Что такое собственная частота колебательного контура. Колебательный контур: принцип работы, виды контуров, параметры и характеристики

Практический расчет последовательного или параллельного LC контура.

Доброго дня уважаемые радиолюбители!
Сегодня мы с вами рассмотрим порядок расчета LC контура .

Некоторые из вас могут спросить, а на черта нам это нужно? Ну, во-первых, лишние знания никогда не помешают, а во-вторых, бывают в жизни моменты, когда вам знание этих расчетов может понадобиться. К примеру, очень многие начинающие радиолюбители (естественно, в основном молодые), увлекаются сборкой так называемых “жучков” – устройств позволяющих на расстоянии прослушивать что-нибудь. Конечно я уверен, что это делается без всяких нехороших (даже грязных) мыслей подслушать кого-нибудь, а в благих целях. Например устанавливают “жучок” в комнате с малышом, а на радиовещательный приемник прослушивают не проснулся ли он. Все схемы “радиожучков” работают на определенной частоте, но что делать, когда эта частота вас не устраивает. Вот тут вам придет на помощь знание нижеприведенной статьи.

LC колебательные контура применяются практически в любой аппаратуре, работающей на радиочастотах. Как известно из курса физики, колебательный контур состоит из катушки индуктивности и конденсатора (емкости), которые могут быть включены параллельно (параллельный контур ) или последовательно (последовательный контур ), как на рис.1:

Реактивные сопротивления индуктивности и емкости, как известно, зависят от частоты переменного тока. При увеличении частоты реактивное сопротивление индуктивности растет, а емкости – падает. При уменьшении частоты, наоборот, индуктивное сопротивление падает, а емкостное – растет. Таким образом, для каждого контура есть некоторая частота резонанса, на которой индуктивное и емкостное сопротивления оказываются равными. В момент резонанса резко увеличивается амплитуда переменного напряжения на параллельном контуре или резко увеличивается амплитуда тока на последовательном контуре. На рис.2 показан график зависимости напряжения на параллельном контуре или тока на последовательном контуре от частоты:

На частоте резонанса эти величины имеют максимальное значение. А полоса пропускания контура определяется на уровне 0,7 от максимальной амплитуды, которая есть на частоте резонанса.

Теперь перейдем к практике. Предположим нам нужно сделать параллельный контур, имеющий резонанс на частоте 1 МГц. Прежде всего нужно сделать предварительный расчет такого контура. То есть, определить необходимую емкость конденсатора и индуктивность катушки. Для предварительного расчета есть упрощенная формула:

L=(159,1/F) 2 /C где:
L – индуктивность катушки в мкГн;
С – емкость конденсатора в пФ;
F – частота в МГц

Зададимся частотой 1 МГц и емкостью, к примеру, 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом, если мы захотим контур на частоту 1 МГц, то нужен конденсатор на 1000 пФ и индуктивность на 25 мкГн. Конденсатор можно подобрать, а вот индуктивность нужно сделать самостоятельно.

N=32 *√(L/D) где:
N – требуемое число витков;
L – заданная индуктивность в мкГн;
D – диаметр каркаса в мм, на котором предполагается намотать катушку.

Предположим, диаметр каркаса – 5 мм, тогда:

N=32*√(25/5) = 72 витка.

Данная формула является приближенной, она не учитывает собственную межвитковую емкость катушки. Формула служит для предварительного вычисления параметров катушки, которые затем настраиваются при настройке контура.

В радиолюбительской практике чаще используются катушки с подстроечными сердечниками из феррита, имеющими длину 12-14 мм и диаметр 2,5 – 3 мм. Такие сердечники, например, применяются в контурах телевизоров и приемников. Для предварительного расчета числа витков для такого сердечника есть другая приближенная формула:

N=8,5*√L , подставляем значения для нашего контура N=8,5*√25 = 43 витка . То есть, в таком случае на потребуется намотать на катушку 43 витка провода.

Колебательный контур представляет собой простую электрическую цепь, состоящую из катушки индуктивности и емкости конденсатор. В такой схеме могут возникать колебания тока или напряжения. Резонансная частота таких колебаний определяется по формуле Томсона.

Эта разновидность LC колебательного контура (КК) простейший пример резонансной колебательной цепи. Состоит из последовательно соединенных катушки индуктивности и емкости. При протекание через такую схему переменного тока, величина его определяется по : I = U / Х Σ , где Х Σ - сумма реактивных сопротивлений катушки индуктивности и емкости.

Напомню зависимости реактивного сопротивления емкости и индуктивности от частоты напряжения их формулы выглядят вот так:

Из формул хорошо видно, что с ростом частоты, реактивное сопротивление индуктивности увеличивается. В отличии от катушки, у конденсатора при увеличении частоты, реактивное сопротивление снижается. На рисунке ниже приведены графические зависимости реактивных сопротивлений катушки индуктивности X L и емкости Х C от циклической частоты омега ω , и график зависимости ω от их алгебраической суммы Х Σ . График показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура состоящего из конденсатора и индуктивности.

Из графика хорошо видно, что на определенной частоте ω=ω р , реактивные сопротивления индуктивности и емкости совпадают по значению, но противоположны по знаку, а общее сопротивление цепи равно нулю. На этой частоте в контуре будет протекать максимально возможный ток, ограниченный только омическими потерями в индуктивности (т.е. активным сопротивлением катушки) и внутренним активным сопротивлением источника тока. Эту частоту, при которой происходит это явление называют частотой резонанса. Кроме того из графика можно сделать следующий вывод: на частотах, ниже резонансной частоты реактивное сопротивление последовательного КК имеет емкостной фактор, а на более высоких частотах носит индуктивный характер. Резонансная частоты, может быть найдена при помощи формулы Томсона, которая легко выводится из формул реактивных сопротивлений обоих компонентов КК, приравняв их реактивные сопротивления:

На рисунке ниже, отобразим эквивалентную схему последовательного резонансного контура с учетом активных омических потерь R , при идеальном источнике тока гармонического напряжения с определенной амплитудой U . Полное сопротивление, или его еще называют импедансом схемы вычисляется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На частоте резонанса, когда обои реактивные сопротивления X L = ωL и Х С = 1/ωС равны по модулю, X Σ стремится к нулю и носит только активный характер, а ток в схеме вычисляется отношением амплитуды напряжения источника тока к сопротивлению потерь по закону Ома: I= U/R . При этом на катушке и емкости, в которых имеется запас реактивных составляющих энергии, падает одинаковое значение напряжения, т.е U L = U С = IX L = IX С .

На любой частоте, кроме резонансной, напряжения на индуктивности и емкости отличаются - они зависят от амплитуды тока в схеме и номиналами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений .

Очень важными характеристиками КК также являются его волновое сопротивление ρ и добротность КК Q . Волновым сопротивлением ρ считают величину реактивного сопротивления обоих компонентов (L,C) на резонансной частоте: ρ = Х L = Х C при ω =ω р . Волновое сопротивление можно рассчитать по следующей формуле: ρ = √(L/C) . Волновое сопротивление ρ считается количественной мерой оценки энергии, сохраненными реактивными компонентами контура - W L = (LI 2)/2 и W C =(CU 2)/2 . Отношение энергии, сохраненными реактивными элементами КК, к энергии резистивных потерь за период называют добротностью Q КК. Добротность колебательного контура - величина, определяющая амплитуду и ширину амплитудно частотной характеристики резонанса и говорящая о том, во сколько раз сохраненной энергии в КК больше, чем потери энергии за единичный период колебаний. Добротность кроме того учитывает и активного сопротивление R . Для последовательного КК в RLC цепях, в котором все три пассивных компонента соединены последовательно, добротность вычисляется по выражению:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи КК.

Величину, обратную добротности d = 1 / Q физики назвали затуханием КК. Для определения добротности обычно применяют выражение Q = ρ / R , где R -сопротивление омических потерь КК, характеризующее мощность активных потерь КК Р = I 2 R . Добротность большинства колебательных контуров варьируется от нескольких единиц до сотни и выше. Добротность таких колебательных систем, как пьезоэлектрические или может быть нескольких тысяч и даже больше.

Частотные свойства КК обычно оценивают с помощью АЧХ, при этом сами схемы рассматривают как четырёхполюсники. На рисунках ниже отображены элементарные четырехполюсники, содержащие последовательный КК и АЧХ этих цепей. По оси Х графиков отложен коэффициент передачи схемы по напряжению К, или отношение выходного напряжения к входному.

Для пассивных схем (не имеющих усилительных элементов и источников энергии), величина К никогда не выше единицы. Сопротивление переменному току, будет минимально при резонансной частоте. Тогда коэффициент передачи стремится к единице. На частотах, отличных от резонансной, сопротивление КК переменному току велико и коэффициент передачи будет близок к нулевым значениям.

При резонансе источник входного сигнала практически замкнут накоротко низким сопротивлением КК, поэтому коэффициент передачи падает почти до нуля. Наоборот, при частотах входного воздействия, отстоящих от резонансной, коэффициент стремится к единице. Свойство КК изменять коэффициент передачи на частотах, около резонансных, широко применяется в радиолюбительской практике, когда необходимо выделить сигнал с требуемой частотой из множества подобных, но на других частотах. Так, в любом радиоприемнике при помощи КК выполняется настройка на частоту требуемой радиостанции. Свойство выделять из множества частот только одну называют селективностью. При этом интенсивность изменения коэффициента передачи при настройке частоты воздействия от резонанса описывают полосой пропускания. За нее берется диапазон частот, в диапазонах которого уменьшение (увеличение) коэффициента передачи относительно его значения на резонансной частоте, не выше 0,7 (дБ).

Пунктирными линиями на рисунках обозначены АЧХ подобных цепей, КК которых имеют такие же резонансы, но обладающие меньшей добротностью. Как видим из графиков, при этом увеличивается полоса пропускания и уменьшается ее селективность.

В данной цепи параллельно соединены два реактивных элемента с разным уровнем реактивности. На рисунке ниже рассмотрены графические зависимости реактивных проводимостей индуктивности B L = 1/ωL и емкости конденсатора В C = -ωC , а также общей проводимости В Σ . И в этом колебательном контуре, имеется резонансная частота на которой реактивные сопротивления обоих компонентов одинаковы. Это говорит о том, что на этой частоте параллельный КК обладает огромным сопротивлением переменному току.


Сопротивление реального параллельного КК (с потерями), разумеется, не стремится к бесконечности - оно тем ниже, чем выше омическое сопротивление потерь в контуре, т.е снижается прямо пропорционально уменьшению добротности.

Рассмотрим простейшую цепь, состоящую из источника гармонических колебаний и параллельного КК. Если, собственная частота колебаний генератора (источника напряжения) совпадает с резонансной частотой контура, то индуктивная и емкостная ветви оказывают одинаковое сопротивление переменному току, и токи в ветвях будут совершенно одинаковыми. Поэтому уверенно скажем, что в этой схеме имеет место резонанс токов . Реактивности обоих компонентов вполне успешно компенсируют друг друга, и сопротивление КК протекающему току становится полностью активным (имеет только резистивную составляющую). Величина этого сопротивления, вычисляется произведением добротности КК на характеристическое сопротивление R экв = Q·ρ . На других частотах сопротивление параллельного КК падает и приобретает реактивный характер на более низких индуктивный, а на более высоких - емкостной.

Рассмотрим, зависимость коэффициентов передачи четырехполюсников от частоты в данном случае.


Четырехполюсник, на частоте резонанса представляет собой достаточно большое сопротивление протекающему переменному току, поэтому при ω=ω р его коэффициент передачи стремится к нулю (и это даже с учетом реальных омических потерь). На прочих частотах, отличных от резонансной, сопротивление КК будет падать, а коэффициент передачи четырехполюсника - увеличиваться. Для четырехполюсника второго варианта, ситуация будет диаметрально противоположной - на резонансной частоте КК будет оказывать очень большое сопротивление, т.е коэффициент передачи будет максимален и стремится к единице). При существенном отличии частоты от резонансной, источник сигнала, окажется практически зашунтированным, а коэффициент передачи будет стремится к нулю.

Предположим нам нужно изготовить параллельный КК, с частотой резонанса 1 МГц. Осуществим предварительный упрощенный расчет такого КК. То есть, вычислим необходимые значения емкости и индуктивности. Воспользуемся упрощенной формулой:

L=(159,1/F) 2 / C где:

L индуктивность катушки в мкГн; С емкость конденсатора в пФ; F резонансная частота в МГц

Зададимся частотой в 1 МГц и емкостью 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом если в нашей радиолюбительской самоделки используется КК на частоту 1 МГц, то нам необходимо взять емкость на 1000 пФ и индуктивность на 25 мкГн. Конденсатор достаточно легко подобрать, а вот индуктивность ИМХО проще изготовить самостоятельно.

Для этого рассчитаем число витков для катушки без сердечника

N=32 *v(L/D) где:

N необходимое число витков; L заданная индуктивность в мкГн; D диаметр каркаса катушки.

Предположим, диаметр каркаса 5 мм, тогда:

N=32*v(25/5) = 72 витка

Данная формула считается приближенной, она совершенно не учитывает собственную межвитковую емкость индуктивности. Формула служит для предварительного расчета параметров катушки, которые затем подстраиваются при регулировке контура в устройстве.

В радиолюбительской практике очень часто применяются катушки с подстроечным сердечником из феррита, обладающие длиной 12-14 мм и диаметром 2,5 - 3 мм. Такие сердечники, активно используются в колебательных контурах приемников.

Под электрическими колебаниями понимают периодические изменения заряда, силы тока и напряжения. Простейшая система, в которой возможны свободные электрические колебания, - это так называемый колебательный контур. Это устройство, состоящее из соединенных между собой конденсатора и катушки. Будем полагать, что активное сопротивление катушки отсутствует, в этом случае контур называют идеальным. При сообщении этой системе энергии в ней будут происходить незатухающие гармонические колебания заряда на конденсаторе, напряжения и тока.

Сообщить колебательному контуру энергию можно разными способами. Например, зарядив конденсатор от источника постоянного тока или возбудив ток в катушке индуктивности. В первом случае энергией обладает электрическое поле между обкладками конденсатора. Во втором, энергия заключена в магнитном поле тока, текущего по цепи.

§1 Уравнение колебаний в контуре

Докажем, что при сообщении контуру энергии в нем будут происходить незатухающие гармонические колебания. Для этого необходимо получить дифференциальное уравнение гармонических колебаний вида .

Допустим, конденсатор зарядили и замкнули на катушку. Конденсатор начнет разряжаться, по катушке потечет ток. Согласно второму закону Кирхгофа сумма падений напряжений вдоль замкнутого контура равна сумме ЭДС в этом контуре .

В нашем случае падение напряжения поскольку контур идеальный. Конденсатор в цепи ведет себя как источник тока, в качестве ЭДС выступает разность потенциалов между обкладками конденсатора , где - заряд на конденсаторе, - электроемкость конденсатора. Кроме того, при протекании через катушку изменяющегося тока в ней возникает ЭДС самоиндукции , где - индуктивность катушки, - скорость изменения тока в катушке. Поскольку ЭДС самоиндукции препятствует процессу разрядки конденсатора второй закон Кирхгофа принимает вид

Но ток в контуре – это ток разрядки или зарядки конденсатора, следовательно . Тогда

Дифференциальное уравнение преобразуется к виду



Введя обозначение , получим известное нам дифференциальное уравнение гармонических колебаний .

Это означает, что заряд на конденсаторе в колебательном контуре будет изменяться по гармоническому закону

где - максимальное значение заряда на конденсаторе, - циклическая частота, - начальная фаза колебаний.

Период колебаний заряда . Это выражение носит название формулы Томпсона.

Напряжение на конденсаторе

Ток в цепи

Видим, что кроме заряда на конденсаторе по гармоническому закону будут изменять еще ток в контуре и напряжение на конденсаторе. Напряжение колеблется в одной фазе с зарядом, а сила тока опережает заряд по

фазе на .

Энергия электрического поля конденсатора

Энергия магнитного поля тока

Таким образом, энергии электрического и магнитного полей тоже изменяются по гармоническому закону, но с удвоенной частотой.

Подведем итог

Под электрическими колебаниями следует понимать периодические изменения заряда, напряжения, силы тока, энергии электрического поля, энергии магнитного поля. Эти колебания, как и механические, могут быть как свободными, так и вынужденными, гармоническим и негармоническим. Свободные гармонические электрические колебания возможны в идеальном колебательном контуре.

§2 Процессы, происходящие в колебательном контуре

Мы математически доказали факт существования свободных гармонических колебаний в колебательном контуре. Однако, остается неясным, почему такой процесс возможен. Что является причиной возникновения колебаний в контуре?

В случае свободных механических колебаний такая причина была найдена – это внутренняя сила, возникающая при выведении системы из по- ложения равновесия. Эта сила в любой момент направлена к положению равновесия и пропорциональна координате тела (со знаком «минус»). Попробуем найти аналогичную причину возникновения колебаний в колебательном контуре.

Пусть колебания в контуре возбуждают, зарядив конденсатор и замкнув его на катушку.

В начальный момент времени заряд на конденсаторе максимален. Следовательно, напряжение и энергия электрического поля конденсатора тоже максимальны.

Ток в контуре отсутствует, энергия магнитного поля тока равна нулю.

Первая четверть периода – разрядка конденсатора.

Обкладки конденсатора, имеющие разные потенциалы, соединили проводником, поэтому конденсатор начинает разряжаться через катушку. Заряд, напряжение на конденсаторе и энергия электрического поля убывают.

Ток, появившийся в цепи, нарастает, однако, его нарастанию препятствует ЭДС самоиндукции, возникающая в катушке. Энергия магнитного поля тока увеличивается.

Прошла четверть периода - конденсатор разрядился.

Конденсатор разрядился, напряжение на нем стало равным нулю. Энергия электрического поля в этот момент тоже равна нулю. По закону сохранения энергии исчезнуть она не могла. Энергия поля конденсатора полностью перешла в энергию магнитного поля катушки, которая в этот момент достигает своего максимального значения. Максимален ток в цепи.

Казалось бы, в этот момент ток в цепи должен прекратиться, ибо исчезла причина возникновения тока – электрическое поле. Однако, исчезновению тока опять таки препятствует ЭДС самоиндукции в катушке. Теперь она будет поддерживать убывающий ток, и он будет продолжать течь в прежнем направлении, заряжая конденсатор. Начинается вторая четверть периода.

Вторая четверть периода – перезарядка конденсатора.

Ток, поддерживаемый ЭДС самоиндукции, продолжает течь в прежнем направлении, постепенно уменьшаясь. Этот ток заряжает конденсатор в противоположной полярности. Заряд и напряжение на конденсаторе увеличиваются.

Энергия магнитного поля тока, убывая, переходит в энергию электрического поля конденсатора.

Прошла вторая четверть периода – конденсатор перезарядился.

Конденсатор перезаряжается до тех пор, пока существует ток. Поэтому в тот момент, когда ток прекращается, заряд и напряжение на конденсаторе принимают максимальное значение.

Энергия магнитного поля в этот момент полностью перешла в энергию электрического поля конденсатора.

Ситуация в контуре в этот момент, эквивалентна исходной. Процессы в контуре повторятся, но в обратном направлении. Одно полное колебание в контуре, длящееся в течение периода, закончится, когда система вернется в исходное состояние, то есть когда конденсатор перезарядится в первоначальной полярности.

Нетрудно видеть, что причиной возникновения колебаний в контуре служит явление самоиндукции. ЭДС самоиндукции препятствует изменению тока: она не дает ему мгновенно нарастать и мгновенно исчезать.

Кстати, будет не лишним сопоставить выражения для расчета квазиупругой силы в механической колебательной системе и ЭДС самоиндукции в контуре:

Ранее были получены дифференциальные уравнения для механической и электрической колебательной систем:

Несмотря на принципиальные отличия физических процессов к механических и электрических колебательных системах, явно просматривается математическая тождественность уравнений, описывающих процессы в этих системах. Об этом следует поговорить подробнее.

§3 Аналогия между электрическими и механическими колебаниями

Внимательный анализ дифференциальных уравнений для пружинного маятника и колебательного контура, а так же формул, связывающих величины, характеризующих процессы в этих системах, позволяет выявить, какие величины ведут себя одинаково (таблица 2).

Пружинный маятник Колебательный контур
Координата тела () Заряд на конденсаторе ()
Скорость тела Сила тока в контуре
Потенциальная энергия упруго деформированной пружины Энергия электрического поля конденсатора
Кинетическая энергия груза Энергия магнитного поля катушки с током
Величина, обратная жесткости пружины Емкость конденсатора
Масса груза Индуктивность катушки
Сила упругости ЭДС самоиндукции, равная напряжению на конденсаторе

Таблица 2

Важно не просто формальное сходство между величинами, описывающими процессы колебания маятника и процессы в контуре. Тождественны сами процессы!

Крайние положения маятника эквивалентны состоянию контура, когда заряд на конденсаторе максимален.

Положение равновесия маятника эквивалентно состоянию контура, когда конденсатор разряжен. В этот момент сила упругости обращается в ноль, а в контуре отсутствует напряжение на конденсаторе. Скорость маятника и сила тока в контуре максимальны. Потенциальная энергия упругой деформации пружины и энергия электрического поля конденсатора равны нулю. Энергия системы состоит из кинетической энергии груза или из энергии магнитного поля тока.

Разрядка конденсатора протекает аналогично движению маятника из крайнего положения в положение равновесия. Процесс перезарядки конденсатора тождественен процессу удаления груза из положения равновесия в крайнее положение.

Полная энергия колебательной системы или остается неизменной с течением времени.

Подобная аналогия может быть прослежена не только между пружинным маятником и колебательным контуром. Всеобщи закономерности свободных колебаний любой природы! Эти закономерности, проиллюстрированные на примере двух колебательных систем (пружинном маятнике и колебательном контуре) не просто можно, а нужно видеть в колебаниях любой системы.

В принципе, можно решить задачу о любом колебательном процессе, заменив его колебаниями мятника. Для этого достаточно грамотно построить эквивалентную механическую систему, решить механическую задачу и провести замену величин в окончательном результате. Например, нужно найти период колебаний в контуре, содержащем конденсатор и две катушки, соединенные параллельно.

Колебательный контур содержит один конденсатор и две катушки. Поскольку катушка ведет себя как груз пружинного маятника, а конденсатор как пружина, то эквивалентная механическая система должна содержать одну пружину и два груза. Вся проблема в том, как грузы прикреплены к пружине. Возможны два случая: один конец пружины закреплен, а к свободному концу прикреплен один груз, второй находится на первом или грузы прикреплены к разным концам пружины.

При параллельном соединении катушек разной индуктивности токи по ним текут разные. Следовательно, скорости грузов в тождественной механической системе тоже должны быть разными. Очевидно, это возможно лишь во втором случае.

Период этой колебательной системы нами уже найден. Он равен . Заменяя массы грузов на индуктивности катушек, а величину, обратную жесткости пружины, на емкость конденсатора, получаем .

§4 Колебательный контур с источником постоянного тока

Рассмотрим колебательный контур, содержащий источник постоянного тока. Пусть конденсатор первоначально не заряжен. Что будет происходить в системе после замыкания ключа К? Будут ли в этом случае наблюдаться колебания и какова их частота и амплитуда?

Очевидно, после замыкания ключа конденсатор начнет заряжаться. Записываем второй закон Кирхгофа:

Ток в контуре – это ток зарядки конденсатора, следовательно . Тогда . Дифференциальное уравнение преобразуется к виду

*Решаем уравнение заменой переменных.

Обозначим . Дифференцируем дважды и с учетом того, что , получаем . Дифференциальное уравнение приобретает вид

Это дифференциальное уравнение гармонических колебаний, его решением является функция

где - циклическая частота, константы интегрирования и находятся из начальных условий.

Заряд на конденсаторе меняется по закону

Сразу после замыкания ключа заряд на конденсаторе равен нулю и ток в контуре отсутствует . С учетом начальных условий получаем систему уравнений:

Решая систему, получаем и . После замыкания ключа заряд на конденсаторе изменяется по закону .

Нетрудно видеть, что в контуре происходят гармонические колебания. Наличие в контуре источника постоянного тока не повлияло на частоту колебаний, она осталась равной . Изменилось «положение равновесия» - в тот момент, когда ток в цепи максимален, конденсатор заряжен. Амплитуда колебаний заряда на конденсаторе равна Cε.

Этот же результат можно получить проще, используя аналогию между колебаниями в контуре и колебаниями пружинного маятника. Источник постоянного тока эквивалентен постоянному силовому полю, в которое помещен пружинный маятник, например, полю тяготения. Отсутствие заряда на конденсаторе в момент замыкания цепи тождественно отсутствию деформации пружины в момент приведения маятника в колебательное движение.

В постоянном силовом поле период колебаний пружинного маятника не изменяется. Период колебаний в контуре ведет себя так же – он остается неизменным при введении в контур источника постоянного тока .

В положении равновесия, когда скорость груза максимальна, пружина деформирована:

Когда ток в колебательном контуре максимален . Второй закон Кирхгофа запишется следующим образом

В этот момент заряд на конденсаторе равен Этот же результат можно было получить на основании выражения (*), выполнив замену

§5 Примеры решения задач

Задача 1 Закон сохранения энергии

L = 0,5 мкГн и конденсатора емкостью С = 20 пФ происходят электрические колебания. Чему равно максимальное напряжение на конденсаторе, если амплитуда тока в контуре 1 мА? Активное сопротивление катушки пренебрежимо мало.

Решение:

(1)

2 В тот момент, когда напряжение на конденсаторе максимально (максимален заряд на конденсаторе), ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

(2)

3 В момент, когда ток в цепи максимален, конденсатор полностью разряжен. Полная энергия системы состоит только из энергии магнитного поля катушки

(3)

4 На основании выражений (1), (2), (3) получаем равенство . Максимальное напряжение на конденсаторе равно

Задача 2 Закон сохранения энергии

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с периодом Т = 1 мкс. Максимальное значение заряда . Чему равен ток в контуре в тот момент, когда заряд на конденсаторе равен ? Активное сопротивление катушки пренебрежимо мало.

Решение:

1 Поскольку активным сопротивлением катушки можно пренебречь, полная энергия системы, состоящая из энергии электрического поля конденсатора и энергии магнитного поля катушки, остается неизменной с течением времени:

(1)

2 В тот момент, когда заряд на конденсаторе максимален, ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

(2)

3 На основании (1) и (2) получаем равенство . Ток в контуре равен .

4 Период колебаний в контуре определяется формулой Томсона . Отсюда . Тогда для тока в контуре получаем

Задача 3 Колебательный контур с двумя параллельно соединенными конденсаторами

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с амплитудой заряда . В тот момент, когда заряд на конденсаторе максимален, замыкают ключ К. Каким станет период колебаний в контуре после замыкания ключа? Чему равна амплитуда тока в контуре после замыкания ключ? Омическим сопротивлением контура пренебречь.

Решение:

1 Замыкание ключа приводит к появлению в контуре еще одного конденсатора, подключенного параллельно первому. Общая емкость двух параллельно соединенных конденсаторов равна .

Период колебаний в контуре зависит только от его параметров и не зависит от того, как в системе возбудили колебания и какую энергию сооб- щили системе для этого. Согласно формуле Томсона .

2 Для нахождения амплитуды тока выясним, какие процессы происходят в контуре после замыкания ключа.

Второй конденсатор подключили в тот момент, когда заряд на первом конденсаторе был максимален, следовательно, ток в контуре отсутствовал.

Контурный конденсатор должен начать разряжаться. Ток разрядки, дойдя до узла, должен бы разделиться на две части. Однако, в ветви с катушкой, возникает ЭДС самоиндукции, препятствующая нарастанию тока разрядки. По этой причине весь ток разрядки потечет в ветвь с конденсатором, омическое сопротивление которой равно нулю. Ток прекратится, как только сравняются напряжения на конденсаторах, при этом первоначальный заряд конденсатора перераспределится между двумя конденсаторами. Время перераспределения заряда между двумя конденсаторами ничтожно мало вследствие отсутствия омического сопротивления в ветвях с конденсаторами. За это время ток в ветви с катушкой возникнуть не успеет. Колебания в новой системе продолжатся уже после перераспределения заряда между конденсаторами.

Важно понять, что в процессе перераспределения заряда между двумя конденсаторами энергия системы не сохраняется! До замыкания ключа энергией обладал один конденсатор, контурный:

После перераспределения заряда энергией обладает батарея конденсаторов:

Нетрудно видеть, что энергия системы уменьшилась!

3 Новую амплитуду тока найдем, воспользовавшись законом сохранения энергии. В процессе колебаний энергия батареи конденсаторов переходит в энергию магнитного поля тока:

Обратите внимание, закон сохранения энергии начинает «работать» только после завершения перераспределения заряда между конденсаторами.

Задача 4 Колебательный контур с двумя последовательно соединенными конденсаторами

Колебательный контур состоит из катушки индуктивностью L и двух последовательно соединенных конденсаторов С и 4С. Конденсатор емкостью С заряжен до напряжения , конденсатор емкостью 4С не заряжен. После замыкания ключа в контуре начинаются колебания. Чему равен период этих колебаний? Определите амплитуду тока, максимальное и минимальное значения напряжения на каждом конденсаторе.

Решение:

1 В момент, когда ток в цепи максимален, ЭДС самоиндукции в катушке отсутствует . Записываем для этого момента второй закон Кирхгофа

Видим, что в тот момент, когда ток в контуре максимален, конденсаторы заряжены до одинакового напряжения, но в противоположной полярности:

2 До замыкания ключа полная энергия системы состояла только из энергии электрического поля конденсатора С:

В момент, когда ток в цепи максимален, энергия системы складывается из энергии магнитного поля тока и энергии двух заряженных до одинакового напряжения конденсаторов:

Согласно закону сохранения энергии

Для нахождения напряжения на конденсаторах воспользуемся законом сохранения заряда – заряд нижней обкладки конденсатора С частично перешел на верхнюю обкладку конденсатора 4С:

Подставляем найденное значение напряжения в закон сохранения энергии и находим амплитуду тока в контуре:

3 Найдем, в каких пределах изменяется напряжение на конденсаторах в процессе колебаний.

Понятно, что в момент замыкания цепи на конденсаторе С было максимальное напряжение . Конденсатор 4С был не заряжен, следовательно, .

После замыкания ключа конденсатор С начинает разряжаться, а конденсатор емкостью 4С – заряжаться. Процесс разрядки первого и зарядки второго конденсаторов заканчивается, как только прекращается ток в цепи. Это произойдет через половину периода. Согласно законам сохранения энергии и электрического заряда:

Решая систему, находим:

.

Знак «минус» означает, что через полпериода конденсатор емкости С заряжен в полярности, обратной первоначальной.

Задача 5 Колебательный контур с двумя последовательно соединенным катушками

Колебательный контур состоит из конденсатора емкостью С и двух катушек индуктивностью L 1 и L 2 . В тот момент, когда ток в контуре принял максимальное значение , в первую катушку быстро (по сравнению с периодом колебаний) вносят железный сердечник, что приводи к увеличению ее индуктивности в μ раз. Чему равна амплитуда напряжения в процессе дальнейших колебаний в контуре?

Решение:

1 При быстром внесении сердечника в катушку должен сохраниться магнитный поток (явление электромагнитной индукции). Поэтому быстрое изменение индуктивности одной из катушек приведет к быстрому изменению тока в контуре.

2 За время внесения сердечника в катушку заряд на конденсаторе измениться не успел, он остался незаряженным (сердечник вносили в тот момент, когда ток в цепи был максимален). Через четверть периода энергия магнитного поля тока перейдет в энергию заряженного конденсатора:

Подставляем в полученное выражение значение тока I и находим амплитуду напряжения на конденсаторе:

Задача 6 Колебательный контур с двумя параллельно соединенным катушками

Катушки индуктивности L 1 и L 2 подключены через ключи К1 и К2 к конденсатору емкостью С. В начальный момент оба ключа разомкнуты, а конденсатор заряжен до разности потенциалов . Сначала замыкают ключ К1 и, когда напряжение на конденсаторе станет равным нулю, замыкают К2. Определите максимальное напряжение на конденсаторе после замыкания К2. Сопротивлениями катушек пренебречь.

Решение:

1 При разомкнутом ключе К2 в контуре, состоящем из конденсатора и первой катушки, происходят колебания. К моменту замыкания К2 энергия конденсатора перешла в энергию магнитного поля тока в первой катушке :

2 После замыкания К2 в колебательном контуре оказываются две катушки, соединенные параллельно.

Ток в первой катушке не может прекратиться вследствие явления самоиндукции. В узле он делится: одна часть тока идет во вторую катушку, а другая заряжает конденсатор .

3 Напряжение на конденсаторе станет максимальным, когда прекратится ток I , заряжающий конденсатор. Очевидно, что в этот момент токи в катушках сравняются .

: На грузы действуют одинаковые по модулю силы – оба груза прикреплены к пружине Сразу после замыкания К2 в первой катушке существовал ток В начальный момент первый груз имел скорость Сразу после замыкания К2 ток во второй катушке отсутствовал В начальный момент второй груз покоился Каково максимальное значения напряжения на конденсаторе? Чему равна максимальная сила упругости, возникающая в пружине в процессе колебаний?

Маятник двигается поступательно со скоростью центра масс и совершает колебания относительно центра масс.

Сила упругости максимальна в момент максимальной деформации пружины. Очевидно, в этот момент относительная скорость грузов становится равной нулю, а относительно стола грузы двигаются со скоростью центра масс. Записываем закон сохранения энергии:

Решая систему, находим

Производим замену


и получаем для максимального напряжения найденное ранее значение

§6 Задания для самостоятельного решения

Упражнение1 Расчет периода и частоты собственных колебаний

1 В колебательный контур входят катушка переменной индуктивности, изменяющаяся в пределах L 1 = 0,5 мкГн до L 2 = 10 мкГн, и конденсатор, емкость которого может изменяться в пределах от С 1 = 10 пФ до

С 2 =500 пФ. Какой диапазон частот можно охватить настройкой этого контура?

2 Во сколько раз изменится частота собственных колебаний в контуре, если его индуктивность увеличить в 10 раз, а емкость уменьшить в 2,5 раза?

3 Колебательный контур с конденсатором емкость 1 мкФ настроен на частоту 400 Гц. Если подключить к нему параллельно второй конденсатор, то частота колебаний в контуре становится равной 200 Гц. Определите емкость второго конденсатора.

4 Колебательный контур состоит из катушки и конденсатора. Во сколько раз изменится частота собственных колебаний в контуре, если в контур последовательно включить второй конденсатор, емкость которого в 3 раза меньше емкости первого?

5 Определите период колебаний контура, в состав которого входит катушка (без сердечника) длины в = 50 см м площади поперечного сечения

S = 3 cм 2 , имеющая N = 1000 витков, и конденсатора емкости С = 0,5 мкФ.

6 В состав колебательного контура входит катушка индуктивности L = 1,0 мкГн и воздушный конденсатор, площади пластин которого S = 100 cм 2 . Контур настроен на частоту 30 МГц. Определите расстояние между пластинами. Активное сопротивление контура пренебрежимо мало.

Основным устройством, определяющим рабочую частоту любого генератора переменного тока, является колебательный контур. Колебательный контур (рис.1) состоит из катушки индуктивности L (рассмотрим идеальный случай, когда катушка не обладает омическим сопротивлением) и конденсатора C и называется замкнутым. Характеристикой катушки является индуктивность, она обозначается L и измеряется в Генри (Гн), конденсатор характеризуют емкостью C , которую измеряют в фарадах (Ф).

Пусть в начальный момент времени конденсатор заряжен так (рис.1), что на одной из его обкладок имеется заряд +Q 0 , а на другой - заряд -Q 0 . При этом между пластинами конденсатора образуется электрическое поле, обладающее энергией

где - амплитудное (максимальное) напряжение или разность потенциалов на обкладках конденсатора.

После замыкания контура конденсатор начинает разряжаться и по цепи пойдет электрический ток (рис.2), величина которого увеличивается от нуля до максимального значения . Так как в цепи протекает переменный по величине ток, то в катушке индуцируется ЭДС самоиндукции, которая препятствует разрядке конденсатора. Поэтому процесс разрядки конденсатора происходит не мгновенно, а постепенно. В каждый момент времени разность потенциалов на обкладках конденсатора

(где - заряд конденсатора в данный момент времени) равна разности потенциалов на катушке, т.е. равна ЭДС самоиндукции

Рис.1 Рис.2

Когда конденсатор полностью разрядится и , сила тока в катушке достигнет максимального значения (рис.3). Индукция магнитного поля катушки в этот момент также максимальна, а энергия магнитного поля будет равна

Затем сила тока начинает уменьшаться, а заряд будет накапливаться на пластинах конденсатора (рис.4). Когда сила тока уменьшится до нуля, заряд конденсатора достигнет максимального значения Q 0 , но обкладка, прежде заряженная положительно, теперь будет заряжена отрицательно (рис. 5). Затем конденсатор вновь начинает разряжаться, причем ток в цепи потечет в противоположном направлении.

Так процесс перетекания заряда с одной обкладки конденсатора на другую через катушку индуктивности повторяется снова и снова. Говорят, что в контуре происходят электромагнитные колебания . Этот процесс связан не только с колебаниями величины заряда и напряжения на конденсаторе, силы тока в катушке, но и перекачкой энергии из электрического поля в магнитное и обратно.

Рис.3 Рис.4

Перезарядка конденсатора до максимального напряжения произойдет только в том случае, когда в колебательном контуре нет потерь энергии. Такой контур называется идеальным.


В реальных контурах имеют место следующие потери энергии:

1) тепловые потери, т.к. R ¹ 0;

2) потери в диэлектрике конденсатора;

3) гистерезисные потери в сердечнике катушке;

4) потери на излучение и др. Если пренебречь этими потерями энергии, то можно написать, что , т.е.

Колебания, происходящие в идеальном колебательном контуре, в котором выполняется это условие, называются свободными , или собственными , колебаниями контура.

В этом случае напряжение U (и заряд Q ) на конденсаторе изменяется по гармоническому закону:

где n - собственная частота колебательного контура, w 0 = 2pn - собственная (круговая) частота колебательного контура. Частота электромагнитных колебаний в контуре определяется как

Период T - время, в течение которого совершается одно полное колебание напряжения на конденсаторе и тока в контуре, определяется формулой Томсона

Сила тока в контуре также изменяется по гармоническому закону, но отстает от напряжения по фазе на . Поэтому зависимость силы тока в цепи от времени будет иметь вид

. (9)

На рис.6 представлены графики изменения напряжения U на конденсаторе и тока I в катушке для идеального колебательного контура.

В реальном контуре энергия с каждым колебанием будет убывать. Амплитуды напряжения на конденсаторе и тока в контуре будут убывать, такие колебания называются затухающими. В задающих генераторах их применять нельзя, т.к. прибор будет работать в лучшем случае в импульсном режиме.

Рис.5 Рис.6

Для получения незатухающих колебаний необходимо компенсировать потери энергии при самых разнообразных рабочих частотах приборов, в том числе и применяемых в медицине.

электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью , катушки с индуктивностью и электрического сопротивления .

Идеальный колебательный контур — цепь, состоящая только из катушки индуктивности (не имеющей собственного сопротивления) и конденсатора ( -контур). Тогда в такой системе поддерживаются незатухающие электромагнитные колебания силы тока в цепи, напряжения на конденсаторе и заряда конденсатора. Давайте разберём контур и подумаем, откуда возникают колебания. Пусть изначально заряженный конденсатор помещён в описываемую нами цепь.

Рис. 1. Колебательный контур

В начальный момент времени весь заряд сосредоточен на конденсаторе, на катушке тока нет (рис. 1.1). Т.к. на обкладках конденсатора внешнего поля тоже нет, то электроны с обкладок начинают «уходить» в цепь (заряд на конденсаторе начинает уменьшаться). При этом (за счёт освобождённых электронов) возрастает ток в цепи. Направление тока, в данном случае, от плюса к минусу (впрочем, как и всегда), и конденсатор представляет собой источник переменного тока для данной системы. Однако при росте тока на катушке, вследствие , возникает обратный индукционный ток (). Направление индукционного тока, согласно правилу Ленца, должно нивелировать (уменьшать) рост основного тока. Когда заряд конденсатора станет равным нулю (весь заряд стечёт), сила индукционного тока в катушке станет максимальной (рис. 1.2).

Однако текущий заряд в цепи пропасть не может (закон сохранения заряда), тогда этот заряд, ушедший с одной обкладки через цепь, оказался на другой обкладке. Таким образом, происходит перезарядка конденсатора в обратную сторону (рис. 1.3). Индукционный ток на катушке уменьшается до нуля, т.к. изменение магнитного потока также стремится к нулю.

При полной зарядке конденсатора электроны начинают двигаться в обратную сторону, т.е. происходит разрядка конденсатора в обратную сторону и возникает ток, доходящий до своего максимума при полной разрядке конденсатора (рис. 1.4).

Дальнейшая обратная зарядка конденсатора приводит в систему в положение на рисунке 1.1. Такое поведение системы повторяется сколь угодно долго. Таким образом, мы получаем колебание различных параметров системы: тока в катушке, заряд на конденсаторе, напряжение на конденсаторе. В случае идеальности контура и проводов (отсутствие собственного сопротивления), эти колебания — .

Для математического описания этих параметров этой системы (в первую очередь, периода электромагнитных колебаний) вводится рассчитанная до нас формула Томсона :

Неидеальным контуром является всё тот же идеальный контур, который мы рассмотрели, с одним небольшим включением: с наличием сопротивления ( -контур). Данное сопротивление может быть как сопротивлением катушки (она не идеальна), так и сопротивлением проводящих проводов. Общая логика возникновения колебаний в неидеальном контуре аналогична той, что и в идеальном. Отличие только в самих колебаниях. В случае наличия сопротивления, часть энергии будет рассеиваться в окружающую среду — сопротивление будет нагреваться, тогда энергия колебательного контура будет уменьшаться и сами колебания станут затухающими .

Для работы с контурами в школе используется только общая энергетическая логика. В данном случае, считаем, что полная энергия системы в начале сосредоточена на и/или , и описывается.

Понравилась статья? Поделиться с друзьями: