Протокол ide. Интерфейсы подключения жестких дисков — IDE, SATA и другие. Протоколы и режимы передачи данных

Предназначается "оригинальный" интерфейс АТА исключительно для подключения HDD, в нем не поддерживаются такие возможности, как интерфейс ATAPI для подключения устройств IDE, которые отличны от HDD, т.е. режим передачи blockmode или LBA (сокр. от logical block addressing).

Спустя некоторое время стандарт АТА перестал соответствовать возрастающим потребностям, т.к. вновь выпускаемые HDD требовали значительно большей скорости трансфера данных, а также наличия новых возможностей. Таким образом появился на свет АТА-2 интерфейс, вскоре также стандартизированный ANSI. При сохранении взаимосовместимости со стандартом ATA, в ATA-2 появилось несколько дополнительных возможностей:

  • Более быстрые PIO Modes . Добавлена поддержка PIOmodes 3 и 4;
  • Более быстрые DMA Modes . Поддерживается multiword DMAmodes1 и 2;
  • Block Transfer . Были включены команды, которые позволяют осуществлять трансфер в режиме blocktransfer, с целью повышения производительности;
  • Logical Block Addressing (сокр . LBA) . В АТА-2 требуется поддержка HDD протокола передачи LBA. Само собой, чтобы использовать этот протокол, нужно, чтобы он поддерживался также BIOS;
  • Усовершенствованная команда IdentifyDrive . В интерфейсе увеличен объем информации относительно характеристик, выдаваемой HDD по системным запросам.

Все было бы отлично, однако фирмы-производители в своем стремлении заполучить больший кусок рынка начали сочинять красивые названия, обзывая ими интерфейсы своих HDD. Ведь интерфейсы FastATA, FastATA-2, а также EnhancedIDE, по сути, базируются на АТА-2 стандарте, являясь не более чем красивыми маркетинговыми терминами. Различия между ними заключаются лишь в том, какую часть стандарта и каким образом они поддерживают.

Самую большую неразбериху вносят названия FastATA и FastATA-2, которые принадлежат умным головам из Seagate и Quantum соответственно. Вполне логично будет предположить, что FastATA - это своего рода улучшение АТА стандарта, в то время как FastATA-2 основан на стандарте АТА-2. К сожалению, все не так просто. В реальности FastATA-2 лишь другое название АТА-2 стандарта. В свою очередь все отличия FastATA от него сводятся лишь к тому, что здесь поддерживаются самые быстрые режимы, а именно: PIO mode4 и DMA mode2. Обе компании, при этом, нападают на Western Digital и разработанный ею стандарт EIDE за внесение еще большей путаницы. EIDE также отличается своими недостатками, однако, о них чуть позже.

В попытке дальнейшего развития АТА интерфейса был разработан проект стандарта АТА-3, основное внимание в котором уделялось улучшению показателей надежности:

  • В AТА-3 содержатся средства, которые повышают надежность трансфера данных благодаря использованию высокоскоростных режимов, что является серьезной проблемой, т.к. кабель IDE/ATA сохранился неизмененным с момента рождении стандарта;
  • В АТА-3 включена технология SMART.

АТА-3 не утвержден как ANSI стандарт в первую очередь потому, что в нем не было использовано новых режимов трансфера данных, несмотря на то, что технология SMART сейчас достаточно широко используется производителями HDD.

Следующий виток развитии интерфейса IDE/ATA - это стандарт UltraATA (также известный, как UltraDMA либо ATA-33, либо DMA-33, либо АТА-3(!)). UltraATA, по сути, является стандартом использования наиболее быстрого режима DMA - mode3, который обеспечивает скорость трансфера данных в 33.3 МВ/сек. С целью обеспечения надежного трансфера данных по старой модели кабеля используются особые схемы контроля над ошибками и их коррекции. Обратная совместимость с прошлыми стандартами: АТА и АТА-2, при этом, сохраняется. Таким образом, если Вы купили HDD с интерфейсом UltraАТА и вдруг обнаружили, что он не поддерживается вашей системной платой, не расстраивайтесь - накопитель все же будет работать, хотя и несколько медленнее.

Наконец, самое последнее достижение в этой сфере - это интерфейс UltraATA/66, который разработан компанией Quantum. Интерфейс позволяет осуществлять трансфер данных на скорости 66МВ/сек.

Во времена первых разработок IDE/ATA интерфейса, единственным устройством, нуждающимся в этом интерфейсе, был HDD, т.к. зарождающиеся драйвы CD-ROM и стримеры оснащались собственным интерфейсом (вы наверняка помните времена, когда подключение CD-ROM осуществлялось с помощью интерфейса на звуковой карте). Вскоре, однако, стало понятно, что использование быстрого и простого интерфейса IDE/ATA для подключения всех возможных устройств сулит принести значительные выгоды, в т.ч. за счет универсальности. К сожалению, система команд IDE/ATA интерфейса была рассчитана исключительно на HDD, поэтому подключить, к примеру, CD-ROM просто так к IDE-каналу нельзя - он просто не будет работать. Соответственно необходимо было разработать новый протокол - ATAPI (сокр. от ATA Packet Interface). Протокол позволяет большинству других устройств подключаться при помощи стандартного IDE шлейфа и "почувствовать себя" в роли IDE/ATA HDD. Протокол ATAPI, на самом деле, гораздо сложнее, чем ATA, т.к. трансфер данных здесь идет с использованием режимов DMA и PIO, реализация же поддержки этих режимов значительным образом зависит от особенностей подключенного устройства. Само название packet (с англ. пакетный) было получено протоколом из-за того, что команды устройству приходится передавать буквально группами или пакетами. С точки зрения рядового пользователя, однако, важнее всего, что отсутствует различие между IDE/ATA HDD, CD-ROMом ATAPI, а также ZIP-драйвом. Сегодняшние BIOSы даже поддерживают осуществление загрузки с ATAPI-устройств.

Сейчас, как было обещано, переходим к EIDE. Термин этот был введен компанией WesternDigital. EIDE достаточно широко употребляется и практически также широко критикуется, вполне на наш взгляд заслужено. Главной причиной для жесткой критики является тот факт, что, по сути, EIDE - вовсе и не стандарт, а чисто маркетинговый термин, причем содержание этого термина постоянно меняется. Так, сначала EIDE включал поддержку PIO режимов вплоть до mode3, затем была добавлена поддержка mode4. Существенным недостатком EIDE в качестве стандарта является включение в его спецификацию абсолютно разноплановых вещей. Смотрите сами, на данный момент EIDE включает:

  • ATA-2 . Полностью, в т.ч. самые скоростные режимы;
  • ATAPI . Целиком;
  • Dual IDE/ATA Host Adapters . В стандарте EIDE включена поддержка 2-х IDE/ATA хостов, таким образом можно использовать параллельно до 4-х IDE/ATA/ATAPI устройств.

Разберем теперь, что обозначает фраза "HDD с интерфейсом EIDE". Так как поддерживать ATAPI ему нет никакого смысла, а 2 канала IDE он поддержать не сможет, все это сводится к скромному: "HDD с интерфейсом АТА-2". Идея, в принципе, была неплохая- создать стандарт, который охватывает чипсет, BIOS и жесткий диск. Однако так как большая часть EIDE в качестве стандарта относится непосредственно к чипсету и BIOS, то получается путаница между EnhancedIDE и примерно в тоже время возникшей EnhancedBIOS (т.е. BIOS, который поддерживает IDE/ATA для HDD емкостью более 504MB). Вполне логично было бы предположить, что для использования HDD объемом свыше 504МВ необходим интерфейс EIDE, однако, как Вы уже поняли, нужен лишь EnhancedBIOS. Более того, производители карт с EnhancedBIOS рекламировали их в качестве "enhanced IDE cards". К счастью, сейчас эти проблемы остались в прошлом, в прочем, как и барьер 540МВ.

Чтобы как-то систематизировать информацию все основные (официальные и неофициальные) стандарты интерфейса IDE, которые были описаны выше, приведены в форме таблицы.

Стандарт

Интерфейс

DMA modes

PIO modes

Отличия от IDE/ATA

Singleword 0-2; multiword 0

Singleword 0-2; multiword 0-2

Поддержка LBA, block transfer, режим, улучшенная команда identify drive

Маркетинговый термин

Singleword 0-2; multiword 0, 1

Аналогичен АТА-2

Маркетинговый термин

Singleword 0-2; multiword 0-2

Аналогичен АТА-2

Неофициальный

Singleword 0-2; multiword 0-2

Аналогичен АТА-2, при этом добавлена поддержка надежности трансфера на высоких скоростях, используется технология SMART

Неофициальный

Singleword 0-2; multiword 0-3 (DMA-33/66)

Аналогичен АТА-3

Singleword 0-2; multiword 0-2

Аналогичен АТА-2, добавлена поддержка отличных от HDD устройств

Маркетинговый термин

Singleword 0-2; multiword 0-2

Аналогичен ATA-2 +ATAPI, поддерживает 2 хост-адаптера

Плавно переходим к не менее интересной теме. Всего существуют 2 параметра, которые характеризуют скорость трансфера данных при использовании HDD с интерфейсом IDE/ATA. Первый из них - внутренняя скорость передачи (англ. internal transfer rate), характеризующая скорость трансфера данных между внутренним буфером HDD и магнитным носителем. Она определяется скоростью вращения, плотностью записи и т.д. Т.е. параметрами, зависящими не от типа интерфейса, а от конструкции носителя. Второй показатель - это внешняя скорость трансфера данных, т.е. скорость передачи данных по IDE каналу, полностью зависящая от режима передачи данных. В самом начале использования IDE/ATA дисков скорость работы всей дисковой подсистемы зависела от внутренней скорости трансфера данных, которая была значительно меньше внешней. Сегодня же, благодаря увеличению плотности записи (это позволяет снимать больше данных за оборот диска) и увеличению частоты вращения, главенствующую роль занимает внешняя скорость передачи. В связи с этим возникает вопрос относительно номеров режимов и отличия PIO от DMA.

Первоначально распространенным способом трансфера данных посредством интерфейса IDE/ATA был протокол, который носит название Programmed I/O (сокр. PIO). Всего существует 5 режимов PIO, которые различаются по максимальной скорости пакетной передачи данных (англ. burst transfer rates). Режимы эти называются термином PIO modes.

Разумеется, здесь имеется в виду внешняя скорость трансфера данных, определяемая скоростью интерфейса, а не HDD. Следует также учитывать, хоть сегодня это вряд ли актуально, что PIO modes 3 и 4 нуждаются в использовании шины PCI либо VLB, т.к. ISA шина не способна обеспечивать скорость трансфера данных более 10 МВ/сек.

Вплоть до появления DMA-33 режима, максимальная скорость трансфера данных у PIO и DMA была идентичной. Основным недостатком PIO режимов считается то, что трансфером данных управляет процессор - это значительно увеличивает его загрузку. С другой стороны, эти режимы не нуждаются в специальных драйверах и прекрасно подходят для однозадачных ОС. К сожалению, это, скорее всего, вымирающий вид…

Direct Memory Access (сокр. от DMA) - прямой доступ к памяти - обозначает собирательное название протоколов, которые позволяют периферийному устройству передавать данные в системную память непосредственно без участия ЦП. Современными жесткими дисками эта возможность используется в сочетании с возможностью, перехватывая управление шиной, самостоятельно управлять передачей данных (т.н. bus mastering). Существующие режимы DMA (т.н. DMAmodes) приведены в таблице. Следует отметить, что singleword режимы на сегодняшний день более не используются, они приведены исключительно для сравнения.

Максимальная скорость трансфера (МВ/сек)

Поддерживают стандарты:

ATA-2, FastATA, FastATA-2, ATA-3, UltraATA, EIDE

ATA-2, FastATA-2, ATA-3, UltraATA, EIDE

Multiword 3 (DMA-33)

UltraATA (АТА/66)

Еще одной интересный момент относительно работы интерфейса IDE/ATA - это 32-разрядный доступ к HDD. Как Вы уже знаете, интерфейс IDE/ATA всегда был и остается по сей день 16-битным. В таком случае будет уместен вопрос, почему при выключении драйверов 32-разрядного доступа к HDD в Windows скорость работы этого диска падает? В первую очередь, потому что работа Windows, в принципе, далека от совершенства. Во-вторых, PCI шина, на которой сейчас располагаются host-контроллеры IDE, 32-разрядна. Следовательно, 16-битный трансфер по этой шине есть пустое расходование пропускной способности. Host-контроллер в нормальных условиях формирует из 2-х 16-битных пакетов 32-битный, пересылая его в дальнейшем по PCI шине.

Ранее встречался такой термин, как режим blocktransfer. Здесь ничего сложного. На самом деле этот термин просто обозначает режим, позволяющий передавать определенное число команд чтения/записи за время одного прерывания. Современные IDE/ATA HDD позволяют передавать 16->32 секторов за одно прерывание. Так как прерывания генерируются реже, загрузка процессора снижается, а также уменьшается процент команд в общем количестве передаваемых данных.

Каждый канал IDE позволяет подключить к нему одно либо два устройства. Современные компьютеры, как правило, отличаются установкой двух каналов IDE (в соответствии со спецификацией EIDE), несмотря на то, что теоретически возможно устанавливать до четырех (!), что позволяет осуществлять подключение восьми IDE устройств. Все IDE каналы являются равноправными. В таблице приведено использование системных ресурсов различными каналами.

Канал

I/O Addresses

Поддержка, возможные проблемы, возникающие при использовании

1F0-1F7h, а также 3F6-3F7h

Используется в любых компьютерах, оснащенных интерфейсом IDE/ATA

170-177h, а также 376-377h

Распространен широко, присутствуя практически во всех современных ПК.

1E8-1Efh, а также 3EE-3Efh

Редко используется. Возможны определенные проблемы с софтом

168-16Fh, а также 36E-36Fh

Используется крайне редко. Проблемы с софтом весьма вероятны

Ресурсы, которые используются третьим и четвертым каналами, обычно конфликтуют с другими устройствами (к примеру, IRQ 12 используется PS/2 мышью, IRQ 10 - традиционно занят сетевой картой).

Как уже было отмечено, каждый IDE/AТА канал интерфейса поддерживает подключение 2-х устройств, а именно: master и slave. Конфигурация задается обычно перемычкой, располагающейся на задней стенке устройства. Помимо этих двух позиций на ней часто присутствует также третья - cableselect. Что произойдет, если перемычку установить в это положение? Оказывается, для функционирования устройств в положении cableselect перемычки необходим специальный Y-образный шлейф, у которого центральный разъем подключается непосредственно к системной плате. У такого рода кабеля крайние разъемы неравноправны - устройство, которое подключено к одному разъему, автоматическим образом определяется, как master, а к другому, соответственно, как slave (аналогично А и В флопам). Перемычки на обоих устройствах, при этом, должны находиться в положении cableselect. Основной проблемой этой конфигурации является то, что она экзотична, несмотря на то, что де-юре считается стандартной, а значит, поддерживается не всеми. Из-за этого Y-образный шлейф достать очень трудно

Если предположить, что, несмотря на экзотику, Вы все-таки будете использовать описанную конфигурацию IDE/ATA устройств, запомните следующее:

  • В каждый момент каждый канал может обрабатывать лишь один запрос и лишь к одному устройству. То есть следующему запросу, даже к другому устройству, придется ждать завершения текущего. Различные каналы, при этом, могут функционировать независимо. Следовательно, не стоит подключать 2 устройства, которые активно используются (к примеру, два HDD), к одному каналу. Оптимальным вариантом будет подключение каждого IDE-устройства к отдельному каналу (это, пожалуй, главный минус по сравнению с SCSI).
  • Практически все чипсеты на сегодняшний день поддерживают возможность использования разных режимов трансфера данных для устройств, которые подключены к одному каналу. Злоупотреблять этим, однако, не стоит. Два устройства, которые значительно различаются по скорости, рекомендуется разнести по различным каналам.
  • Также рекомендуется не подключать HDD и ATAPI-устройство (к примеру, CD-ROM) к одному каналу. Как было указано выше, ATAPI протокол использует иную систему команд, и, более того, даже самые скоростные ATAPI-устройства намного медленнее HDD, что может существенно замедлить работу последнего.

Вышесказанное, разумеется, нельзя считать аксиомой - это лишь рекомендации, которые основаны на здравом смысле и опыте экспертов. Кроме того, здравый смысл и опыт говорит о том, что четыре IDE-устройств на исправной плате могут работать в любых сочетаниях и при минимальных затрачиваемых усилиях со стороны пользователя, если соблюдать требования по совместимости. В этом и заключается главное преимущество IDE перед SCSI.

IDE (Integrated Device Electronics) - интерфейс устройств со встроенным контроллером. При создании этого интерфейса разработчики ориентировались на подключение дискового накопителя. За счет минимального удаления контролера от диска существенно повышается быстродействие.

Интерфейс EIDE имеет первичный и вторичный каналы, к каждому из которых можно подключить два устройства, то есть всего их может быть четыре. Это может быть жесткий диск, CD-ROM или переключатель дисков.

Физически интерфейс IDE реализован с помощью плоского 40-жильного кабеля, на котором могут быть разъемы для подключения одного или двух устройств. Общая длина кабеля не должна превышать 45 сантиметров, причем между разъемами должно быть расстояние не менее 15 сантиметров.

  • а - кабель параллельного интерфейса ATA/IDE (РАТА);
  • б - 40-контактный разъем РАТА;
  • в - разъемы РАТА на плате;
  • г - последовательный разъем АТА (SATA);
  • д - разъемы SATA на плате.

Таблица разъемов параллельного интерфейса АТА

Контакт Назначение Контакт Назначение Контакт Назначение Контакт Назначение
1 Сброс 2 Земля 3 Данные 7 4 Данные 8
5 Данные 6 6 Данные 9 7 Данные 5 8 Данные 10
9 Данные 4 10 Данные 11 11 Данные 3 12 Данные 12
13 Данные 2 14 Данные 13 15 Данные 1 16 Данные 14
17 Данные 0 18 Данные 15 19 Земля 20 Key
21 DDRQ 22 Земля 23 I/O запись 24 Земля
25 I/O чтение 26 Земля 27 10C HRDY 28 Cable Select
29 DDACK 30 Земля 31 IRQ 32 Не используется
33 Адрес 1 34 GPIO DMA66 Detect 35 Адрес 0 36 Адрес 2
37 Chip Select 1Р 38 Chip Select ЗР 39 Активен 40 Земля

Существует несколько разновидностей интерфейса IDE, совместимых снизу вверх друг с другом.

Спецификация Enhanced IDE

В целях развития возможностей интерфейса IDE компанией Western Digital была предложена его расширенная спецификация Enhanced IDE (синонимы: E-IDE, Fast AТА, АТА-2 и Fast АТА-2), которая обрела затем статус американского стандарта ANSI под названием АТА-2. Она содержит ряд нововведений: поддержку IDE-накопителей емкостью свыше 504 Мбайт, поддержку в системе нескольких контроллеров IDE и подключение к одному контроллеру до четырех устройств, а также поддержку периферийных устройств, отличных от жестких дисков (приводов CD-ROM, CD-R и DVD-ROM, накопителей LS-120 и ZIP, магнитооптики, стримеров и тому подобное). Расширение спецификации IDE для поддержки иных типов накопителей с интерфейсом IDE называют также ATAPI (АТА Packed Interface). В Enhanced IDE также введены элементы распараллеливания операций обмена и контроля за целостностью данных при передаче.

  • а - АТА 2 и АТА 3.
  • б - Ultra АТА.
  • в - Ultra АТА/66.

В спецификацию интерфейса Enhanced IDE добавлена поддержка режимов PIO Mode 3 и 4, а также режимы DMA Single Word Mode 2 и Multi Word DMA Mode 1 и 2. Максимальная скорость передачи данных по шине в режиме РIO Mode 3 составляет 4.1 Мбайт/с, а в режимах РIO Mode 4 и Single Word DMA Mode 2 - 16.7 Мбайт/с. Режим Multi Word DMA Mode 2 позволяет получить пиковую скорость обмена свыше 20 Мбайт/с.

Следующим шагом в развитии интерфейса IDE/ATA явился стандарт Ultra АТА (он же Ultra DMA, АТА-33, DMA-33, АТА-3). Ultra АТА является стандартом де-факто использования быстрого Режима DMA - mode 3, обеспечивающего скорость передачи данных 33.3 Мбайт/с. Для обеспечения надежной передачи данных по все тому же кабелю используются специальные схемы контроля и коррекции ошибок, при этом сохраняется обратная совместимость с предыдущими стандартами - АТА и АТА-2.

Таблица характеристик IDE/ATA интерфейсов

Спецификация АТА-1 АТА-2 АТА-3 ATA/ATAPI-4 ATA/ATAPI-5 ATA/ATAPI-6 ATA/ATAPI-7
Синонимы АТА, IDE EIDE, Fast АТА, Fast IDE, Ultra ATA EIDE АТА-4, UltraATA/33 АТА-5, UltraATA/66 АТА-6, Ultra ATA/100 АТА-7, Ultra ATA/133
Пропускная способность, Мбай/с 3.3-8.3 11.1-16.6 16 16.7-33.3 44.4-66.7 100 133-150
Количество соединений 2 2 2 2 на один кабель 2 на один кабель 2 на один кабель 1 на один кабель
Характеристики кабеля 40 контактов 40 контактов 40 контактов 40 контактов 40 контактов, 80-жильный 40 контактов, 80-жильный 7 контактов
Новые свойства 28-битовая адресация логических блоков (LBA) S. M. A. R. T. Интерфейс ATAPI, поддержка CD-ROM, стримеров и прочего. 80-жильный кабель 48-битовая LBA SATA 1.0, поддержка длинных логических / физических блоков
Максимальный размер диска 137 Гбайт (128 GiBi) 144 Пбайт (128 PiBi)
Контроль no CRC Нет Нет Нет Есть Есть Есть
Дата выпуска 1981 1994 1996 1997 1999 2000 2003
1 Стандарт ANSI Х3.221-1994 ХЗ. 279-1996 Х3.298-1997 NCITS 317-1998 NCITS 340-2000 NCITS 361-2002 NCITS 397-2005 1

Наконец - интерфейсы Ultra ATA/66, Ultra ATA/100, Ultra AТА/133, позволяющие осуществлять передачу данных со скоростями 66.100 и 133-150 Мбайт/с соответственно.

Последовательный интерфейс Serial АТА (SATA). Основные преимущества Serial АТА по сравнению с Parallel АТА (РАТА):

  • уменьшено количество контактов разъема (до 7 вместо 40);
  • снижено напряжение сигнала (до 500 мВ сравнительно с 5 В для РАТА);
  • меньший, более удобный для проводки кабель длиной до 1 м;
  • улучшены возможности обнаружения и коррекции ошибок.

Первое поколение (известно как SATA/150 или SATA 1) появилось на рынке в середине 2002 года и поддерживало скорость передачи данных до 1.5 Гбит/с. SATA 1 использует схему кодирования 8В/10В на физическом уровне, которая имеет эффективность, равную 80 %, что приводит к реальной скорости в 1.2 Гбит/с или 150 Мбайт/с.

Следующая версия (SATA 3.0 Гбит/с) также использует схему 8В/10В, поэтому максимальная скорость передачи составляет 2.4 Гбит/с или 300 Мбайт/с. Однако сегодняшние устройства НЖМД не поддерживают таких скоростей, поэтому реальное быстродействие системы ограничено возможностями дисковода. Спецификацию 3.0 Гбит/с часто называют «Serial АТА 2» («SATA 2»), а также SATA 3.0 или SATA/300, продолжая линию АТА/100, АТА/133 и SATA/150.

Интерфейс SCSI был разработан в конце 1970-х годов организацией Shugart Associates. Первоначально известный под названием SASI (Shugart Associates System Interface), он после стандартизации в 1986 году уже под именем SCSI (читается «скази») стал одним из промышленных стандартов для подключения периферийных устройств - винчестеров, стримеров, сменных жестких и магнитооптических дисков, сканеров, CD-ROM и CD-R, DVD-ROM и тому подобное К шине SCSI можно подключить до восьми устройств, включая основной контроллер SCSI (или хост-адаптер).

Интерфейс SCSI является параллельным и физически представляет собой плоский кабель с 25-, 50-, 68-контактными Разъемами для подключения периферийных устройств. Шина SCSI содержит восемь линий данных, сопровождаемых линией контроля четности, и девять управляющих линий. Стандарт SCSI определяет два способа передачи сигналов: одно-полярный, или асимметричный (Single ended), и дифференциальный (Differential). В первом случае имеется один провод с нулевым потенциалом («земля»), относительно которого передаются сигналы по линиям данных с уровнями сигналов, соответствующими ТТЛ-логике. При дифференциальной передаче сигнала для каждой линии данных выделено два провода, и сигнал на этой линии получается вычитанием потенциалов на их выходах. При этом достигается лучшая помехозащищенность, что позволяет увеличить длину кабеля.

  • а - общая архитектура;
  • б - адаптер SCSI.

Для интерфейса SCSI необходимо наличие терминаторов (согласующих сопротивлений, которые поглощают сигналы на концах кабеля и препятствуют образованию эха).

Устройства SCSI также соединяются в виде цепочки (daisy chain), причем каждое устройство SCSI имеет свой адрес (SCSI ID) в диапазоне от 0 до 7 (или от 0 до 15). В качестве адреса платы контроллера обычно используется наибольшее значение SCSI ID - 7(15), адрес загрузочного диска SCSI ID равен 0, а второго диска - 1. Обмен между устройствами на магистрали SCSI определяется нормированным списком команд (Common Command Set, CCS). Программное обеспечение для интерфейса SCSI не оперирует физическими характеристиками накопителя (то есть числом цилиндров, головок и так далее), а имеет дело только с логическими блоками данных, поэтому в одной SCSI-цепочке могут быть размещены, например, сканер, жесткий диск и накопитель CD-R.

Опрос устройств производится контроллером SCSI сразу после включения питания. При этом для устройств SCSI реализовано автоконфигурирование устройств (Plug-and-play) по протоколу SCAM (SCSI Configured AutoMagically), в котором значения SCSI ID выделяются автоматически. Для стандартизированного управления SCSI-устройствами наиболее широко применяется программный интерфейс ASPI (Advanced SCSI Programming Interface).

Характеристики SCSI

Существует более десятка различных версий интерфейса SCSI. Наиболее существенные из них - SCSI-1, Fast SCSI, Fast Wide SCSI, Ultra SCSI, Ultra 2 SCSI.

Основными характеристиками шины SCSI являются:

  • ширина - 8 или 16 бит («narrow» или «wide»);
  • частота, с которой тактируется шина;
  • физический тип интерфейса (однополярный, дифференциальный, оптика).

На скорость влияют в основном два первых параметра. Обычно они записываются в виде приставок к слову SCSI.

Максимальную скорость передачи устройство-контроллер можно подсчитать, взяв частоту шины, а в случае наличия «Wide» умножить ее на 2 (например, FastSCSI - 10 Мбайт/с, Ultra2WideSCSI -80 Мбайт/с).

Последовательные интерфейсы SCSI

Четыре недавние версии SCSI, а именно SSA (Serial Storage Architecture), FC-AL и Serial Attached SCSI (SAS), отошли от традиционного параллельного стандарта SCSI и ориентированы на передачу данных по последовательным коммуникациям. Основные преимущества последовательного интерфейса - большие скорости передачи данных; «горячее» включение-выключение; лучшая помехозащищенность.

Таблица версий (поколения) интерфейса SCSI

Тип шины Макс. скорость, Мбайт/с Ширина шины (разрядность) Максимальная длина связи (в зависимости от типа сигналов), в метрах Максимальное количество подключений
SE LVD HVD
SCSI-1 5 8 (узкий) 6 - 25 8
Fast SCSI 10 8 3 - 25 8
Fast Wide SCSI 20 16 (широкий) 3 - 25 16
Ultra SCSI 20 8 1.5 - 25 8
Ultra SCSI 20 8 3 - - 4
Wide Ultra SCSI 40 16 - - 25 16
wide Ultra SCSI 40 16 1.5 - - 8
Wide Ultra SCSI 40 16 3 - - 4
Ultra2 SCSI 40 8 Не определена для скорости выше Ultra 12 25 8
Wide Uitra2 SCSI 80 16 - 12 25 16
Ultra3 SCSI or Ultra 160 SCSI 160 16 12 Не определена для скорости выше Ultra2 16
Ultra320 SCSI 320 16 - 12 - 16
SSA 40 1 25 96(192)
SSA40 80 1 25 96(192)
FC-AL 1Gb 100 1 500-3000 127
FC-AL 2Gb 200 1 500-3000 127
FC-AL4Gb 400 1 500-3000 127
SAS 3 Gbit/s 300 1 6 16 256
Fibre Channel 2000 Не определена 10 000-100 000 Не определено

Терминаторы, разъемы

По типу сигналов различают линейные (Single Ended) и дифференциальные (Differential) версии SCSI, их кабели и разъемы идентичны, но электрической совместимости устройств между ними нет.

Дифференциальная версия для каждого сигнала использует витую пару проводников и специальные приемопередатчики, при этом становится допустимой большая суммарная длина кабеля, сохраняя высокую частоту обмена. Дифференциальный интерфейс применяется в мощных дисковых системах серверов, но в обычных персональных компьютерах не распространен.

В линейной версии сигнал должен идти по своему одному проводнику, скрученному (или, по крайней мере, отдельному от другого в плоском шлейфе) с нулевым (обратным) проводом.

SCSI устройства соединяются кабелями в цепочку, на крайних Устройствах подключаются терминаторы. Часто одним из крайних устройств является хост-адаптер. Он может иметь для каждого канала как внутренний разъем, так и внешний.

По электрическим свойствам различают следующие типы терминаторов:

  • пассивные (SCSI-1) с сопротивлением 132 Ом (обычные резисторы). Эти терминаторы не подходят для высокоскоростных режимов SCSI-2;
  • активные (110 Ом) - специальные терминаторы для обеспечения работы на частоте 10 МГц в SCSI-2;
  • FPT (Forced Perfect Terminator) - улучшенный вариант активных терминаторов с ограничителями выбросов.

Активные терминаторы требуют питания, для этого имеются специальные линии интерфейса TERMPWR.

Кабели

Ассортимент кабелей SCSI довольно широк. Основные стандартизированные кабели:

  • А-кабель: стандартный для 8-битового интерфейса SCSI, 50-проводный внутренний шлейф (разъемы IDC-50) или внешний экранированный (разъемы Centronics-50).
  • В-кабель: 16-битовый расширитель SCSI-2, распространения не получил.
  • Р-кабель: 16-битовый SCSI-2/3.68-проводный с улучшенными миниатюрными экранированными разъемами, универсальными для внутренних и внешних кабелей 8-, 16- и 32-битовых версий SCSI (в 8-битовом варианте контакты 1-5.31-39.65-68 не используются); разъемы для внешнего подключения выглядят как миниатюрный вариант Centronics с плоскими контактами, внутренние имеют штырьковые контакты.
  • Q-кабель: 68-проводное расширение до 32 бит, используется в паре с Р-кабелем.
  • Кабель с разъемами D-25P: 8-битовый, стандартный для Macintosh, используется на некоторых внешних устройствах (Iomega ZIP Drive).

Таблица скоростей передачи данных, длина и типы кабелей SCSI-1, SCSI-2

Возможны различные вариации кабелей-переходников.

Назначение контактов разъемов на примере распространенного А-кабеля приведено в таблице.

Таблица разъемов А-кабеля SCSI

Контакт разъема Сигнал Контакт разъема Сигнал
1 GND 26 DB0#
2 GND 27 DB1#
3 GND 28 DB2#
4 GND 29 DB3#
5 GND 30 DB4#
6 GND 31 DB5#
7 GND 32 DB6#
8 GND 33 DB7#
9 GND 34 DBParity#
10 GND 35
11 GND 36
12 GND/Reserved 37 Reserved
13 Open 38 TERMPWR
14 Reserved 39 Reserved
15 GND 40
16 GND 41 ATN#
17 GND 42 GND
18 GND 43 BSY#
19 GND 44 ACK#
20 GND 45 RST#
21 GND 46 MSG#
22 GND 47 SEL#
23 GND 48 C/D#
24 GND 49 REQ#
25 GND 50 I/O

Шина . Как и в шине PCI, в шине SCSI предполагается возможность обмена информацией между любой парой устройств. Конечно чаще всего обмен производится между хост-адаптером и периферийными устройствами. Копирование данных между устройствами может производиться без выхода на системную шину компьютера. Здесь большие возможности имеют интеллектуальные хост-адаптеры со встроенной кэш-памятью. В каждом обмене по шине принимает участие его инициатор (Initiator) и целевое устройство (Target). В таблице приводится назначение сигналов шины.

Таблица назначений сигналов шины SCSI

Сигнал Источик: I=Initiator, T=Target Назначение
DBx# - Инверсная шина данных с битами паритета
TERMPWR - Питание терминаторов
ATN# I Внимание
BSY# I, T Шина занята
REQ# T Запрос на пересылку данных
ACK# I Ответ на REQ#
RST# I, T Сброс
MSG# T Target передает сообщение
SEL# I/T Выбор (Select) целевого устройства инициатором или Reselect инициатора целевым устройством
C/D# T Управление (0) / данные (1) на шине
l/0# T Направление передачи относительно инициатора или фаза Selection (1) / Reselection (0)

Параметры конфигурирования SCSI-устройств

Все устройства на шине должны быть согласованно сконфигурированы. Для них требуется программно или с помощью перемычек (джамперов) установить следующие основные параметры.

Идентификатор устройства - SCSI ID - адрес 0-7 (или 0-15), уникальный для каждого устройства на шине. Обычно хост-адаптеру, который должен иметь высший приоритет, назначается ID 7. Заводское назначение идентификаторов устройств приведено в таблице, хотя оно и не является обязательным. Устройства адресуются позиционным кодом (хотя ID задается 3-4-битовым кодом), что обеспечивает совместимость адресации 8- и 16-битовых устройств на одной шине. Номер SCSI ID обычно устанавливается с помощью перемычек (хотя в SCSI существуют и новые стандарты, аналогичные Plug-and-Play, не требующие перемычек).

Таблица заводских установов идентификаторов устройств

Контроль паритета - SCSI Parity

Если хотя бы одно устройство на шине не поддерживает контроль паритета, он должен быть отключен на всех устройствах данной шины. Контроль паритета, особенно для дисковых устройств, является средством защиты от искажения данных при передаче.

Включение терминаторов - Termination

Активные терминаторы могут включаться одним джампером или даже управляться программным сигналом. Терминаторы должны быть включены только на крайних устройствах в цепочке.

Питание терминаторов - TerminatorPower

Питание терминаторов джампером или программно должно быть включено хотя бы на одном устройстве, когда используются активные терминаторы.

Согласование скорости синхронного обмена - SCSI Synchronous Negotiation

Режим синхронного обмена, обеспечивающий высокую производительность, включается по взаимному согласованию устройств. Однако, если хоть одно устройство на Шине его не поддерживает, согласование на хост-адаптере необходимо запретить. При этом, если обмен будет инициирован синхронным устройством, хост поддержит этот режим.

Старт по команде - Start on Command, или задержанный старт - Delayed Start

При включении этой опции запуск двигателя Устройства выполняется только по команде от хост-адаптера, что Позволяет снизить пик нагрузки блока питания в момент включения. Хост будет запускать устройства последовательно.

Разрешение отключения - Enable Disconnection

Выбор этой опции позволяет устройствам отключаться от шины при неготовности данных, что весьма эффективно используется в многозадачном режиме при нескольких периферийных устройствах на шине.

Хост-адаптер

Хост-адаптер SCSI является важнейшим узлом интерфейса, определяющим производительность подсистемы SCSI-устройств. Существует широкий спектр адаптеров, начиная от простейших, к которым можно подключать только устройства, не критичные к производительности.

Конфигурирование SCSI хост-адаптеров с точки зрения шины SCSI не отличается от конфигурирования других устройств (смотри ранее). Для современных адаптеров вместо джамперов используется программное конфигурирование. Утилита конфигурирования обычно входит в расширение BIOS (на плате адаптера), и приглашение к ее исполнению выводится на экран при инициализации во время POST.

    режим 5 передачи UltraDMA (UDMA), позволяющий передавать данные со скоростью до 100 Мбайт/с (так называемая спецификация UDMA/100, UltraATA/100 или просто ATA/100);

    количество секторов, приходящихся на каждую команду, увеличилось с 8-разрядных чисел (256 секторов, или 131 Кбайт) до 16-разрядных (65536 секторов, или 33,5 Мбайт), что позволило повысить эффективность передачи файлов большого размера;

    расширение адресации LBA с 2 28 до 2 48 (281474976710656) секторов, что позволяет поддерживать диски емкостью до 144,12 Пбайт (1 Пбайт равен 1 квадрильону байтов);

    адресация CHS признана устаревшей; дисководы должны использовать только 28- или 48-разрядную адресацию LBA.

Помимо повышения скорости передачи данных до 100 Мбайт/с, ATA-6 весьма своевременно увеличил поддерживаемую емкость диска. ATA-5 и стандарты более ранних версий поддерживают диски емкостью не более 136,9 Гбайт, что ограничивает увеличение емкости производимых дисков. В 2001 году появились первые коммерческие 3,5-дюймовые диски, емкость которых превысила 137 Гбайт. На тот момент существовали только SCSIверсии этих накопителей, что было связано с ограничениями стандартов АТА. При использовании стандарта ATA-6 адресация LBA была расширена с 2 28 до 2 48 секторов. Это означает, что вместо 28-разрядного числа, которое использовалось логическим блоком адресации, в стандарте ATA-6 при необходимости может использоваться 48-разрядное число. Это позволяет при емкости сектора, равной 512 байт, повысить максимальную поддерживаемую емкость накопителей до 144,12 Пбайт (т.е. более 144,12 квадрильона байтов!) Следует отметить, что 48-разрядная адресация является необязательной и используется только для дисководов, емкость которых превышает 137 Гбайт. Дисководы, емкость которых меньше или равна 137 Гбайт, могут использовать как 28-, так и 48-разрядную адресацию.

Стандарт ATA/ATAPI-7

Работа над стандартом ATA-7 началась в конце 2001 года, а его окончательная версия была опубликована в 2004 году. Как и все стандарты ATA, он опирается на предыдущую версию, дополняя ее некоторыми возможностями.

Среди основных нововведений в стандарте ATA-7 можно выделить следующие.

    Добавлен режим 6 Ultra DMA, увеличивающий скорость передачи данных до 133 Мбайт/с. Как и в режиме 5 (100 Мбайт/с) и режиме 4 UDMA (66 Мбайт/с) обязательно использование 80-жильного кабеля.

    Добавлена поддержка длинных физических секторов. Это позволяет форматировать устройства так, чтобы один физический сектор содержал несколько логических секторов. Каждый физический сектор хранит поле кода коррекции ошибок (ECC), так что увеличение емкости физического сектора позволило повысить эффективность кодов ECC, которых стало меньше.

    Добавлена поддержка длинных логических секторов. Это позволило серверным приложениям в каждом секторе использовать дополнительные байты (520 или 528 байт вместо 512 байт). Устройства, использующие длинные логические секторы, не имеют обратной совместимости с устройствами и приложениями, использующими стандартные 512-байтовые секторы (такими, как стандартные настольные и портативные системы).

    В стандарт ATA-7 включены требования к последовательному интерфейсу ATA (SATA).

    Документ стандарта ATA-7 разбит на три тома. В первый том вошли набор команд и логические регистры. Второй том посвящен протоколам параллельной передачи данных, а третий том - протоколам последовательной передачи данных.

Благодаря использованию режимов UDMA пропускная способность интерфейса, соединяющего контроллер, встроенный в накопитель, с системной платой, заметно повысилась. Но, несмотря на это, средняя максимальная скорость передачи при чтении данных в большинстве накопителей ATA, к числу которых относятся дисководы, поддерживающие режим UDMA Mode 6 (133 Мбайт/с), все еще не превышает 60 Мбайт/с. Это означает, что при использовании современных накопителей ATA, позволяющих передавать данные от дисковода к системной плате со скоростью 133 Мбайт/с, фактическая скорость передачи данных, считываемых головками с жестких дисков накопителя, будет примерно вдвое меньше. Исходя из этих соображений, можно заметить, что использование накопителя, поддерживающего режим UDMA Mode 6 (133 Мбайт/с), и системной платы, работающей только в режиме UDMA Mode 5 (100 Мбайт/с), приводит к весьма незначительному снижению фактической скорости передачи данных. Аналогично этому замена хостадаптера ATA, имеющего скорость передачи 100 Мбайт/с, устройством с пропускной способностью 133 Мбайт/с не позволит повысить фактическую скорость передачи данных при использовании накопителя, считывающего данные с жестких дисков примерно с половинной скоростью. При выборе накопителя не забывайте о том, что скорость передачи носителей является более важным показателем, чем скорость передачи интерфейса, так как представляет собой главный ограничивающий фактор.

Режим передачи данных со скоростью 133 Мбайт/с был изначально предложен компанией Maxtor, и только немногие производители впоследствии поддержали его. В среде производителей наборов микросхем системной логики компании VIA, ALi и SiS интегрировали поддержку режима ATA/133 до перехода к интерфейсу Serial ATA; Intel же воздержалась от этого шага. Это значит, что подавляющее большинство систем не имеют поддержки режима ATA/133; в то же время все устройства ATA/133 способны работать и в режиме ATA/100.

Следует заметить, что ATA-7 стал последней версией почтенного стандарта параллельного интерфейса ATA. Будущее стандарта ATA - последовательный интерфейс SATA, который рассматривается далее и который был интегрирован в стандарт ATA-7.

Стандарт SATA/ATAPI-8

В 2004 году была начата работа над стандартом SATA-8, который базируется на стандарте ATA-7 и подразумевает дальнейшее развитие Serial ATA с одновременной полной поддержкой параллельного интерфейса ATA. Основные нововведения стандарта SATA-8 следующие:

Компания Compaq впервые представила в выпускаемых компьютерах специальный шинный адаптер, обеспечивший подключение 98-контактного краевого разъема шины АТ (также известной как ISA), расположенного на системной плате, к меньшему 40-контактному разъему, применяемому для соединения с накопителем. 40-контактного разъема оказалось вполнедостаточно, поскольку контроллеру жесткого диска хватало 40 линий шины ISA. В меньших по размеру 2,5-дюймовых накопителях АТА, применяемых в портативных компьютерах, используется расширенный 44-контактный разъем, содержащий дополнительные контакты питания. Стандартному контроллеру жесткого диска АТ требуются только сигнальные контакты оригинальной шины ISA, поддерживаемые шиной АТА. Например, поскольку первичный контроллер диска АТ задействует лишь линию запроса прерывания 14 (IRQ 14), основной разъем системной платы АТА предоставляет только эту линию запроса, не требуя использования других линий IRQ. Даже в том случае, если интерфейс АТА встроен в такой компонент набора микросхем системной логики, как южный мост или контроллер вводавывода (что типично для современных компьютеров), и работает на высоких тактовых частотах шины данных, схема расположения выводов и функциональное назначение контактов не отличаются от оригинальной конструкции шины ISA.

Примечание!
Многие пользователи полагают, что в компьютерах, в которых разъем IDE установлен на системной плате, контроллер жесткого диска расположен на ней же. На самом деле это не так: контроллер находится в самом жестком диске. Несмотря на то что интегрированные в материнскую плату порты ATA часто называют контроллерами, с технической точки зрения их правильнее было бы называть адаптерами контроллеров (хотя мне никогда не приходилось слышать такой термин), т.е. устройствами, подключающими контроллер к шине.

Через некоторое время 40-контактный разъем и метод построения дискового интерфейса были представлены на рассмотрение в Комитет по стандартам при ANSI. Совместными усилиями этого института и компанийизготовителей были устранены некоторые шероховатости, “подчищены хвосты”, и в марте 1989 года был опубликован стандарт на интерфейсы, известный как CAM ATA. Однако еще до появления этого стандарта многие компании, например Conner Peripherals, вслед за CDC внесли некоторые изменения в первоначальную конструкцию. В результате многие старые накопители ATA очень трудно объединять в двухдисковую конфигурацию, принятую в современных системах. К началу 1990-х годов большинство производителей жестких дисков привели выпускаемые устройства в соответствие официальному стандарту, что решило все проблемы совместимости.

Некоторые разделы стандарта ATA не конкретизированы, и изготовителям предоставлена определенная свобода творчества при введении собственных команд и функций. Кстати, именно поэтому низкоуровневое форматирование накопителей IDE превратилось в столь сложную проблему. Программа форматирования при перезаписи заголовков секторов и создании карты дефектов должна обладать возможностью использования набора команд, разработанного для конкретной модели жесткого диска. К сожалению, при таком подходе размывается само понятие “стандарт”. Большинство производителей жестких дисков публикуют программы низкоуровневого форматирования на своих сайтах поддержки.

Примечание!
Многие путают 16- и 32-разрядные подключения жестких дисков с 16- и 32-разрядными шинами. Подключение к шине PCI позволяет установить 32-разрядное (а в некоторых версиях и 64-разрядное) соединение между шиной и управляющим интерфейсом ATA, который обычно находится в южном мостe или контроллере ввода-вывода набора микросхем системной логики. В то же время параллельный интерфейс PATA между управляющим интерфейсом и самим устройством является 16-разрядным. Таким образом, одновременная передача данных между устройством и управляющим интерфейсом на материнской плате осуществляется всего по 16 каналам. Несмотря на это тактовая частота интерфейса ATA достаточно высока, чтобы обслужить один или два жестких диска при полной утилизации 16-разрядного канала. То же самое справедливо и для интерфейса SATA: несмотря на то что одновременно передается только один бит, этот интерфейс способен обеспечить экстремально высокие скорости передачи данных.

Стандартная шина PАТА представляет собой 16-разрядный параллельный интерфейс, т.е. по интерфейсному кабелю одновременно передается 16 бит данных (разрядов). Интерфейс SATA обеспечивает единовременную передачу по кабелю только одного бита данных, что позволяет уменьшить геометрические размеры используемого кабеля и обеспечить более высокую эффективность его работы, которая достигается за счет повышения циклической частоты передачи информации. На рисунке сравниваются размеры кабелей питания и данных шины SATA с геометрическими параметрами кабелей для параллельного интерфейса АТА (PATA).

Основным преимуществом накопителей АТА по сравнению со старыми интерфейсами, созданными на основе отдельных контроллеров, а также более современными хостинтерфейсами шины данных, к которым относятся SCSI и IEEE-1394 (iLink или FireWire), является их низкая стоимость. Отсутствие отдельных контроллеров или хостадаптеров позволяет упростить структуру кабельного соединения, благодаря чему стоимость накопителей АТА значительно ниже, чем стоимость комбинации стандартного контроллера и накопителя.

В контексте рабочих характеристик накопители АТА являются одними из наиболее эффективных устройств, несмотря на то что могут быть отнесены и к числу довольно низкопроизводительных. Противоречивость этих утверждений стала результатом широкого разнообразия накопителей данного типа. Каждый накопитель посвоему уникален, поэтому сделать какиелибо обобщения практически невозможно. Тем не менее модели высокого класса по своим рабочим характеристикам ничем не уступают накопителям других типов, представленным на рынке однопользовательских однозадачных операционных систем.

Сегодня, уважаемые читатели, я бы хотел поговорить с Вами о том, что такое ATA/ATAPI контроллеры, откуда появился интерфейс IDE и что это такое?

Для начала давайте с Вами усвоим необходимый минимум теории. Когда-то очень давно (еще в прошлом тысячелетии:)) фирма «Western Digital» разработала параллельный интерфейс подключения .

Новым и важным в этом было то, что контроллер (управлявший всеми операциями ввода-вывода) был интегрирован в сам привод, а не вынесен в виде отдельной платы расширения, как раньше. Это позволяло:

  1. убыстрить работу устройства
  2. удешевить производство
  3. и упростить схему обмена данными с накопителем

Давайте сразу разберем основные аббревиатуры, чтобы потом не путаться. Сначала интерфейс получил название «IDE » (Integrated Drive Electronics - "Диск со встроенным контроллером"), но проблема заключалась в том, что это было слишком общее определение, под которое могло подойти много чего, имеющего «диск» и «контроллер». В связи с этим был разработан стандарт, который получил название «ATA » (анг. AT Attachment). После появления устройств SATA, это название было изменено на PATA (Parallel ATA).

Многие компьютерщики иногда говорят IDE вместо ATA или - наоборот. В принципе, это - одно и то же, просто правильнее - ATA:)

Поначалу стандарт работал только с жёсткими дисками, но затем был изменен для работы и с другими устройствами. К таким устройствам относятся приводы CD и DVD-ROM, магнитооптические диски и ленточные накопители. Этот новый (расширенный) стандарт стал называться «Advanced Technology Attachment Packet Interface» (ATAPI ), и поэтому полное его название выглядит как - «ATA/ATAPI ».

Вот как выглядят разъемы этого образца на материнской плате (два нижних, верхний - флоппи диск):

Данный интерфейс развивался во времени и одним из значимых этапов стал переход от программного ввода-вывода данных (PIO - Programmed input-output) к прямому доступу к памяти (DMA - Direct Memory Access). Что это значит? При использовании программного метода ввода-вывода считыванием данных с диска управлял , что приводило к абсолютно лишней на него нагрузке, так как ЦП приходилось заниматься еще и дисковыми операциями.

В то время пальму первенства держал интерфейс обмена данными, носящий название скази («SCSI » - Small Computer System Interface) . Он выгодно отличался высокой скоростью передачи и применялся в высокопроизводительных серверных платформах. Поэтому режим DMA для устройств IDE стал мощным толчком для дальнейшего развития стандарта.

При прямом доступе к памяти потоком данных управляет уже сам накопитель, считывая данные в память и обратно без участия процессора. Роль последнего сводится лишь к отдаче команд на выполнение того или иного действия. При этом жесткий диск выдает сигнал запроса на операцию прямого доступа к памяти. Если операция доступа данный момент возможна, контроллер дает "добро" и диск начинает выдавать данные, а контроллер считывает их в (без участия CPU).

Вот, к слову, как выглядит плата типичного контроллера, устанавливаемая производителями на свои изделия:


Главный чип здесь - MCU (Microcontroller Unit), он и осуществляет управление всеми операциями ввода-вывода накопителя и контролирует его работу.

Примечание: Операция прямого доступа к памяти возможна только тогда, когда такой режим работы поддерживается одновременно «BIOS», контроллером и операционной системой. Иначе система будет работать используя предыдущий режим программного ввода-вывода (PIO).

Всю хронологию развития и достижений на пути становления ATA интерфейса можно представить в виде следующей сводной таблицы.


Как видите (из второй колонки) скорости обмена данными через интерфейс постоянно увеличивались, что, в свою очередь, на этапе внедрения ревизии «Ultra ATA Mode 4» (он же - Ultra DMA/66 со скоростью передачи 66 мегабайт в секунду) вызвало необходимость внедрения нового интерфейсного кабеля с удвоенным количеством проводников (четвертая колонка в таблице).

Для сравнения - оба кабеля рядом:

На цвет не обращайте внимания:) Кабель слева имеет 80 жил (проводников), справа - 40. Как мы видим из таблицы, раньше все кабели имели именно 40 жил. Но дело в том, что с ростом скоростей передачи данных резко возросла роль взаимных помех и наводок отдельных проводников в кабеле друг на друга.

Именно поэтому был введен новый кабель. Причем все дополнительные двадцать пар его проводов это - проводники заземления (Ground), чередующиеся с проводниками информационными. Такое чередование уменьшает емкостную связь между отдельными жилами и, таким образом, сокращает взаимные наводки. Да и если подумать логически, что там еще может быть, если самих контактов (штырьков) на устройстве осталось все так же 40 (без учета "ключа") - по одному на каждый провод. Последующим (более быстрым режимам) «UDMA5» и «UDMA6» также требовался 80-жильный кабель.

Обратите Ваше внимание на колодки обоих кабелей. У них есть "ключ" (пластмассовый «П» образный выступ), который исключает неправильное подключение к разъему. Мало того, у 80-ти жильного кабеля на интерфейсе отсутствует одно из центральных гнезд (на материнских платах тогда начали устанавливать специальный IDE-разъем без центрального контакта), который также выполняет функцию дополнительного "ключа".

Но, - продолжим, чтобы закончить тему о кабелях. При возросших скоростях передачи данных появляется еще одно ограничение - на максимально допустимую длину кабеля. Стандарт ATA всегда устанавливал эту границу в 46 см. В продаже, к примеру, широко распространены кабели от 44-х до 48-ми сантиметров. Встречаются также изделия откровенно превышающие рекомендованный предел и, как Вы понимаете, их использование вряд ли можно рекомендовать.

Чтобы более полно осветить тему добавлю, что бывают еще, так называемые, "круглые" ATA шлейфы.


Выглядят они более благородно, чем свои "плоские" собратья, но, Вы же понимаете, что это снова - не стандарт, а - изделие сторонних производителей, которое должно обеспечивать работу на соответствующих скоростях и соответствовать заявленным характеристикам. Нам надо понимать, что ключевое слово здесь - должно ! :)

На пути своего развития стандарт ATA преодолел много препятствий, которые были заложены именно "в железе". Сначала это было ограничение, связанное с геометрией накопителя. Стандартный PC BIOS поддерживал жестко определенное предельно возможное число головок, секторов и цилиндров из которых состоят жесткие диски (максимально адресуемый размер пространства равнялся тогда 528 мегабайтам).

Это аппаратное ограничение было преодолено введением не физической (как раньше), а логической (условной) адресации, не имеющей уже ничего общего с реальной геометрией накопителя. Появились режимы работы для "больших" дисков «Large» и его преемник - «LBA» (Logical Block Address). Это позволяло адресовать (использовать) уже 8,46 гигабайта дискового пространства.

Со временем, когда объем жестких дисков опять увеличился, было преодолено и это ограничение и планка поднялась до 32-х гигабайт, а затем (с введением 28-ми битного режима адресации) - до невиданного ранее объема в 137 гигабайт! :) Запись 28-ми битного числа, организована методом вписывания его отдельных частей в соответствующие регистры самого диска. Последние спецификации ATA поддерживали уже 48-ми битную адресацию, расширяя возможный предел адресации до 144-х петабайт (1 петабайт - 1024 терабайта).

И тут, казалось бы, когда все ограничения на объем используемых дисков были так героически преодолены выяснилось, что параллельный интерфейс ATA (в том виде, в котором он существует на данный момент) не подходит для дальнейшего развития стандарта. Попытки увеличить его пропускную способность сводятся на нет возникающими вследствие возросших скоростей наводками в кабеле. Укорачивать сам кабель? Тоже не выход из положения.

И вот тут на сцену выходит новый стандарт передачи данных - «SATA » (Serial ATA).

Это - переработанный, и улучшенный вариант предыдущего стандарта. Как Вы помните, АТА - параллельный интерфейс (Parallel), в то время как SATA - последовательный (Serial). В это время и происходит переименование отживающего свое «ATA » в «PATA » (Parallel ATA), однозначно указывая, таким образом, что это - параллельный интерфейс передачи данных.

Несмотря на то, что последовательный способ передачи медленнее, в данном случае это компенсируется возможностью работы на более высоких частотах. Отпадает необходимость в синхронизации каналов. Также сам интерфейсный кабель гораздо более помехоустойчив (все его 7 жил отдельно экранированы). Это, в свою очередь, дало возможность довести максимальную длину кабеля до одного метра.

В стандарте «SATA» Изменился также сам принцип передачи данных. Он получил название LVDS - низковольтная дифференциальная передача сигналов (англ. low-voltage differential signaling). Повышение скорости передачи и использование самосинхронизирующихся кодов позволяют отправлять больше данных по меньшему количеству проводов, чем в случае параллельной шины.

За время своего существования новая спецификация успела сменить несколько ревизий (поколений), которые характеризуются все увеличивающейся пропускной способностью интерфейса.

  • SATA-1 150 МБ/с (мегабайт в секунду)
  • SATA-2 300 МБ/с (мегабайт в секунду)
  • SATA-3 600 МБ/с (мегабайт в секунду)

Тут надо понять следующее: все эти бешеные скорости это - скорость передачи данных по интерфейсному кабелю (от контроллера, с использованием предварительного кеширования и т.д.). И какая бы большая цифра здесь не была написана, реально нас должна интересовать скорость чтения/записи непосредственно с самих пластин (блинов) жесткого диска. Ведь именно она является узким местом в его быстродействии. Другое дело, что в новых моделях реализованы более совершенные алгоритмы по работе с данными, оптимизирована работа с кеш памятью устройства и т.д.

На данный момент (в стандартных настольных конфигурациях) Вы вряд ли увидите скорость чтения с пластин, превышающую 100-120 мегабайт в секунду. Как видите, эта цифра только сейчас подошла к пределу пропускной способности старого стандарта Ultra ATA 133 (133 мегабайта в секунду). Как мы говорили выше, скорости передачи в SATA достигаются за счет другого, а все эти "300", и "600" мегабайт в секунду (три и шесть гигабит в секунду, соответственно) - работа на перспективу (), а при их чрезмерном выпячивании - бессмысленная реклама, сбивающая с толку неподготовленного пользователя.

О чем это мы? Ах, да! О преимуществах сата: надо также помнить, что каждое SATA устройство располагается на отдельном канале (контроллере), поэтому отпадает необходимость в их конфигурировании с помощью перемычек (джамперов).

Хотя, справедливости ради стоит отметить, что на ранних этапах внедрения нового стандарта на SATA жестких дисках можно было обнаружить джамперы, но они использовались редко и то лишь для принудительного перевода накопителя SATA-2 в режим SATA-1 (для совместимости с первым поколением контроллеров).

Вот так друзья, коротко мы разобрали основные понятия, связанные с интерфейсом ATA/ATAPI. Теперь смело нажимайте на ссылку "следующая", переходим к практической части материала.

Интерфейс ATA (IDE) является одним из самых долгих по времени использования в устройствах (компьютерах), появился он еще в 1986 г (когда первый жесткий диск 30+30 мб был уже в 1973 г) и используется по сей день (постепенно интерфейс IDE вытесняет интерфейс SATA) для подключения жестких дисков или приводов. После появления на рынке SATA, был переименован в PATA - Parallel ATA.

  • Интерфейс ATA (IDE)
  • Скорость передачи IDE
  • Я долгое время использую IDE диски и все никак не могу перейти на SATA, и даже на момент написания этой статьи, я также использую IDE 3.5/40 Gb, а современные обьемы для меня мягко говоря слишком огромные, но думаю все же в скором времени буду использовать диски с SATA интерфейсом.


    История интерфейса ATA/PATA (IDE)

    Первая версия была разработана в 1986-ом году компанией Western Digital и получали название IDE, что с английского Integrated Drive Electronics - «электроника, встроенная в привод». Этому послужило новшество того времени, контроллер размещался непосредственно в самом приводе, а не в виде отдельной платы как это было в других интерфейсах того времени - к примеру в SCSI. В связи с этим, расстояние до контроллера было уменьшено, за счет чего увеличились характеристики привода. Это позволило удешевить производство, так как контроллер был рассчитан только на родной привод, другого варианта быть не может.

    Интерфейс изначально был рассчитан на работу с жесткими дисками, однако со временем стандарт был расширен для использования с такими устройствами как DVD-ROM, CD-ROM, ленточными накопители, дискеты большого обьема (ZIP, флоптические).

    Но не сразу стандартизован был интерфейс подключения к CD-ROM, это скорее было проприетарными разработками фирм, выпускавшие приводы. Поэтому для подключения CD-ROM было необходимо сперва установить отдельную плату расширения, которая направлена на работу с определенным производителем. Некоторые звуковые карты были оснащены именно таким разьемом, поэтому обычным делом было когда вместе с CD-ROM приводом в комплекте продавались звонковые карты, так как это было на то время оптимальным решением.

    После этого, важным изменением в развитии интерфейса ATA/PATA стало использования вместо PIO - DMA. При использовании PIO процессом считывания с диска управлял центральный процессор, это было заметно на сниженном быстродействии. Поэтому системы, которые использовали интерфейс ATA работали намного медленнее с диском, чем те, которые использовали интерфейс SCSI (или другие). DMA существенно облегчил этот процесс и снизил затраты центрального процессора во время считывания.

    Однако были и положительные стороны у режима PIO - не требовались драйвера, поэтому использование этого режима было оптимальных на то время для однозадачных режимов.

    При использовании технологии DMA, роль управления потоком данных берет на себя сам накопитель, работа с памятью происходит почти без участия процесса, который в свою очередь выдает только команды на выполнение той или иной задачи.

    Последние IDE-диски (то есть относительно современные) «умеют» использовать эту возможность, сочетая с возможностью перехвата управления шиной и в результате полностью управлять процессом передачи данных.

    Однако использование DMA возможно только в том случае, когда операционная система, BIOS и контроллер поддерживают этот режим, в остальных случая используется только режим PIO.

    Со временем был введен дополнительный режим - UltraDMA 2 (UDMA 33), в этом режиме данные передаются как при переднем так и при заднем фронте сигнала DIOR/DIOW. Это увеличивает скорость вдвое, помимо этого проверяется четность CRC (последовательность бит, которая была получена по определенному алгоритму и при этом основываясь на другой битовой последовательности - исходной), что только повышает надежность передачи.

    Интерфейс ATA (IDE)

    Вообще «оригинальный» интерфейс АТА не предназначен для подключения каких либо устройств, кроме как жестких дисков и не поддерживает возможности ATAPI, при которых возможно подключение и других устройств а также использование режим передачи block mode и LBA.

    Для подключения устройств с разьемом IDE (PATA), обычно применяется 40-жильный проводной кабель (другими словами - шлейф). Такой шлейф может иметь как два, так и три разьема. Один разьем соответственно подключается к материнской плате, а другой к жесткому диску, свободный раздел можно также подключить как к накопителю, так и к оптическому приводу. В материнских платах старого образца, разьем IDE был в виде отдельной платы расширения. Встречаются также IDE шлейфы для подключения трех дисков к одному каналу, но в таком случае один из дисков будет в режиме «только чтение».

    Шлейф IDE, как уже писалось выше, представляет собой 40-контактный кабель, однако с появлением Ultra DMA/66 (UDMA 4), появилась еще одна его разновидность - 80-ти жильный кабель. Все дополнительные проводники, ничто иное как элементы заземления, которые чередуются с информационными проводниками. В результате количество проводников заземления с 7-ми увеличилось до 47-ми. Проводники заземления необходимы для уменьшения емкостной связи, что в свою очередь сокращает взаимные наводки. Именно при высоких скоростях, емкостная связь была преградой, поэтому для обеспечения скорости 66 Мб/с стандарта Ultra DMA/66, был применен новый кабель. Другие режимы UDMA также требуют использование такого кабеля (шлейфа).

    Длина кабеля всегда составляла не больше 46 см, что затрудняло подключение и правильное расположение жесткого диска в северных корпусах, и исключает использование дисков PATA в роли внешних. На рынке представлены кабели больше стандартной длины, однако это не соответствуют стандарту. Это не означает что они не будут передавать данные должным образом, как и при нестандартном кабеле - не плоском, а «круглом». Стандарт PATA предполагает использование кабелей только определенной длины, с конкретными характеристиками сопротивлений (как полного, так и емкостного). Поэтому нужно необходимо осторожно относится к таким «нестандартным» кабелям.

    Если на одном канале (шлейфе) используется не одно IDE-устройство, то в таком случае одно из них должно быть ведущим (master), а второе - ведомым (slave). Обычно в цепочке первым расположен ведущий диск, после которого уже ведомый. Также и в BIOS первым диском в списке выступает ведущий, после которого - ведомый.

    При использовании одного устройства на одном шлейфе, то он должен быть ведущим (master). Некоторые диски имеют специальный джампер для такого случая (single). Впрочем на одном кабеле, одно устройство может работать как ведущим так и ведомым.

    Также существует настройка cable select, при которой диск сам определяет свой тип. Впервые такая опция была предложена в спецификации ATA-1, но распространенной стала только с выходом ATA-5. Настройка cable select исключает переставление перемычек в любом положении дисков/приводов. Но для работоспособности этой настройки, необходимо чтобы шлейф был с кабельной выборкой.

    При использовании 40-контактного кабеля настройку cable select проводили простым способом, а именно перерезанием 28-го контакта между двумя разьемами, что приводило к тому, что устройство на конце кабеля являлось ведомым, а ведущим - то которое идет перед ним. Такое размещение со временем было даже стандартом. Но когда на кабеле располагалось только одно устройство, то это приводило к образованию ненужного куска кабеля, что к тому же могло служить отражателем сигнала и провоцировать помехи.

    80-ти проводниковые кабели лишены данных недостатков, так как ведущее устройство всегда находится в конце кабеля, поэтому при подключении одного устройства - нет лишнего куска кабеля. Кабельная выборка у них заводская, то есть в самом разьеме данный контакт исключен. Для удобства разьемы на кабелях отличаются цветом, хотя на это мало кто обращает внимание. Синий предназначен для к контроллера, черный к ведущему, а серый - к ведомому устройству.

    Скорость передачи IDE

    При использовании жесткого диска IDE (ATA/PATA), скорость определяется в основном по двум параметрам. Внутренняя скорость передачи непосредственно между магнитной составляющей и внутренним буфером диска и определяется плотностью записи, скоростью вращения и другими параметрами, которые зависят в первую очередь не от интерфейса, а от конструкции диска. Также в большой степени на скорость работы диска IDE влияет используемый режим передачи данных. На первых порах использования дисков скорость дисковой подсистемы определялась внутренней скоростью передачи данных, которая была значительно меньшей. Сегодня, когда плотность записи намного выше и за один участок времени или оборота снять/считать ее пропорционально возможно больше, а также с увеличением частоты вращения, в первую очередь рассматривается именно внешняя скорость передачи.

    Памятка при конфигурации устройств IDE/ATA

    Если вы собрались сконфигурировать IDE-устройства, буд-то жесткий диск или CD-ROM/DVD-ROM, следует учитывать следующие тонкости или рекомендации:

    Каждый канал IDE за единицу времени может обработать только одну команду к одному устройству, то есть, если на канале (шлейфе) есть также еще устройства (к примеру два жестких диска), то доступ к другому жесткому диску будет только при условии обработки команды к первому. Именно поэтому рекомендуется использовать при возможности на одно устройство - один канал, именно это и является основным преимуществом SCSI (к примеру использование два жестких диска);

    Чипсеты материнских плат, которые оснащены IDE-контроллером, поддерживают разные режимы передачи данных для устройства, тем не менее если устройства имеют значительные отличия по скорости, то лучше их разместить на разных каналах IDE;

    Не рекомендуется подключать на одном канале IDE жесткий диск и CD-ROM, так последний использует другую систему команд и это может отразится на работе жесткого диска не в лучшую сторону, во-вторых даже самые быстры ATAPI-устройства не способы даже конкурировать со скоростью IDE, поэтому это также может замедлить скорость работы жесткого диска.

    Понравилась статья? Поделиться с друзьями: