые микропроцессорные карточки (МП-кар-точки). Их надежность обусловлена в первую очередь невозможностью копирования или подделки кустарным способом. Кроме того, при производстве карточек в каждую микросхему заносится уникальный код, который невозможно продублировать. При выдаче карточки пользователю на нее наносится один или несколько паролей, известных только ее владельцу. Для некоторых видов МП-карточек попытка несанкционированного использования заканчивается ее автоматическим «закрытием». Чтобы восстановить работоспособность такой карточки, ее необходимо предъявить в соответствующую инстанцию. Кроме того, технология МП-карто-чек обеспечивает шифрование записанных на ней данных в соответствии со стандартом DES. Установка специального считывающего устройства МП - карточек возможна не только на входе в помещения, где расположены компьютеры, но и непосредственно на рабочих станциях и серверах сети.

Этот подход значительно надежнее применения паролей, поскольку, если пароль подглядели, пользователь об этом может не знать, если же пропала карточка, можно принять меры немедленно.

Смарт-карты управления доступом позволяют реализовать, в частности, такие функции, как контроль входа, доступ к устройствам персонального компьютера, доступ к программам, файлам и командам. Кроме того, возможно также осуществление контрольных функций, в частности, регистрация попыток нарушения доступа к ресурсам, использования запрещенных утилит, программ, команд DOS.

По мере расширения деятельности предприятий, роста численности персонала и появления новых филиалов возникает необходимость доступа удаленных пользователей (или групп пользователей) к вычислительным и информационным ресурсам главного офиса компании. Чаще всего для организации удаленного доступа используются кабельные линии (обычные телефонные или выделенные) и радиоканалы. В связи с этим защита информации, передаваемой по каналам удаленного доступа, требует особого подхода.

В частности, в мостах и маршрутизаторах удаленного доступа применяется сегментация пакетов - их разделение и передача параллельно по двум линиям, - что делает невозможным «перехват» данных при незаконном подключении «хакера» к одной из линий. К тому же используемая при передаче данных процедура сжатия передаваемых пакетов гарантирует невозможность расшифровки «перехваченных» данных. Кроме того, мосты и маршрутизаторы удаленного доступа могут быть запрограммированы таким образом, что удаленные пользователи будут ограничены в доступе к отдельным ресурсам сети главного терминала.

Метод автоматического обратного вызова может обеспечивать более надежную защиту системы от несанкционированного доступа, чем простые программные пароли. В данном случае пользователю нет необходимости запоминать пароли и следить за соблюдением их секретности. Идея системы с обратным вызовом достаточно проста. Удаленные от центральной базы пользователи не могут непосредственно с ней обращаться. Вначале они получают доступ к специальной программе, которой сообщают соответствующие идентификационные коды. После этого разрывается связь и производится проверка идентификационных кодов. В случае если код, посланный по каналу связи, правильный, то производится обратный вызов пользователя с одновременной фиксацией даты, времени и номера телефона. К недостатку рассматриваемого метода следует отнести низкую скорость обмена - среднее время задержки может исчисляться десятками секунд.

Метод шифрования данных

В переводе с греческого языка слово криптография означает тайнопись. Это один из наиболее эффективных методов защиты. Он может быть особенно полезен для усложнения процедуры несанкционированного доступа, даже если обычные средства защиты удалось обойти. В отличие от рассмотренных выше методов криптография не прячет передаваемые сообщения, а преобразует их в форму, недоступную для понимания лицами, не имеющими прав доступа к ним, обеспечивает целостность и подлинность информации в процессе информационного взаимодействия.

Готовая к передаче информация зашифровывается при помощи некоторого алгоритма шифрования и ключа шифрования. В результате этих действий она преобразуется в шифрограмму, т. е. закрытый текст или графическое изображение, и в таком виде передается по каналу связи. Получаемые зашифрованные выходные данные не может понять никто, кроме владельца ключа.

Под шифром обычно понимается семейство обратимых преобразований, каждое из которых определяется некоторым параметром, называемым ключом, а также порядком применения данного преобразования, называемым режимом шифрования. Обычно ключ представляет собой некоторую буквенную или числовую последовательность.

Каждое преобразование однозначно определяется ключом и описывается некоторым алгоритмом шифрования. Например, алгоритм шифрования может предусмотреть замену каждой буквы алфавита числом, а ключом при этом может служить порядок номеров букв этого алфавита. Чтобы обмен зашифрованными данными проходил успешно, отправителю и получателю необходимо знать правильный ключ и хранить его в тайне.

Один и тот же алгоритм может применяться для шифрования в различных режимах. Каждый режим шифрования имеет как свои преимущества, так и недостатки. Поэтому выбор режима зависит от конкретной ситуации. При расшифровывании используется криптографический алгоритм, который в общем случае может отличаться от алгоритма, применяемого для шифрования, следовательно, могут различаться и соответствующие ключи. Пару алгоритмов шифрования и расшифрования называют криптосистемой (шифросистемой), а реализующие их устройства - шифротехникой.

Различают симметричные и асимметричные криптосистемы. В симметричных криптосистемах для шифрования и расшифрования используется одинаковый закрытый ключ. В асимметричных криптосистемах ключи для шифрования и расшифрования различны, причем один из них закрытый, а другой открытый (общедоступный).

Существует довольно много различных алгоритмов криптографической защиты информации, например DES, RSA, ГОСТ 28147-89 и др. Выбор способа шифрования зависит от особенностей передаваемой информации, ее объема и требуемой скорости передачи, а также возможностей владельцев (стоимость применяемых технических устройств, надежность функционирования и т. д.).

Шифрование данных традиционно использовалось правительственными и оборонными департаментами, но в связи с изменением потребностей и некоторые наиболее солидные компании начинают использовать возможности, предоставляемые шифрованием для обеспечения конфиденциальности информации. Финансовые службы компаний (прежде всего в США) представляют важную и большую пользовательскую базу, и часто специфические требования предъявляются к алгоритму, используемому в процессе шиф-

рования. Стандарт шифрования данных DES (Data Encryption Standart) был разработан фирмой IBM в начале 1970-х гг. и в настоящее время является правительственным стандартом для шифрования цифровой информации. Он рекомендован Ассоциацией американских банкиров. Сложный алгоритм DES использует ключ длиной 56 битов и 8 битов проверки на четность и требует от злоумышленника перебора 72 квадриллионов возможных ключевых комбинаций, обеспечивая высокую степень защиты при небольших расходах. При частой смене ключей алгоритм удовлетворительно решает проблему превращения конфиденциальной информации в недоступную. В то же время рынок коммерческих систем не всегда требует такой строгой защиты, как правительственные или оборонные ведомства, поэтому возможно применение продуктов и другого типа, например PGP (Pretty Good Privacy). Шифрование данных может осуществляться в режимах On-line (в темпе поступления информации) и Off-line (автономном).

Алгоритм RSA был изобретен Р.Л. Райвестом, А. Шамиром и Л. Альдеманом в 1978 г. и представляет собой значительный шаг в криптографии. Этот алгоритм также был принят в качестве стандарта Национальным бюро стандартов.

DES технически является симметричным алгоритмом, а RSA - асимметричным - это система коллективного пользования, в которой каждый пользователь имеет два ключа, причем только один секретный. Открытый ключ используется для шифрования сообщения пользователем, но только определенный получатель может расшифровать его своим секретным ключом; открытый ключ для этого бесполезен. Это делает ненужными секретные соглашения о передаче ключей между корреспондентами. DES определяет длину данных и ключа в битах, a RSA может быть реализован при любой длине ключа. Чем длиннее ключ, тем выше уровень безопасности (но становится длительнее и процесс шифрования и дешифрования). Если ключи DES можно сгенерировать за микросекунды, то примерное время генерации ключа RSA - десятки секунд. Поэтому открытые ключи RSA предпочитают разработчики программных средств, а секретные ключи DES - разработчики аппаратуры.

При обмене электронной документацией может возникнуть ситуация отказа одной из сторон от своих обязательств (отказ от авторства), а также фальсификация сообщений, полученных от отправителя (приписывание авторства). Основным механизмом решения этой проблемы становится создание аналога рукописной подписи - электронная цифровая подпись (ЦП). К ЦП предъявляют два основных требования: высокая сложность фальсификации и легкость проверки.

Для создания ЦП можно использовать как симметричные, так и асимметричные шифросистемы. В первом случае подписью может служить само зашифрованное на секретном ключе сообщение. Но после каждой проверки секретный ключ становится известным. Для выхода из этой ситуации необходимо введение третьей стороны - посредника, которому доверяют любые стороны, осуществляющего перешифрование сообщений с ключа одного из абонентов на ключ другого.

Асимметричные шифросистемы обладают всеми свойствами, необходимыми для ЦП. В них возможны два подхода к построению ЦП.

  • 1. Преобразование сообщения в форму, по которой можно восстановить само сообщение и, тем самым, проверить правильность самой подписи.
  • 2. Подпись вычисляется и передается вместе с исходным сообщением.

Таким образом, для разных шифров задача дешифрования - расшифровки сообщения, если ключ неизвестен, имеет различную сложность. Уровень сложности этой задачи и определяет главное свойство шифра - способность противостоять попыткам противника завладеть защищаемой информацией. В связи с этим говорят о криптографической стойкости шифра, различая более стойкие и менее стойкие шифры. Характеристики наиболее популярных методов шифрования приведены в табл. 10.1.

Таблица 10.1. Характеристики наиболее распространенных методов шифрования

Защита от несанкционированного доступа (защита от НСД) - это предотвращение или существенное затруднение несанкционированного доступа .

Средство защиты информации от несанкционированного доступа (СЗИ от НСД) - это программное, техническое или программно-техническое средство, предназначенное для предотвращения или существенного затруднения несанкционированного доступа .

Назначение и общая классификация СЗИ.

СЗИ от НСД можно разделить на универсальные и специализированные (по области применения), на частные и комплексные решения (по совокупности решаемых задач), на встроенные системные средства и добавочные (по способу реализации).

Классификация крайне важна, так как при построении СЗИ каждого типа разработчики формулируют и решают совершенно разные задачи (подчас противоречащие друг другу). Так, в основу концепции защиты универсальных системных средств закладываются принципы «полного доверия к пользователю», их защита во многом бесполезна в корпоративных системах, например, при решении задач противодействия внутренним ИТ-угрозам. В подавляющей части сегодня СЗИ создаются для усиления встроенных в универсальные ОС механизмов защиты, применительно к использованию в корпоративной среде. Если речь заходит о совокупности решаемых задач, то здесь следует говорить о комплексировании механизмов как в части эффективного решения конкретной задачи защиты, так и в части решения комплекса задач.

Потребительские свойства (назначение) добавочного СЗИ от НСД определяются тем, в какой мере добавочным средством устраняются архитектурные недостатки встроенных в ОС механизмов защиты, применительно к решению требуемых задач в корпоративных приложениях, и насколько комплексно (эффективно) им решается эта совокупность задач защиты информации .

Вопросы оценки эффективности СЗИ от НСД

Эффективность СЗИ от НСД можно оценить, исследовав вопросы корректности реализации механизмов защиты и достаточности набора механизмов защиты применительно к практическим условиям использования.

Оценка корректности реализации механизмов защиты

На первый взгляд, такую оценку провести несложно, но на практике это не всегда так. Один пример: в NTFS файловый объект может быть идентифицирован различными способами: к файловым объектам, задаваемым длинными именами, можно обращаться по короткому имени (так, к каталогу «Program files» можно обратиться по короткому имени «Progra~1»), а некоторые программы обращаются к файловым объектам не по имени, а по ID. Если установленное в информационной системе СЗИ не перехватывает и не анализирует лишь один подобный способ обращения к файловому объекту, то, по большому счету, оно становится полностью бесполезным (рано или поздно злоумышленник выявит данный недостаток средства защиты и воспользуется им). Упомянем и о том, что файловые объекты, не разделяемые между пользователями системой и приложениями, могут служить «каналом» понижения категории документа, что сводит на нет защиту конфиденциальной информации. Подобных примеров можно привести много.

Требования к корректности реализации механизмов защиты определены в нормативном документе «Гостехкомиссия России. Руководящий документ. Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от НСД к информации» ; он используется при сертификации СЗИ от НСД.

Эти требования присутствуют в документе в необходимом объеме, они корректны, но сформулированы в общем виде (а как иначе, в противном случае потребовалось бы создавать свой нормативный документ под каждое семейство ОС, а возможно, и под каждую реализацию ОС одного семейства), и для выполнения одного требования может понадобиться реализация нескольких механизмов защиты. Следствием этого становится неоднозначность толкования данных требований (в части подходов к их реализации) и возможность принципиально разных подходов к реализации механизмов защиты в СЗИ от НСД разработчиками. Результат - разная эффективность СЗИ от НСД у производителей, реализующих одни и те же формализованные требования. А ведь невыполнение любого из этих требований может свести на нет все усилия по обеспечению информационной безопасности.

Оценка достаточности (полноты) набора механизмов защиты

Требования к достаточности (полноте, применительно к условиям использования) набора механизмов защиты определены документом «Гостехкомиссия России. Руководящий документ. Автоматизированные системы. Защита от несанкционированного доступа к информации. Показатели защищенности от НСД к информации» , который используется при аттестации объектов информатизации, в том числе и при использовании в АС СЗИ от НСД. Однако и здесь ситуация во многом схожа с описанной выше.

Так, формулировку требования к достаточности механизмов в СЗИ от НСД для защиты конфиденциальных данных в нормативных документах, при которой возникает неоднозначность определения того, что отнести к защищаемым ресурсам, целесообразно было бы расширить, например, следующим образом: «Должен осуществляться контроль подключения ресурсов, в частности устройств, в соответствии с условиями практического использования защищаемого вычислительного средства, и контроль доступа субъектов к защищаемым ресурсам, в частности к разрешенным для подключения устройствам» .

Заметим, что механизмы контроля доступа к ресурсам, всегда присутствующим в системе, - файловые объекты, объекты реестра ОС и т.д. - априори защищаемые, и они должны присутствовать в СЗИ от НСД в любом случае, а что касается внешних ресурсов, то с учетом назначения СЗИ. Если предназначение СЗИ - защита компьютеров в сети, то оно должно иметь механизмы контроля доступа к сетевым ресурсам; если оно служит для защиты автономных компьютеров, то должно обеспечивать контроль (запрет) подключения к компьютеру сетевых ресурсов. Это правило, на наш взгляд, подходит без исключения ко всем ресурсам и может быть использовано в качестве базового требования к набору механизмов защиты при аттестации объектов информатизации.

Вопросы достаточности механизмов защиты должны рассматриваться не только применительно к набору ресурсов, но и применительно к решаемым задачам защиты информации. Подобных задач при обеспечении компьютерной безопасности всего две - противодействие внутренним и внешним ИТ-угрозам.

Общая задача противодействия внутренним ИТ-угрозам - обеспечение разграничения доступа к ресурсам в соответствии с требованиями к обработке данных различных категорий конфиденциальности. Возможны разные подходы к заданию разграничений: по учетным записям, по процессам, на основе категории прочтенного документа. Каждый из них задает свои требования к достаточности. Так, в первом случае надо изолировать буфер обмена между пользователями; во втором - между процессами; для третьего случая вообще необходимо кардинально пересмотреть всю разграничительную политику доступа ко всем ресурсам, так как один и тот же пользователь одним и тем же приложением может обрабатывать данные различных категорий конфиденциальности.

Существуют десятки способов межпроцессного обмена (поименованные каналы, сектора памяти и т.д.), поэтому необходимо обеспечить замкнутость программной среды - предотвратить возможность запуска программы, реализующей подобный канал обмена. Встают и вопросы неразделяемых системой и приложениями ресурсов, контроля корректности идентификации субъекта доступа, защиты собственно СЗИ от НСД (список необходимых механизмов защиты для эффективного решения данной задачи весьма внушительный). Большая их часть в явном виде не прописана в нормативных документах.

Задача эффективного противодействия внешним ИТ-угрозам, на наш взгляд, может быть решена только при условии задания разграничительной политики для субъекта «процесс» (т.е. «процесс» следует рассматривать как самостоятельный субъект доступа к ресурсам). Это обусловлено тем, что именно он несет в себе угрозу внешней атаки. Подобного требования в явном виде нет в нормативных документах, но в этом случае решение задачи защиты информации требует кардинального пересмотра базовых принципов реализации разграничительной политики доступа к ресурсам.

Если вопросы достаточности механизмов защиты применительно к набору защищаемых ресурсов еще как-то поддаются формализации, то применительно к задачам защиты информации формализовать подобные требования не представляется возможным.

В данном случае СЗИ от НСД разных производителей, выполняющих формализованные требования нормативных документов, также могут иметь кардинальные отличия как в реализуемых подходах и технических решениях, так и в эффективности этих средств в целом.

В заключение отметим, что нельзя недооценивать важность задачи выбора СЗИ от НСД, так как это особый класс технических средств, эффективность которых не может быть высокой или низкой. С учетом сложности оценки реальной эффективности СЗИ от НСД рекомендуем потребителю привлекать специалистов (желательно из числа разработчиков, практически сталкивающихся с этими проблемами) на стадии выбора СЗИ от НСД.

В последнее время с развитием информационных технологий участились случаи компьютерных преступлений.

Компьютерные преступления - это преступления, совершенные с использованием компьютерной информации. При этом компьютерная информация является предметом и / или средством совершения преступления.

Преступными являются следующие виды действий:

1. Неправомерный доступ к охраняемой законом компьютерной информации.

2. Создание, использование и распространение вредоносных программ для ЭВМ или машинных носителей с такими программами.

3. Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети.

Правовая охрана программ и баз данных

Охрана интеллектуальных прав, а также прав собственности распространяется на все виды программ для компьютера, которые могут быть выражены на любом языке и в любой форме, включая исходный текст на языке программирования и машинный код. Однако правовая охрана не распространяется на идеи и принципы, лежащие в основе программы, в том числе на идеи и принципы организации интерфейса и алгоритма. Правовая охрана программ для ЭВМ и баз данных впервые в полном объеме введена в Российской Федерации Законом "О правовой охране программ для электронных вычислительных машин и баз данных", который вступил в силу в 1992 году.

Защита от несанкционированного доступа к информации

Для защиты от несанкционированного доступа к данным, хранящимся на компьютере, используются пароли. Компьютер разрешает доступ к своим ресурсам только тем пользователям, которые зарегистрированы и ввели правильный пароль. Каждому конкретному пользователю может быть разрешен доступ только к определенным информационным ресурсам. При этом может производиться регистрация всех попыток несанкционированного доступа.

Что же происходит при несанкционированном доступе к информации.

Причины несанкционированного доступа к информации

1. ошибки конфигурации прав доступа (файрволов, ограничений на массовость запросов к базам данных),

3. ошибки в программном обеспечении,

4.злоупотребление служебными полномочиями (воровство резервных копий, копирование информации на внешние носители при праве доступа к информации),

5. прослушивание каналов связи при использовании незащищённых соединений внутри ЛВС,

6. использование клавиатурных шпионов, вирусов и троянов на компьютерах сотрудников.

Последствия несанкционированного доступа к информации

1. утечка персональных данных (сотрудников компании и организаций-партнеров),

2. утечка коммерческой тайны и ноу-хау,

3. утечка служебной переписки,

4. утечка государственной тайны,

5. полное либо частичное лишение работоспособности системы безопасности компании.

Программно-технические способы и средства обеспечения информационной безопасности

В литературе предлагается следующая классификация средств защиты информации.

1.Средства защиты от несанкционированного доступа (НСД):

3.Мандатное управление доступом;

4.Избирательное управление доступом;

5.Управление доступом на основе паролей;

6.Журналирование (так же называется Аудит).

7.Системы анализа и моделирования информационных потоков (CASE-системы).

8.Системы мониторинга сетей:

9.Системы обнаружения и предотвращения вторжений (IDS/IPS).

10.Системы предотвращения утечек конфиденциальной информации (DLP-системы).

11.Анализаторы протоколов.

12.Антивирусные средства.

13.Межсетевые экраны.

14.Криптографические средства: Шифрование; Цифровая подпись.

15.Системы резервного копирования.

16.Системы бесперебойного питания: Источники бесперебойного питания;

17.Резервирование нагрузки;

18.Генераторы напряжения.

19.Системы аутентификации: Пароль;

20.Ключ доступа (физический или электронный);

21.Сертификат - выпущенный удостоверяющим центром электронный или печатный документ, подтверждающий принадлежность владельцу открытого ключа или каких-либо атрибутов;

22.Биометрия - система распознавания людей по одной или более характерных физических и поведенческих черт.

23.Средства предотвращения взлома корпусов и краж оборудования.

24.Средства контроля доступа в помещения.

25.Инструментальные средства анализа систем защиты: Мониторинговый программный продукт.

Обеспечить максимальную защиту информации можно только совокупностью нескольких способов.

Использование компьютеров и автоматизированных технологий приводит к появлению ряда проблем для руководства организацией. Компьютеры, часто объединенные в сети, могут предоставлять доступ к колоссальному количеству самых разнообразных данных. Поэтому люди беспокоятся о безопасности информации и наличии рисков, связанных с автоматизацией и предоставлением гораздо большего доступа к конфиденциальным, персональным или другим критическим данным. Электронные средства хранения даже более уязвимы, чем бумажные: размещаемые на них данные можно и уничтожить, и скопировать, и незаметно видоизменить.

Число компьютерных преступлений растет - также увеличиваются масштабы компьютерных злоупотреблений. По оценке специалистов США, ущерб от компьютерных преступлений увеличивается на 35 процентов в год. Одной из причин является сумма денег, получаемая в результате преступления: в то время как ущерб от среднего компьютерного преступления составляет 560 тысяч долларов, при ограблении банка - всего лишь 19 тысяч долларов.

По данным Миннесотского университета США, 93% компаний, лишившихся доступа к своим данным на срок более 10 дней, покинули свой бизнес, причем половина из них заявила о своей несостоятельности немедленно.

Число служащих в организации, имеющих доступ к компьютерному оборудованию и информационной технологии, постоянно растет. Доступ к информации больше не ограничивается только узким кругом лиц из верхнего руководства организации. Чем больше людей получает доступ к информационной технологии и компьютерному оборудованию, тем больше возникает возможностей для совершения компьютерных преступлений.

Компьютерным преступником может быть любой.

Типичный компьютерный преступник - это не молодой хакер, использующий телефон и домашний компьютер для получения доступа к большим компьютерам. Типичный компьютерный преступник - это служащий, которому разрешен доступ к системе, нетехническим пользователем которой он является. В США компьютерные преступления, совершенные служащими, составляют 70-80 процентов ежегодного ущерба, связанного с компьютерами.

Признаки компьютерных преступлений :

· кражи частей компьютеров;

· кражи программ;

· физическое разрушение оборудования;

· уничтожение данных или программ;

Это только самые очевидные признаки, на которые следует обратить внимание при выявлении компьютерных преступлений. Иногда эти признаки говорят о том, что преступление уже совершено, или что не выполняются меры защиты. Они также могут свидетельствовать о наличии уязвимых мест и указать, где находится брешь в защите. В то время как признаки могут помочь выявить преступление или злоупотребление, меры защиты могут помочь предотвратить его.

Защита информации – это деятельность по предотвращению утраты и утечки защищаемой информации.

Информационной безопасностью называют меры по защите информации от неавторизованного доступа, разрушения, модификации, раскрытия и задержек в доступе. Информационная безопасность включает в себя меры по защите процессов создания данных, их ввода, обработки и вывода.

Информационная безопасность дает гарантию того, что достигаются следующие цели :

· конфиденциальность критической информации;

· целостность информации и связанных с ней процессов (создания, ввода, обработки и вывода);

· доступность информации, когда она нужна;

· учет всех процессов, связанных с информацией.

Под критическими данными понимаются данные, которые требуют защиты из-за вероятности нанесения ущерба и его величины в том случае, если произойдет случайное или умышленное раскрытие, изменение, или разрушение данных. К критическим также относят данные, которые при неправильном использовании или раскрытии могут отрицательно воздействовать на способности организации решать свои задачи; персональные данные и другие данные, защита которых требуется указами Президента РФ, законами РФ и другими подзаконными документами.

Любая система безопасности, в принципе, может быть вскрыта. Эффективной считают такую защиту, стоимость взлома которой соизмерима с ценностью добываемой при этом информации.

Применительно к средствам защиты от несанкционированного доступа определены семь классов защищенности (1 - 7) средств вычислительной техники и девять классов (1А, 1Б, 1В, 1Г, 1Д, 2А, 2Б, 3А, 3Б) автоматизированных систем. Для средств вычислительной техники самым низким является класс 7, а для автоматизированных систем - 3Б.

Технические, организационные и программные средства обеспечения сохранности и защиты от несанкционированного доступа

Существует четыре уровня защиты компьютерных и информационных ресурсов:

Предотвращение предполагает, что только авторизованный персонал имеет доступ к защищаемой информации и технологии.

Обнаружение предполагает раннее раскрытие преступлений и злоупотреблений, даже если механизмы защиты были обойдены.

Ограничение уменьшает размер потерь, если преступление все-таки произошло, несмотря на меры по его предотвращению и обнаружению.

Восстановление обеспечивает эффективное воссоздание информации при наличии документированных и проверенных планов по восстановлению.

Меры защиты - это меры, вводимые руководством, для обеспечения безопасности информации. К мерам защиты относят разработку административных руководящих документов, установку аппаратных устройств или дополнительных программ, основной целью которых является предотвращение преступлений и злоупотреблений.

Формирование режима информационной безопасности - проблема комплексная. Меры по ее решению можно разделить на четыре уровня :

- законодательный: законы, нормативные акты, стандарты и т. п.;

- административный: действия общего характера, предпринимаемые руководством организации;

- процедурный: конкретные меры безопасности, имеющие дело с людьми;

- программно-технический: конкретные технические меры.

В настоящее время наиболее подробным законодательным документом России в области информационной безопасности является Уголовный кодекс. В разделе "Преступления против общественной безопасности" имеется глава "Преступления в сфере компьютерной информации". Она содержит три статьи - "Неправомерный доступ к компьютерной информации", "Создание, использование и распространение вредоносных программ для ЭВМ" и "Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети". Уголовный кодекс стоит на страже всех аспектов информационной безопасности - доступности, целостности, конфиденциальности, предусматривая наказания за "уничтожение, блокирование, модификацию и копирование информации, нарушение работы ЭВМ, системы ЭВМ или их сети".

Рассмотрим некоторые меры защиты информационной безопасности компьютерных систем.

1. Аутентификация пользователей . Данная мера требует, чтобы пользователи выполняли процедуры входа в компьютер, используя это как средство для идентификации в начале работы. Для аутентификации личности каждого пользователя нужно использовать уникальные пароли, не являющиеся комбинациями личных данных пользователей, для пользователя. Необходимо внедрить меры защиты при администрировании паролей, и ознакомить пользователей с наиболее общими ошибками, позволяющими совершиться компьютерному преступлению. Если в компьютере имеется встроенный стандартный пароль, его нужно обязательно изменить.

Еще более надёжное решение состоит в организации контроля доступа в помещения или к конкретному компьютеру сети с помощью идентификационных пластиковых карточек с встроенной микросхемой - так называемых микропроцессорных карточек (smart - card). Их надёжность обусловлена в первую очередь невозможностью копирования или подделки кустарным способом. Установка специального считывающего устройства таких карточек возможна не только на входе в помещения, где расположены компьютеры, но и непосредственно на рабочих станциях и серверах сети.

Существуют также различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза, отпечаткам пальцев, размерам кисти руки и т.д.

2. Защита пароля.

Следующие правила полезны для защиты пароля:

· нельзя делится своим паролем ни с кем;

· пароль должен быть трудно угадываемым;

· для создания пароля нужно использовать строчные и прописные буквы, а еще лучше позволить компьютеру самому сгенерировать пароль;

· предпочтительно использовать длинные пароли, так как они более безопасны, лучше всего, чтобы пароль состоял из 6 и более символов;

· пароль не должен отображаться на экране компьютера при его вводе;

· пароли должны отсутствовать в распечатках;

· нельзя записывать пароли на столе, стене или терминале, его нужно держать в памяти;

· пароль нужно периодически менять и делать это не по графику;

· на должности администратора паролей должен быть самый надежный человек;

· когда сотрудник увольняется, необходимо сменить пароль;

· сотрудники должны расписываться за получение паролей.

В организации, имеющей дело с критическими данными, должны быть разработаны и внедрены процедуры авторизации, которые определяют, кто из пользователей должен иметь доступ к той или иной информации и приложениям.

В организации должен быть установлен такой порядок, при котором для использования компьютерных ресурсов, получения разрешения доступа к информации и приложениям, и получения пароля требуется разрешение тех или иных начальников.

Если информация обрабатывается на большом вычислительном центре, то необходимо контролировать физический доступ к вычислительной технике. Могут оказаться уместными такие методы, как журналы, замки и пропуска, а также охрана. Ответственный за информационную безопасность должен знать, кто имеет право доступа в помещения с компьютерным оборудованием и выгонять оттуда посторонних лиц.

4. Предосторожности при работе.

· отключать неиспользуемые терминалы;

· закрывать комнаты, где находятся терминалы;

· разворачивать экраны компьютеров так, чтобы они не были видны со стороны двери, окон и прочих мест, которые не контролируются;

· установить специальное оборудование, ограничивающее число неудачных попыток доступа, или делающее обратный звонок для проверки личности пользователей, использующих телефоны для доступа к компьютеру

· использовать программы отключения терминала после определенного периода неиспользования;

· выключать систему в нерабочие часы;

· использовать системы, позволяющие после входа пользователя в систему сообщать ему время его последнего сеанса и число неудачных попыток установления сеанса после этого. Это позволит сделать пользователя составной частью системы проверки журналов.

5. Физическая безопасность.

В защищаемых компьютерных системах необходимо принимать меры по предотвращению, обнаружению и минимизации ущерба от пожара, наводнения, загрязнения окружающей среды, высоких температур и скачков напряжения.

Пожарная сигнализация и системы пожаротушения должны регулярно проверяться. ПЭВМ можно защитить с помощью кожухов, чтобы они не были повреждены системой пожаротушения. Горючие материалы не должны храниться в этих помещениях с компьютерами.

Температура в помещении может контролироваться кондиционерами и вентиляторами, а также хорошей вентиляцией в помещении. Проблемы с чрезмерно высокой температурой могут возникнуть в стойках периферийного оборудования или из-за закрытия вентиляционного отверстия в терминалах или ПЭВМ, поэтому необходима их регулярная проверка.

Желательно применение воздушных фильтров, что поможет очистить воздух от веществ, которые могут нанести вред компьютерам и дискам. Следует запретить курить, принимать пищу и пить возле ПЭВМ.

Компьютеры должны размещаться как можно дальше источников большого количества воды, например трубопроводов.

6. Защита носителей информации (исходных документов, лент, картриджей, дисков, распечаток).

· вести, контролировать и проверять реестры носителей информации;

· обучать пользователей правильным методам очищения и уничтожения носителей информации;

· делать метки на носителях информации, отражающие уровень критичности содержащейся в них информации;

· уничтожать носители информации в соответствии с планом организации;

· доводить все руководящие документы до сотрудников;

· хранить диски в конвертах, коробках, металлических сейфах;

· не касаться поверхностей дисков, несущих информацию

· осторожно вставлять диски в компьютер и держать их подальше от источников магнитного поля и солнечного света;

· убирать диски и ленты, с которыми в настоящий момент не ведется работа;

· хранить диски разложенными по полкам в определенном порядке;

· не давать носители информации с критической информацией неавторизованным людям;

· выбрасывать или отдавать поврежденные диски с критической информацией только после их размагничивания или аналогичной процедуры;

· уничтожать критическую информацию на дисках с помощью их размагничивания или физического разрушения в соответствии с порядком в организации;

· уничтожать распечатки и красящие ленты от принтеров с критической информацией в соответствии с порядком организации;

· обеспечить безопасность распечаток паролей и другой информации, позволяющей получить доступ к компьютеру.

7. Выбор надежного оборудования.

Производительность и отказоустойчивость информационной системы во многом зависит от работоспособности серверов. При необходимости обеспечения круглосуточной бесперебойной работы информационной системы используются специальные отказоустойчивые компьютеры, т. е. такие, выход из строя отдельного компонента которых не приводит к отказу машины.

На надежности информационных систем отрицательно сказываются и наличие устройств, собранных из комплектующих низкого качества, и использование нелицензионного ПО. Чрезмерная экономия средств на обучение персонала, закупку лицензионного ПО и качественного оборудования приводит к уменьшению времени безотказной работы и значительным затратам на последующее восстановление системы.

8. Источники бесперебойного питания.

Компьютерная система энергоемка, и потому первое условие ее функционирования - бесперебойная подача электроэнергии. Необходимой частью информационной системы должны стать источники бесперебойного питания для серверов, а по возможности, и для всех локальных рабочих станций. Рекомендуется также дублировать электропитание, используя для этого различные городские подстанции. Для кардинального решения проблемы можно установить резервные силовые линии от собственного генератора организации.

9. Разработка адекватных планов обеспечения непрерывной работы и восстановления.

Целью планов обеспечения непрерывной работы и восстановления являются гарантии того, что пользователи смогут продолжать выполнять свои самые главные обязанности в случае невозможности работы по информационной технологии. Обслуживающий персонал должен знать, как им действовать по этим планам.

Планы обеспечения непрерывной работы и восстановления (ОНРВ) должны быть написаны, проверены и регулярно доводиться до сотрудников. Процедуры плана должны быть адекватны уровню безопасности и критичности информации. План ОНРВ может применяться в условиях неразберихи и паники, поэтому нужно регулярно проводить тренировки сотрудников.

10. Резервное копирование.

Одним из ключевых моментов, обеспечивающих восстановление системы при аварии, является резервное копирование рабочих программ и данных. В локальных сетях, где установлены несколько серверов, чаще всего система резервного копирования устанавливается непосредственно в свободные слоты серверов. В крупных корпоративных сетях предпочтение отдается выделенному специализированному архивационному серверу, который автоматически архивирует информацию с жестких дисков серверов и рабочих станций в определенное время, установленное администратором сети, выдавая отчет о проведенном резервном копировании.

Для архивной информации, представляющей особую ценность, рекомендуется предусматривать охранное помещение. Дубликаты наиболее ценных данных, лучше хранить в другом здании или даже в другом городе. Последняя мера делает данные неуязвимыми в случае пожара или другого стихийного бедствия.

11. Дублирование, мультиплексирование и резервирование офисов.

Помимо резервного копирования, которое производится при возникновении внештатной ситуации либо по заранее составленному расписанию, для большей сохранности данных на жестких дисках применяют специальные технологии - зеркалирование дисков и создание RAID-массивов, которые представляют собой объединение нескольких жестких дисков. При записи информация поровну распределяется между ними, так что при выходе из строя одного из дисков находящиеся на нем данные могут быть восстановлены по содержимому остальных.

Технология кластеризации предполагает, что несколько компьютеров функционируют как единое целое. Кластеризуют, как правило, серверы. Один из серверов кластера может функционировать в режиме горячего резерва в полной готовности начать выполнять функции основной машины в случае ее выхода из строя. Продолжением технологии кластеризации является распределенная кластеризация, при которой через глобальную сеть объединяются несколько кластерных серверов, разнесенных на большое расстояние.

Распределенные кластеры близки к понятию резервных офисов, ориентированных на обеспечение жизнедеятельности предприятия при уничтожении его центрального помещения. Резервные офисы делят на холодные, в которых проведена коммуникационная разводка, но отсутствует какое-либо оборудование и горячие, которыми могут быть дублирующий вычислительный центр, получающий всю информацию из центрального офиса, филиал, офис на колесах и т.д.

12. Резервирование каналов связи.

При отсутствии связи с внешним миром и своими подразделениями, офис оказывается парализованным, потому большое значение имеет резервирование внешних и внутренних каналов связи. При резервировании рекомендуется сочетать разные виды связи - кабельные линии и радиоканалы, воздушную и подземную прокладку коммуникаций и т.д.

По мере того, как компании все больше и больше обращаются к Internet, их бизнес оказывается в серьезной зависимости от функционирования Internet-провайдера. У поставщиков доступа к Сети иногда случаются достаточно серьезные аварии, поэтому важно хранить все важные приложения во внутренней сети компании и иметь договора с несколькими местными провайдерами. Следует также заранее продумать способ оповещения стратегических клиентов об изменении электронного адреса и требовать от провайдера проведения мероприятий, обеспечивающих оперативное восстановление его услуг после аварий.

12. Защита данных от перехвата.

Для любой из трех основных технологий передачи информации существует технология перехвата: для кабельных линий - подключение к кабелю, для спутниковой связи – использование антенны приема сигнала со спутника, для радиоволн - радиоперехват. Российские службы безопасности разделяют коммуникации на три класса. Первый охватывает локальные сети, расположенные в зоне безопасности, т. е. территории с ограниченным доступом и заэкранированным электронным оборудованием и коммуникационными линиями, и не имеющие выходов в каналы связи за ее пределами. Ко второму классу относятся каналы связи вне зоны безопасности, защищенные организационно-техническими мерами, а к третьему - незащищенные каналы связи общего пользования. Применение коммуникаций уже второго класса значительно снижает вероятность перехвата данных.

Для защиты информации во внешнем канале связи используются следующие устройства: скремблеры для защиты речевой информации, шифраторы для широковещательной связи и криптографические средства, обеспечивающие шифрование цифровых данных.

Введение

Понятие и классификация видов и методов несанкционированного доступа. Определение и модель злоумышленника

Организация защиты информации. Классификация способов защиты информации в компьютерных системах

Заключение

Введение

Жизнь современного общества немыслима без современных информационных технологий. Компьютеры обслуживают банковские системы, контролируют работу атомных реакторов, распределяют энергию, следят за расписанием поездов, управляют самолетами, космическими кораблями.

Компьютерные сети и телекоммуникации предопределяют надежность и мощность систем обороны и безопасности страны. Компьютеры обеспечивают хранение информации, ее обработку и предоставление потребителям, реализуя таким образом информационные технологии.

Однако именно высокая степень автоматизации порождает риск снижения безопасности (личной, информационной, государственной, и т.п.). Доступность и широкое распространение информационных технологий, ЭВМ делает их чрезвычайно уязвимыми по отношению к деструктивным воздействиям.

Тому есть много примеров. Так, каждые 20 секунд в США совершается преступление с использованием программных средств, 80% этих преступлений, расследуемых ФБР, происходит через сеть Internet. Потери от хищений или повреждений компьютерных сетей превышают 100 млн. долл. в год.

Субъекты производственно-хозяйственных отношений вступают друг с другом в информационные отношения (отношения по поводу получения, хранения, обработки, распределения и использования информации) для выполнения своих производственно-хозяйственных и экономических задач.

Поэтому обеспечение информационной безопасности - это гарантия удовлетворения законных прав и интересов субъектов информационных отношений.

Исходя из вышеизложенного в данной работе будут рассмотрены такие вопросы как

.понятие и классификация видов и методов несанкционированного доступа;

.классификация способов защиты информации в компьютерных системах от случайных и преднамеренных угроз;

.защита информации от несанкционированного доступа.

Понятие и классификация видов и методов несанкционированного доступа. Определение и модель злоумышленника

несанкционированный доступ компьютерный защита

Несанкционированный доступ - доступ к информации в нарушение должностных полномочий сотрудника, доступ к закрытой для публичного доступа информации со стороны лиц, не имеющих разрешения на доступ к этой информации. Так же иногда несанкционированным доступом называют получение доступа к информации лицом, имеющим право на доступ к этой информации в объёме, превышающем необходимый для выполнения служебных обязанностей.

Несанкционированный доступ к информации (НСД) - Доступ к информации, нарушающий правила разграничения доступа с использованием штатных средств, предоставляемых средствами вычислительной техники или автоматизированными системами.

Причины несанкционированного доступа к информации:

·ошибки конфигурации

·слабая защищённость средств авторизации (хищение паролей, смарт-карт, физический доступ к плохо охраняемому оборудованию, доступ к незаблокированным рабочим местам сотрудников в отсутствие сотрудников)

·ошибки в программном обеспечении

·злоупотребление служебными полномочиями (воровство резервных копий, копирование информации на внешние носители при праве доступа к информации)

·прослушивание каналов связи при использовании незащищённых соединений внутри ЛВС

·использование клавиатурных шпионов, вирусов и троянов на компьютерах сотрудников для имперсонализации.

Методы несанкционированного доступа. С развитием технологий обработки информации получили распространение методы несанкционированного доступа к информации. Наибольшее распространение получили следующие методы:

·Работа между строк - подключение к линиям связи и внедрение в компьютерную систему с использованием промежутков в действиях законного пользователя.

·«Отказы в обслуживании» - несанкционированное использование компьютерной системы в своих целях (например, для бесплатного решения своих задач), либо блокирование системы для отказа в обслуживании другим пользователям. Для реализации такого злоупотребления используются так называемые «жадные программы» - программы, способные захватить монопольно определенный ресурс системы.

·Повторное использование объектов - состоит в восстановлении и повторном использовании удаленных объектов системы. Примером реализации подобного злоупотребления служит удаление файлов операционной системой. Когда ОС выдает сообщение, что, некоторый файл удален, то это не означает, что информация, содержащаяся в данном файле, уничтожена в прямом смысле слова. Информация, которая была в данном блоке, никуда не исчезает до момента записи на это место другой информации. Одной из разновидностей повторного использования объектов является работа с компьютерным «мусором».

·Маскарад - захватчик использует для входа в систему ставшую ему известной идентификацию законного пользователя.

·«Подкладывание свиньи» - нарушитель подключается к линиям связи и имитирует работу системы с целью осуществления незаконных манипуляций. Например, он может имитировать сеанс связи и получить данные под видом легального пользователя.

·Анализ трафика - захватчик анализирует частоту и методы контактов пользователей в системе. При этом можно выяснить правила вступления в связь, после чего производится попытка вступить в контакт подвидом законного пользователя.

·«Раздеватели» - комплекс специально разработанных программных средств, ориентированных на исследование защитного механизма программного продукта от НСД и его преодоление.

Развитие средств связи и электронной почты выделило злоупотребление, которое в литературе получило название «пинание» (pinging). Суть данного злоупотребления заключается в том, что, используя стандартные или специально разработанные программные средства, злоумышленник может вывести из строя электронный адрес, бомбардируя его многочисленными почтовыми сообщениями. Следствием «пинания» могут стать осложнения и возможность непреднамеренного игнорирования полученной электронной почты.

Необходимо отметить, что при планировании и разработке злоупотреблений нарушителями могут создаваться новые, не приведенные в данной классификации, а также применяться любые сочетания описанных злоупотреблений.

Виды несанкционированного доступа

Угроза информации - пути реализации воздействий, которые считаются опасными для информационной системы. По характеру возникновения их можно разделить на 2 вида:

·преднамеренные и непреднамеренные.

Непреднамеренные угрозы - это случайные действия, выраженные в неадекватной поддержке механизмов защиты или ошибками в управлении. А преднамеренные - это несанкционированное получение информации и несанкционированная манипуляция данными, ресурсами, самими системами.

По типу реализации угрозы можно различать:

·программные

·непрограммные

К программным относят те, которые реализованы в виде отдельного программного модуля или модуля в составе программного обеспечения. К непрограммным относят злоупотребления, в основе которых лежит использование технических средств информационной системы (ИС) для подготовки и реализации компьютерных преступлений (например, несанкционированное подключение к коммуникационным сетям, съем информации с помощью специальной аппаратуры и др.).

Преследуя различные цели, компьютерные злоумышленники используют широкий набор программных средств. Исходя из этого, представляется возможным объединение программных средств в две группы:

·тактические

·стратегические.

К тактическим относят те, которые преследуют достижение ближайшей цели (например, получение пароля, уничтожение данных и др.). Они обычно используются для подготовки и реализации стратегических средств, которые направлены на реализацию далеко идущих целей и связаны с большими финансовыми потерями для ИС. К группе стратегических относятся средства, реализация которых обеспечивает возможность получения контроля за технологическими операциями преобразования информации, влияние на функционирование компонентов ИС (например, мониторинг системы, вывод из строя аппаратной и программной среды и др.).

Потенциальными программными злоупотреблениями можно считать программные средства, которые обладают следующими функциональными возможностями:

·искажение произвольным образом, блокирование и/или подмена выводимого во внешнюю память или в канал связи массива информации, образовавшегося в результате работы прикладных программ, или уже находящиеся во внешней памяти массивы данных.

·сокрытие признаков своего присутствия в программной среде ЭВМ;

·разрушение (искажение произвольным образом) кодов программ в оперативной памяти;

·сохранение фрагментов информации из оперативной памяти в некоторых областях внешней памяти прямого доступа (локальных или удаленных);

·обладание способностью к самодублированию, ассоциированию себя с другими программами и/или переносу своих фрагментов в иные области оперативной или внешней памяти;

Рассмотрев основные методы и виды несанкционированного доступа обратимся к определению модели нарушителя, совершающего вышеперечисленные действия.

При разработке модели нарушителя определяются: 1) предположения о категориях лиц, к которым может принадлежать нарушитель; 2) предположения о мотивах действий нарушителя (целях, преследуемых нарушителем); 3) предположения о квалификации нарушителя и его технической оснащенности (методах и средствах, используемых для совершения нарушения); 4) ограничения и предположения о характере возможных действий нарушителя.

По отношению к автоматизированным информационным технологиям управления (АИТУ) нарушители могут быть внутренними (из числа персонала системы) или внешними (посторонними лицами). Внутренними нарушителями могут быть лица из следующих категорий персонала:

·пользователи (операторы) системы;

·персонал, обслуживающий технические средства (инженеры, техники);

·сотрудники отделов разработки и сопровождения программного обеспечения (прикладные и системные программисты);

·технический персонал, обслуживающий здания (уборщики, электрики, сантехники и другие сотрудники, имеющие доступ в здание и помещения, где расположены компоненты АИТУ);

·сотрудники службы безопасности АИТУ;

·руководители различного уровня должностной иерархии.

·Посторонние лица, которые могут быть внешними нарушителями:

·клиенты (представители организаций, граждане);

·посетители (приглашенные по какому-либо поводу);

·представители организаций, взаимодействующих по вопросам обеспечения жизнедеятельности организации (энерго-, водо-, теплоснабжение и т.п.);

·представители конкурирующих организаций (иностранных спецслужб) или лица, действующие по их заданию;

·любые лица за пределами контролируемой территории.

Можно выделить три основных мотива нарушений: а) безответственность; б) самоутверждение; в) корыстный интерес. При нарушениях, вызванных безответственностью, пользователь целенаправленно или случайно производит какие-либо разрушающие действия, не связанные, тем не менее, со злым умыслом. В большинстве случаев это следствие некомпетентности или небрежности.

Некоторые пользователи считают получение доступа к системным наборам данных крупным успехом, затевая своего рода игру «пользователь против системы» ради самоутверждения либо в собственных глазах, либо в глазах коллег.

Нарушение безопасности АИТУ может быть вызвано и корыстным интересом пользователя системы. В этом случае он будет целенаправленно пытаться преодолеть систему защиты для доступа к хранимой, передаваемой и обрабатываемой в АИТУ информации. Даже если АИТУ имеет средства, делающие такое проникновение чрезвычайно сложным, полностью защитить ее от проникновения практически невозможно. Всех нарушителей можно классифицировать по четырем параметрам (уровню знаний об АИТУ, уровню возможностей, времени и методу действия). 1. По уровню знаний об АИТУ различают нарушителей:

·знающих функциональные особенности АИТУ, основные закономерности формирования в ней массивов данных и потоков запросов к ним, умеющих пользоваться штатными средствами;

·обладающих высоким уровнем знаний и опытом работы с техническими средствами системы и их обслуживания;

·обладающих высоким уровнем знаний в области программирования и вычислительной техники, проектирования и эксплуатации автоматизированных информационных систем;

·знающих структуру, функции и механизм действия средств защиты, их сильные и слабые стороны.

По уровню возможностей (используемым методам и средствам) нарушителями могут быть:

·применяющие чисто агентурные методы получения сведений;

·применяющие пассивные средства (технические средства перехвата без модификации компонентов системы);

·использующие только штатные средства и недостатки систем защиты для ее преодоления (несанкционированные действия с использованием разрешенных средств), а также компактные магнитные носители информации, которые могут быть скрытно пронесены через посты охраны;

·применяющие методы и средства активного воздействия (модификация и подключение дополнительных механических средств, подключение к каналам передачи данных, внедрение программных «закладок» и использование специальных инструментальных и технологических программ).

По времени действия различают нарушителей, действующих:

·в процессе функционирования АИТУ (во время работы компонентов системы);

·в период неактивности компонентов системы (в нерабочее время, во время плановых перерывов в ее работе, перерывов для обслуживания и ремонта и т.п.);

·как в процессе функционирования АИТУ, так и в период неактивности компонентов системы.

По месту действия нарушители могут быть:

·не имеющие доступа на контролируемую территорию организации;

·действующие с контролируемой территории без доступа в здания и сооружения;

·действующие внутри помещений, но без доступа к техническим средствам АИТУ;

·действующие с рабочих мест конечных пользователей (операторов) АИТУ;

·имеющие доступ в зону данных (баз данных, архивов и т.п.);

·имеющие доступ в зону управления средствами обеспечения безопасности АИТУ.

При этом могут учитываться следующие ограничения и предположения о характере действий возможных нарушителей:

·работа по подбору кадров и специальные мероприятия затрудняют возможность создания коалиций нарушителей, т.е. объединения (сговора) и целенаправленных действий по преодолению подсистемы защиты двух и более нарушителей;

·нарушитель, планируя попытку несанкционированного доступа к информации, скрывает свои неправомерные действия от других сотрудников;

·несанкционированный доступ к информации может быть следствием ошибок пользователей, администраторов, эксплуатирующего и обслуживающего персонала, а также недостатком принятой технологии обработки информации и т.д. Определение конкретных значений характеристик возможных нарушителей в значительной степени субъективно. Модель нарушителя, построенная с учетом особенностей конкретной предметной области и технологии обработки информации, может быть представлена перечислением нескольких вариантов его облика. Каждый вид нарушителя должен быть охарактеризован значениями характеристик, приведенных выше.

Организация защиты информации. Классификация способов защиты информации в компьютерных системах

Проблема создания системы защиты информации включает две взаимодополняющие задачи:

) разработка системы защиты информации (ее синтез);

) оценка разработанной системы защиты информации.

Вторая задача решается путем анализа ее технических характеристик с целью установления, удовлетворяет ли система защиты, информации комплексу требований к данным системам. Такая задача в настоящее время решается почти исключительно экспертным путем с помощью сертификации средств защиты информации и аттестации системы защиты информации в процессе ее внедрения.

Методы и средства обеспечения безопасности информации показаны на рис. Рассмотрим основное содержание представленных методов защиты информации, которые составляют основу механизмов защиты.

Рис. Методы и средства обеспечения безопасности информации

Препятствия - методы физического преграждения пути злоумышленнику к защищаемой информации (к аппаратуре, носителям информации и т.д.).

Управление доступом - метод защиты информации регулированием использования всех ресурсов компьютерной информационной системы (элементов баз данных, программных и технических средств). Управление доступом включает следующие функции защиты:

·идентификацию пользователей, персонала и ресурсов системы (присвоение каждому объекту персонального идентификатора);

·опознание (установление подлинности) объекта или субъекта по предъявленному им идентификатору;

·проверку полномочий (проверка соответствия дня недели, времени суток, запрашиваемых ресурсов и процедур установленному регламенту);

·разрешение и создание условий работы в пределах установленного регламента;

·регистрацию (протоколирование) обращений к защищаемым ресурсам;

·регистрацию (сигнализация, отключение, задержка работ, отказ в запросе) при попытках несанкционированных действий.

Маскировка - метод защиты информации путем ее криптографического закрытия. Этот метод широко применяется за рубежом как при обработке, так и при хранении информации, в том числе на дискетах. При передаче информации по каналам связи большой протяженности данный метод является единственно надежным.

Регламентация - метод защиты информации, создающий такие условия автоматизированной обработки, хранения и передачи защищаемой информации, при которых возможности несанкционированного доступа к ней сводились бы к минимуму.

Принуждение - метод защиты, при котором пользователи и персонал системы вынуждены соблюдать правила обработки, передачи и использования защищаемой информации под угрозой материальной, административной или уголовной ответственности.

Побуждение - метод защиты, который побуждает пользователя и персонал системы не нарушать установленный порядок за счет соблюдения сложившихся моральных и этических норм (как регламентированных, так и неписаных).

Рассмотренные методы обеспечения безопасности реализуются на практике за счет применения различных средств защиты, таких, как технические, программные, организационные, законодательные и морально-этические. К. основным средствам защиты, используемым для создания механизма обеспечения безопасности, относятся следующие.

Технические средства реализуются в виде электрических, электромеханических и электронных устройств. Вся совокупность технических средств делится на аппаратные и физические. Под аппаратными средствами принято понимать технику или устройства, которые сопрягаются с подобной аппаратурой по стандартному интерфейсу. Например, система опознания и разграничения доступа к информации (посредством паролей, записи кодов и другой информации на различные карточки). Физические средства реализуются в виде автономных устройств и систем. Например, замки на дверях, где размещена аппаратура, решетки на окнах, источники бесперебойного питания, электромеханическое оборудование охранной сигнализации. Так, различают наружные системы охраны («Ворон», GUARDWIR, FPS и др.), ультразвуковые системы (Cyclops и т.д.), системы прерывания луча (Pulsar 30В и т.п.), телевизионные системы (VМ216 и др.), радиолокационные системы («ВИТИМ» и т.д.), система контроля вскрытия аппаратуры и др.

Программные средства представляют собой программное обеспечение, специально предназначенное для выполнения функций защиты информации. В такую группу средств входят:

·механизм шифрования (криптографии - специальный алгоритм, который запускается уникальным числом или битовой последовательностью, обычно называемым шифрующим ключом; затем по каналам связи передается зашифрованный текст, а получатель имеет свой ключ для дешифрования информации);

·механизм цифровой подписи;

·механизмы контроля доступа;

·механизмы обеспечения целостности данных;

·механизмы постановки графика, механизмы управления маршрутизацией;

·механизмы арбитража, антивирусные программы;

·программы архивации (например, zip, rar, arj и др.);

·защита при вводе и выводе информации и т.д.

Организационные средства защиты представляют собой организационно-технические и организационно-правовые мероприятия, осуществляемые в процессе создания и эксплуатации вычислительной техники, аппаратуры телекоммуникаций для обеспечения защиты информации. Организационные мероприятия охватывают все структурные элементы аппаратуры на всех этапах их жизненного цикла (строительство помещений, проектирование компьютерной информационной системы банковской деятельности, монтаж и наладка оборудования, использование, эксплуатация).

Морально-этические средства защиты реализуются в виде всевозможных норм, которые сложились традиционно или складываются по мере распространения вычислительной техники и средств связи в обществе. Эти нормы большей частью не являются обязательными как законодательные меры, однако несоблюдение их обычно ведет к потере авторитета и престижа человека. Наиболее показательным примером таких норм является Кодекс профессионального поведения членов Ассоциации пользователей ЭВМ США.

Законодательные средства защиты определяются законодательными актами страны, которыми регламентируются правила пользования, обработки и передачи информации ограниченного доступа и устанавливаются меры ответственности за нарушение этих правил.

Все рассмотренные средства защиты разделены на формальные (выполняющие защитные функции строго по заранее предусмотренной процедуре без непосредственного участия человека) и неформальные (определяются целенаправленной деятельностью человека либо регламентируют эту деятельность).

В настоящее время наиболее острую проблему безопасности (даже в тех системах, где не требуется сохранять секретную информацию, и в домашних компьютерах) составляют вирусы. Поэтому здесь остановимся на них подробнее. Компьютерный вирус - это специально написанная небольшая по размерам программа, которая может «приписывать» себя к другим программам (т.е. «заражать» их), а также выполнять различные нежелательные действия на компьютере (например, портить файлы или таблицы размещения файлов на диске, «засорять» оперативную память и т.д.).

Основным средством защиты от вирусов служит архивирование. Другие методы заменить его не могут, хотя и повышают общий уровень защиты.

Архивирование необходимо делать ежедневно. Архивирование заключается в создании копий используемых файлов и систематическом обновлении изменяемых файлов. Это дает возможность не только экономить место на специальных архивных дисках, но и объединять группы совместно используемых файлов в один архивный файл, в результате чего гораздо легче разбираться в общем архиве файлов.

Наиболее уязвимыми считаются таблицы размещения файлов, главного каталога и бутсектор. Файлы рекомендуется периодически копировать на специальную дискету.

Их резервирование важно не только для защиты от вирусов, но и для страховки на случай аварийных ситуаций или чьих-то действий, в том числе собственных ошибок.

В целях профилактики для защиты от вирусов рекомендуется:

·работа с дискетами, защищенными от записи;

·разделение дискет между конкретными ответственными пользователями;

·разделение передаваемых и поступающих дискет;

·разделение хранения вновь полученных программ и эксплуатировавшихся ранее;

·проверка вновь полученного программного обеспечения на наличие в них вируса тестирующими программами;

·хранение программ на жестком диске в архивированном виде.

Для того чтобы избежать появления компьютерных вирусов, необходимо соблюдать прежде всего следующие меры:

·не переписывать программное обеспечение с других компьютеров, если это необходимо, то следует принять перечисленные выше меры;

·не допускать к работе на компьютере посторонних лиц, особенно если они собираются работать со своими дискетами;

·не пользоваться посторонними дискетами, особенно с компьютерными играми.

Можно выделить следующие типичные ошибки пользователя, приводящие к заражению вирусами:

·отсутствие надлежащей системы архивации информации;

·запуск полученной программы без ее предварительной проверки на зараженность и без установки максимального режима защиты винчестера с помощью систем разграничения доступа и запуска резидентного сторожа;

·выполнение перезагрузки системы при наличии установленной в дисководе А дискеты (при этом BIOS делает попытку загрузиться именно с этой дискеты, а не с винчестера; в результате, если дискета заражена бутовым вирусом, происходит заражение винчестера);

·прогон всевозможных антивирусных программ, без знания типов диагностики одних и тех же вирусов разными антивирусными программами;

·анализ и восстановление программ на зараженной операционной системе.

В настоящее время наиболее популярные в России антивирусные средства АО «ДиалогНаука»:

·полифаг Aidstest (полифаг- это программа, выполняющая действия обратные тем, которые производит вирус при заражении файла, т.е. пытающаяся восстановить файл);

·ревизор Adinf;

·лечащий блок AdinfExt;

·полифаг для «полиморфиков» Doctor Web.

Существуют программы-фильтры, проверяющие, имеется ли в файлах (на указанном пользователем диске) специальная для данного вируса комбинация байтов. Используется также специальная обработка файлов, дисков, каталогов - вакцинация: запуск программ-вакцин, имитирующих сочетание условий, в которых начинает работать и проявляет себя данный тип вируса. В качестве примера резидентной программы для защиты от вирусов можно привести программу VSAFF фирмы Carmel Central Point Software. B качестве программ ранней диагностики компьютерного вируса могут быть рекомендованы программы CRCLIST и CRCTEST.

В заключении можно сказать при организации защиты информации процесс создание и эксплуатация систем защиты информации является сложным и ответственным. Система защиты должна быть достаточной, надежной, эффективной и управляемой. Эффективность защиты информации достигается способностью ее адекватно реагировать на все попытки несанкционированного доступа к информации; мероприятия по защите информации от несанкционированного доступа должны носить комплексный характер, т.е. объединять разнородные меры противодействия угрозам (правовые, организационные, программно-технические). Основная угроза информационной безопасности компьютерных систем исходит непосредственно от сотрудников. С учетом этого необходимо максимально ограничивать как круг сотрудников, допускаемых к конфиденциальной информации, так и круг информации, к которой они допускаются (в том числе и к информации по системе защиты). При этом каждый сотрудник должен иметь минимум полномочий по доступу к конфиденциальной информации.

Заключение

В заключении можно сказать, что с конца 80-ых начала 90-ых годов проблемы связанные с защитой информации беспокоят как специалистов в области компьютерной безопасности, так и многочисленных рядовых пользователей персональных компьютеров. Это связано с глубокими изменениями, вносимыми компьютерной технологией в нашу жизнь. Изменился сам подход к понятию информация. Этот термин сейчас больше используется для обозначения специального товара, который можно купить, продать, обменять на что-то другое и т.д. При этом стоимость подобного товара зачастую превосходит в десятки, а то и в сотни раз стоимость самой вычислительной техники, в рамках которой он функционирует.

Естественно, возникает потребность защитить информацию от несанкционированного доступа, кражи, уничтожения и других преступных действий. Однако, большая часть пользователей не осознает, что постоянно рискует своей безопасностью и личными тайнами. И лишь немногие хоть, каким либо образом защищают свои данные. Пользователи компьютеров регулярно оставляют полностью незащищенными даже такие данные как налоговая и банковская информация, деловая переписка и электронные таблицы. Проблемы значительно усложняются, когда вы начинаете работать или играть в сети так как хакеру намного легче в это время заполучить или уничтожить информацию, находящуюся на вашем компьютере.

На данный момент с развитием технологий существует большое количество угроз, направленных на несанкционированный доступ к информации, на ее искажение, удаление, например вирусы, которые успешно внедрились в повседневную компьютерную жизнь и покидать ее в обозримом будущем не собираются. Нужно четко представлять себе, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в информационных системах. Но так же следует помнить, что большая концентрация защитных средств в информационной системе может привести не только к тому, что система окажется очень дорогостоящей, но и к тому, что у нее произойдет существенное снижение коэффициента готовности. Например, если такие ресурсы системы, как время центрального процессора будут постоянно тратиться на работу антивирусных программ, шифрование, резервное архивирование и тому подобное, скорость работы пользователей в такой системе может упасть до нуля.

Поэтому главное при определении мер и принципов защиты информации это квалифицированно определить границы разумной безопасности и затрат на средства защиты с одной стороны и поддержания системы в работоспособном состоянии и приемлемого риска с другой.

Список использованных источников

1.Постановление Правительства РФ от 26 июня 1995 г. N 608 "О сертификации средств защиты информации".

2.Постановление Правительства РФ от 15 августа 2006 г. N 504 «О лицензировании деятельности по технической защите конфиденциальной информации».

3.Приказ от 05.02.2010 г. №58 «Об утверждении положения о методах и способах защиты информации в информационных системах персональных данных»

4.Безбогов А.А., Яковлев А.В., Шамкин В.Н. Методы и средства защиты компьютерной информации: Учебное пособие. - Тамбов: Издательство ТГТУ, 2006.

5.Макаренко С. И. Информационная безопасность: учебное пособие для студентов вузов. - Ставрополь: СФ МГГУ им. М. А. Шолохова, 2009. - 372 с.

6.Нестеров С. А. Информационная безопасность и защита информации: Учеб. пособие. - СПб.: Изд-во Политехн. ун-та, 2009. - 126 с.

Понравилась статья? Поделиться с друзьями: