Так что же такое Ethernet и как он работает? Ethernet — основа сетей. Сделать это легко

Наибольшее распространение среди стандартных сетей получила сеть Ethernet. Впервые она появилась в 1972 году (разработчиком выступила известная фирма Xerox). Сеть оказалась довольно удачной, и вследствие этого ее в 1980 году поддержали такие крупнейшие компании, как DEC и Intel (объединение этих компаний назвали DIX по первым буквам их названий). Их стараниями в 1985 году сеть Ethernet стала международным стандартом, ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ECMA (European Computer Manufacturers Association).

Стандарт получил название IEEE 802.3 (по-английски читается как "eight oh two dot three"). Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи, то есть с уже упоминавшимся методом доступа CSMA/CD. Этому стандарту удовлетворяли и некоторые другие сети, так как уровень его детализации невысок. В результате сети стандарта IEEE 802.3 нередко были несовместимы между собой как по конструктивным, так и по электрическим характеристикам. Однако в последнее время стандарт IEEE 802.3 считается стандартом именно сети Ethernet.

Основные характеристики первоначального стандарта IEEE 802.3:

    топология – шина;

    среда передачи – коаксиальный кабель;

    скорость передачи – 10 Мбит/с;

    максимальная длина сети – 5 км;

    максимальное количество абонентов – до 1024;

    длина сегмента сети – до 500 м;

    количество абонентов на одном сегменте – до 100;

    метод доступа – CSMA/CD;

    передача узкополосная, то есть без модуляции (моноканал).

Строго говоря, между стандартами IEEE 802.3 и Ethernet существуют незначительные отличия, но о них обычно предпочитают не вспоминать.

Сеть Ethernet сейчас наиболее популярна в мире (более 90% рынка), предположительно таковой она и останется в ближайшие годы. Этому в немалой степени способствовало то, что с самого начала характеристики, параметры, протоколы сети были открыты, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой.

В классической сети Ethernet применялся 50-омный коаксиальный кабель двух видов (толстый и тонкий). Однако в последнее время (с начала 90-х годов) наибольшее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары. Определен также стандарт для применения в сети оптоволоконного кабеля. Для учета этих изменений в изначальный стандарт IEEE 802.3 были сделаны соответствующие добавления. В 1995 году появился дополнительный стандарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт IEEE 802.3u), использующую в качестве среды передачи витую пару или оптоволоконный кабель. В 1997 году появилась и версия на скорость 1000 Мбит/с (Gigabit Ethernet, стандарт IEEE 802.3z).

Помимо стандартной топологии шина все шире применяются топологии типа пассивная звезда и пассивное дерево. При этом предполагается использование репитеров и репитерных концентраторов, соединяющих между собой различные части (сегменты) сети. В результате может сформироваться древовидная структура на сегментах разных типов (рис. 7.1).

Рис. 7.1. Классическая топология сети Ethernet

В качестве сегмента (части сети) может выступать классическая шина или единичный абонент. Для шинных сегментов используется коаксиальный кабель, а для лучей пассивной звезды (для присоединения к концентратору одиночных компьютеров) – витая пара и оптоволоконный кабель. Главное требование к полученной в результате топологии – чтобы в ней не было замкнутых путей (петель). Фактически получается, что все абоненты соединены в физическую шину, так как сигнал от каждого из них распространяется сразу во все стороны и не возвращается назад (как в кольце).

Максимальная длина кабеля сети в целом (максимальный путь сигнала) теоретически может достигать 6,5 километров, но практически не превышает 3,5 километров.

В сети Fast Ethernet не предусмотрена физическая топология шина, используется только пассивная звезда или пассивное дерево. К тому же в Fast Ethernet гораздо более жесткие требования к предельной длине сети. Ведь при увеличении в 10 раз скорости передачи и сохранении формата пакета его минимальная длина становится в десять раз короче. Таким образом в 10 раз уменьшается допустимая величина двойного времени прохождения сигнала по сети (5,12 мкс против 51,2 мкс в Ethernet).

Для передачи информации в сети Ethernet применяется стандартный манчестерский код.

Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему равноправие абонентов. В сети используются пакеты переменной длины со структурой, представленной на рис. 7.2. (цифры показывают количество байт)

Рис. 7.2. Структура пакета сети Ethernet

Длина кадра Ethernet (то есть пакета без преамбулы) должна быть не менее 512 битовых интервалов или 51,2 мкс (именно такова предельная величина двойного времени прохождения в сети). Предусмотрена индивидуальная, групповая и широковещательная адресация.

В пакет Ethernet входят следующие поля:

    Преамбула состоит из 8 байт, первые семь представляют собой код 10101010, а последний байт – код 10101011. В стандарте IEEE 802.3 восьмой байт называется признаком начала кадра (SFD – Start of Frame Delimiter) и образует отдельное поле пакета.

    Адреса получателя (приемника) и отправителя (передатчика) включают по 6 байт и строятся по стандарту, описанному в разделе "Адресация пакетов" лекции 4. Эти адресные поля обрабатываются аппаратурой абонентов.

    Поле управления (L/T – Length/Type) содержит информацию о длине поля данных. Оно может также определять тип используемого протокола. Принято считать, что если значение этого поля не больше 1500, то оно указывает на длину поля данных. Если же его значение больше 1500, то оно определяет тип кадра. Поле управления обрабатывается программно.

    Поле данных должно включать в себя от 46 до 1500 байт данных. Если пакет должен содержать менее 46 байт данных, то поле данных дополняется байтами заполнения. Согласно стандарту IEEE 802.3, в структуре пакета выделяется специальное поле заполнения (pad data – незначащие данные), которое может иметь нулевую длину, когда данных достаточно (больше 46 байт).

    Поле контрольной суммы (FCS – Frame Check Sequence) содержит 32-разрядную циклическую контрольную сумму пакета (CRC) и служит для проверки правильности передачи пакета.

Таким образом, минимальная длина кадра (пакета без преамбулы) составляет 64 байта (512 бит). Именно эта величина определяет максимально допустимую двойную задержку распространения сигнала по сети в 512 битовых интервалов (51,2 мкс для Ethernet или 5,12 мкс для Fast Ethernet). Стандарт предполагает, что преамбула может уменьшаться при прохождении пакета через различные сетевые устройства, поэтому она не учитывается. Максимальная длина кадра равна 1518 байтам (12144 бита, то есть 1214,4 мкс для Ethernet, 121,44 мкс для Fast Ethernet). Это важно для выбора размера буферной памяти сетевого оборудования и для оценки общей загруженности сети.

Выбор формата преамбулы не случаен. Дело в том, что последовательность чередующихся единиц и нулей (101010...10) в манчестерском коде характеризуется тем, что имеет переходы только в середине битовых интервалов (см. раздел 2.6.3), то есть только информационные переходы. Безусловно, приемнику просто настроиться (синхронизоваться) при такой последовательности, даже если она по какой-то причине укорачивается на несколько бит. Последние два единичные бита преамбулы (11) существенно отличаются от последовательности 101010...10 (появляются переходы еще и на границе битовых интервалов). Поэтому уже настроившийся приемник легко может выделить их и детектировать тем самым начало полезной информации (начало кадра).

Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определяет четыре основных типа сегментов сети, ориентированных на различные среды передачи информации:

    10BASE5 (толстый коаксиальный кабель);

    10BASE2 (тонкий коаксиальный кабель);

    10BASE-T (витая пара);

    10BASE-FL (оптоволоконный кабель).

Наименование сегмента включает в себя три элемента: цифра "10" означает скорость передачи 10 Мбит/с, слово BASE – передачу в основной полосе частот (то есть без модуляции высокочастотного сигнала), а последний элемент – допустимую длину сегмента: "5" – 500 метров, "2" – 200 метров (точнее, 185 метров) или тип линии связи: "Т" – витая пара (от английского "twisted-pair"), "F" – оптоволоконный кабель (от английского "fiber optic").

Точно так же для сети Ethernet, работающей на скорости 100 Мбит/с (Fast Ethernet) стандарт определяет три типа сегментов, отличающихся типами среды передачи:

    100BASE-T4 (счетверенная витая пара);

    100BASE-TX (сдвоенная витая пара);

    100BASE-FX (оптоволоконный кабель).

Здесь цифра "100" означает скорость передачи 100 Мбит/с, буква "Т" – витую пару, буква "F" – оптоволоконный кабель. Типы 100BASE-TX и 100BASE-FX иногда объединяют под именем 100BASE-X, а 100BASE-T4 и 100BASE-TX – под именем 100BASE-T.

Подробнее особенности аппаратуры Ethernet, а также алгоритма управления обменом CSMA/CD и алгоритма вычисления циклической контрольной суммы (CRC) будут рассмотрены далее в специальных разделах курса. Здесь следует отметить только то, что сеть Ethernet не отличается ни рекордными характеристиками, ни оптимальными алгоритмами, она уступает по ряду параметров другим стандартным сетям. Но благодаря мощной поддержке, высочайшему уровню стандартизации, огромным объемам выпуска технических средств, Ethernet выгодно выделяется среди других стандартных сетей, и поэтому любую другую сетевую технологию принято сравнивать именно с Ethernet.

Развитие технологии Ethernet идет по пути все большего отхода от первоначального стандарта. Применение новых сред передачи и коммутаторов позволяет существенно увеличить размер сети. Отказ от манчестерского кода (в сети Fast Ethernet и Gigabit Ethernet) обеспечивает увеличение скорости передачи данных и снижение требований к кабелю. Отказ от метода управления CSMA/CD (при полнодуплексном режиме обмена) дает возможность резко повысить эффективность работы и снять ограничения с длины сети. Тем не менее, все новые разновидности сети также называются сетью Ethernet.

Ethernet (читается эзернет , от лат. aether - эфир) - пакетная технология передачи данных преимущественно локальных
.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат
кадров и протоколы управления доступом к среде - на канальном уровне модели OSI. Ethernet в основном
описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине
90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token ring.

История создания

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC.
Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe)
составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на
технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs)
издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks».

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных
вычислительных сетей (ЛВС). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать
стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал
соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, - которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

Технология

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды
используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический
кабель.

Причинами перехода на были:

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля «витой пары»;
  • более высокая надёжность сетей при неисправности в кабеле;
  • большая помехозащищенность при использовании дифференциального сигнала;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на ) - множественный доступ с контролем несущей и
обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи
данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы
полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в
одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации
физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала
может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако
сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения
предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность
работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью
1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии.
Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во
всех ниже перечисленных вариантах.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных,
используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего
соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под
партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet
10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт
Ethernet 10/100/1000 - поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.
Ранние модификации Ethernet

  • Xerox Ethernet - оригинальная технология, скорость 3Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.
  • 10BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется
    в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.
  • 1BASE5 - также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

10 Мбит/с Ethernet

  • 10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.
  • 10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 185 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой
    карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом
    конце. Многие годы этот стандарт был основным для технологии Ethernet.
  • StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с.

В дальнейшем эволюционировал в стандарт 10BASE-T.

Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем
двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в
отличие от работы с . Поэтому, все сети на витой паре используют топологию «звезда»,
в то время как, сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по
витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

  • 10BASE-T, IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.
  • FOIRL - (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.
  • 10BASE-F, IEEE 802.3j - Основной термин для обозначения семейства 10 Мбит/с ethernet-стандартов, использующих оптический кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.
  • 10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.
  • 10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.
  • 10BASE-FP (Fiber Passive)- Топология «пассивная звезда», в которой не нужны повторители - никогдане применялся.

Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)

  • 100BASE-T - общий термин для обозначения стандартов, использующих в качестве среды передачи данных . Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
  • 100BASE-TX, IEEE 802.3u - развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
  • 100BASE-T4 - стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.
  • 100BASE-T2 - стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении - 50 Мбит/с. Практически не используется.
  • 100BASE-SX - стандарт, использующий многомодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.
  • 100BASE-FX - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только
    величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10
    километров
  • 100BASE-FX WDM - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только
    величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы бывают двух
    видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской
    буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик
    на 1310 нм, а с другой - на 1550 нм.
Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)
  • 1000BASE-T, IEEE 802.3ab - стандарт, использующий витую пару категорий 5e. В передаче данных участвуют 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре. Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц. Расстояние до 100 метров
  • 1000BASE-TX был создан Ассоциацией Телекоммуникационной Промышленности (англ. Telecommunications
    Industry Association, TIA) и опубликован в марте 2001 года как «Спецификация физического уровня
    дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6
    (ANSI/TIA/EIA-854-2001)» (англ. «A Full Duplex Ethernet Specification for 1000 Mbis/s (1000BASE-TX)
    Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). Стандарт, использует
    раздельную приёмо-передачу (по одной паре в каждом направлении), что существенно упрощает конструкцию
    приёмопередающих устройств. Ещё одним существенным отличием 1000BASE-TX является отсутствие схемы
    цифровой компенсации наводок и возвратных помех, в результате чего сложность, уровень энергопотребления
    и цена процессоров становится ниже, чем у процессоров стандарта 1000BASE-T. Но, как следствие, для
    стабильной работы по такой технологии требуется кабельная система высокого качества, поэтому 1000BASE-TX
    может использовать только кабель 6 категории. На основе данного стандарта практически не было создано
    продуктов, хотя 1000BASE-TX использует более простой протокол, чем стандарт 1000BASE-T, и поэтому может
    использовать более простую электронику.
  • 1000BASE-X - общий термин для обозначения стандартов со сменными приёмопередатчиками GBIC или SFP.
  • 1000BASE-SX, IEEE 802.3z - стандарт, использующий многомодовое волокно. Дальность прохождения
    сигнала без повторителя до 550 метров.
  • 1000BASE-LX, IEEE 802.3z - стандарт, использующий одномодовое волокно. Дальность прохождения
    сигнала без повторителя до 5 километров.


  • используется.
  • 1000BASE-CX - стандарт для коротких расстояний (до 25 метров), использующий твинаксиальный кабель
    с волновым сопротивлением 75 Ом (каждый из двух волноводов). Заменён стандартом 1000BASE-T и сейчас не
    используется.
  • 1000BASE-LH (Long Haul) - стандарт, использующий одномодовое волокно. Дальность прохождения
    сигнала без повторителя до 100 километров.

10-гигабитный Ethernet

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и
WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию
стандарта IEEE 802.3.

  • 10GBASE-CX4 - Технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.
  • 10GBASE-SR - Технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в
    зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300
    метров с использованием нового многомодового волокна (2000 МГц/км).
  • 10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового
    волокна.
  • 10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров
    соответственно.
  • 10GBASE-SW, 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый
    по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR,
    10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.
  • 10GBASE-T, IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует
    экранированную витую пару. Расстояния - до 100 метров.

Реалии современного мира таковы, что компьютер, еще совсем недавно абсолютно нормально воспринимавшийся отдельно от интернета и локальных сетей в качестве самостоятельного инструмента для работы и средства развлечения, сейчас кажется неполноценным. Еще бы, ведь развитие инструментов коллективной работы (повсеместное внедрение различных корпоративных информационных систем, таких как 1C:Предприятие, ПАРУС-Предприятие 8, SAP R/3 и множества других), и развлекательных средств (появление и развитие таких явлений, как форумы, блоги, социальные сети и многого другого) привело к тому, что компьютер, не включенный в сеть, не может полностью удовлетворить потребностей пользователя.

Более того, развитие современной IP-телефонии и средств бизнес-коммуникации (в первую очередь, это электронная почта), а также IM (таких как ICQ, Агент Mail.ru, Я.Онлайн, Google Talk, Jabber и многих других) превратили современные компьютеры из изолированных систем обработки информации в средство связи.

Однако для того, чтобы все эти сложные приложения могли успешно работать, необходимо построение компьютерных сетей. И в настоящее время основной технологией для этого является Ethernet (эзернет, от лат. aether – эфир).

Стандарт технологии Ethernet описывает проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде. В модели OSI (более крупного стандарта комплексного многоуровневого взаимодействия сетей передачи данных) Ethernet охватывает канальный уровень.

Таким образом, Ethernet определяет, как именно должна быть построена локальная сеть , какое необходимо использовать оборудование и как именно должна быть организована передача данных на уровне. Иногда можно встретить и другое название технологии Ethernet – IEEE 802.3. Этот принятый IEEE (Institute of Electrical and Electronics Engineers – Институт инженеров по электротехнике и радиоэлектронике, международная некоммерческая ассоциация специалистов в области техники) стандарт, который закрепляет на бумаге реализацию технологии Ethernet.

История появления технологии Ethernet

Технология Ethernet была разработана в корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда один из инженеров, Роберт Меткалф (Robert Metcalfe), составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks», которая подробно описывала новую технологию.

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com (в настоящее время – один из мировых лидеров производства телекоммуникационного оборудования). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, – которые вскоре были похоронены под накатывающимися волнами продукции Ethernet.

Развитие сетей Ethernet

Коаксиальный кабель

Однако было бы странно, если бы технология, придуманная в далеком 1979 г., дошла до нас без серьезных изменений. Оригинальные сети Ethernet использовали коаксиальный кабель для передачи данных и предусматривали передачу данных на скорости 3Мбит/с.

Следующим этапом в развитие сетей Ethernet стало увеличение скорости передачи данных. В раннем стандарте IEEE 802.3 (еще эта технология называется 10BASE5, или «Толстый Ethernet») описана технология передачи данных с помощью коаксиального кабеля с волновым сопротивлением 50 Ом (RG-8) , с максимальной длиной сегмента 500 метров.

В тоже время появляется стандарт IEEE 802.3a (другими названиями этих сетей Ethernet стали 10BASE2, или «Тонкий Ethernet»). В качестве среды для передачи данных использовался кабель RG-58, с максимальной длиной сегмента 200 метров. Компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте был нужен T-коннектор, а на кабеле должен был быть BNC-коннектор. Кроме того, требовалось наличие терминаторов на каждом конце кабеля. Именно эта технология получила большое коммерческое распространение и нашла себе широкое применение в сетях того времени.

Витая пара

Однако применение коаксиального кабеля имело массу недостатков. Поэтому было решено использовать в качестве среды передачи данных витую пару – кабель, представляющий собой одну или несколько пар изолированных проводников, скрученных между собой и покрытых общей пластиковой оболочкой.

Основными причинами перехода на витую пару были:

  • возможность работы в дуплексном режиме;
  • низкая стоимость витой пары;
  • более высокая надёжность сетей при неисправности в кабеле;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока, поэтому это свойство витой пары было особенно востребовано.

Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet. Поэтому, все сети на витой паре используют топологию «звезда», в то время как, сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

Таким образом, появился стандарт StarLAN 10, который в дальнейшем эволюционировал в стандарт IEEE 802.3i (также известен, как 10BASE-T). Для передачи данных в этом стандарте используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров. Этот стандарт так же получил коммерческое распространение, однако вскоре был заменен более быстрым потомком.

Fast Ethernet

Этот потомок получил общепринятое название Fast Ethernet, а технология – IEEE 802.3u (100BASE-TX). В этом стандарте задействована витая пара категории 5 и фактически используются только две неэкранированные пары проводников. Поддерживается дуплексная передача данных, расстояние между устройствами до 100 м. Именно этот стандарт получил в настоящее время максимальное распространение. Более того, упоминая сети Ethernet, чаще всего имеется в виду именно эта реализация этой технологии.

Gigabit Ethernet

Однако дальнейшее развитие сетей Ethernet не закончилось, и следующим его этапом стало появление стандарта, получившего название Gigabit Ethernet. Основное достижение – это увеличение скорости передачи данных до 1 Гбит/с.

Для этого была разработана технология IEEE 802.3ab (1000BASE-T), использующая витую пару категорий 5e. В передаче данных участвуют все 4 пары. Скорость передачи данных – 250 Мбит/с по одной паре.

Несмотря на то, что большинство существующих сетей используют Fast Ethernet, этот стандарт постепенно вытесняет более современный Gigabit Ethernet.

10 Gigabit Ethernet

Несмотря на то, что стандарт Gigabit Ethernet еще только начал свое внедрение, прогресс не стоит на месте, и уже разработан стандарт, который придет ему на смену. Как вы уже догадались, это 10 Gigabit Ethernet, со скоростью передачи данных до 10 Гбит/с.

Недавно принятая технология, IEEE 802.3an-2006 (10GBASE-T), использует экранированную витую пару и предназначена для передачи данных на расстояниях до 100 метров.

100 Gigabit Ethernet

Хотя 10 Gigabit Ethernet еще не получи широкого распространения, уже ведутся разработки следующего стандарта.

Оптоволокно

Помимо витой пары, стандарт Ethernet предусматривает также передачу данных через оптоволокно. Этот способ передачи данных позволяет строить существенно более длинные линии и используется для организации магистральных высокоскоростных каналов связи.

Немного о скорости передачи данных в сетях

Следует напомнить немного о скорости передачи данных в сетях. Первое, о чем нельзя забывать, – это разница между битами и байтами. Как известно, в одном бите содержится 8 байт, а это означает, что максимальная скорость передачи данных в стандарте Gigabit Ethernet составляет 1000/8=125 Мб/c.

Вторая особенность, это то, что когда мы говорим о скорости передачи данных, то мы часто имеем в виду скорость передачи полезной информации (например, скорость копирования файлов). Однако в контексте канального уровня OSI (о нем была речь в начале) всегда упоминается общая скорость передачи данных, которая не учитывает разбиения на полезную и служебную информацию. Трудно точно сказать заранее, какое может быть соотношение полезной и служебной информации (а от этого зависит скорость передачи полезной информации). Однако вряд ли служебной информации будет больше, чем полезной и поэтому для определения средней скорости передачи полезной информации можно просто поделить общую скорость в байтах в два раза. Таким образом, для Gigabit Ethernet это будет 62.5 Мб/c.

Кроме того, не стоит забывать о том, что максимальна общая скорость передачи информации зависит от возможностей всех участвующих в передаче устройств. Так, подобно тому, как скорость эскадры определяется скоростью самого медленного корабля, медленное устройство может сильно уменьшить скорость передачи данных. Поэтому для достижения наилучших результатов убедитесь, что все устройства-участники передачи данных способны работать на выбранных скоростях.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ

(технический университет)»

Дагестанский филиал

Кафедра Вычислительной техники

Курсовая работа

по дисциплине «Сети ЭВМ»

на тему:

" Локальная сеть Ethernet "

Выполнила: студентка 4го курса

специальности ВМКСиС

Исаева П. М.

Проверил: Фейламазова С. А.

Махачкала 2011г.

    Введение…………………………………………….……………2

    История Ethernet…………………………………………………3

    Сети Ethernet…………………………………………………..…6

    Серверы……………………………………………………….....11

    Оборудование для локальных сетей…………………………..15

    Топология сети……………………………………………….....16

    Общие характеристики локальных вычислительных сетей....22

    Ethernеt безопасность локальной сети………………………...26

    Мосты и коммутации……………………………………...........29

    Многообразия Ethernet…………………………………...32

    Стандартизации…………………………………………...33

    Заключение………………………………………………..34

    Список используемой литературы………………………35

ВВЕДЕНИЕ

Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети мо-гут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Конец 90-х гг. прошлого века выявил явного лидера среди технологий локальных сетей - семейство Ethernet, в которое вошли классическая технология Ethernet 10 Мбит/с, а также Fast Ethernet 100 Мбит/с и Gigabit Ethernet 1000 Мбит/с. Простые алго-ритмы работы предопределили низкую стоимость оборудования Ethernet. Широкий диапазон иерархии скоростей позволяет рационально строить локальную сеть, применяя ту технологию семейства, которая в наибольшей степени отвеча-ет задачам предприятия и потребностям пользователей. Важно также, что все технологии Ethernet очень близки друг к другу по принципам работы, что упрощает обслуживание и интеграцию этих сетей.

Актуальность данной работы обусловлена важностью изучения локальных компьютерных систем для студентов технических специальностей как одного из краеугольных понятий предмета «Сети ЭВМ».

Целью работы является изучение характеристик и особенностей локальной сети Ethernet.

В соответствии с целью работы, были поставлены следующие задачи: определение понятия «локальная вычислительная сеть», характеристика основных способов построения сетей (топология сетей), краткая характеристика основных протоколов сети, которые обеспечивают согласованное взаимодействие пользователей в сети, изучение таких технологий локальных сетей как Ethernet, Token Ring, FDDI, Fast и Gigabit Ethernet.

История ETHERNET

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe ) составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks».

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров. Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, - которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.

Причинами перехода на витую пару были:

    возможность работы в дуплексном режиме;

    низкая стоимость кабеля «витой пары»;

    более высокая надёжность сетей при неисправности в кабеле;

    большая помехозащищенность при использовании дифференциального сигнала;

    возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);

    отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на коаксиальном кабеле) - множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Ethernet является развивающейся технологии. Эволюция включили более высокой пропускной способности, улучшения доступа к среде методов, и изменения в физической среде. Ethernet превратилась в комплекс сетевых технологий, что сегодня лежит в основе большинства локальных сетей. Коаксиальный кабель был заменен с "точка-точка" связаны Ethernet ретрансляторов или переключателей, чтобы уменьшить затраты на установку, повысить надежность, и позволить "точка-точка управления и устранения неполадок. Есть много вариантов Ethernet в общем пользовании.

Ethernet станций общаются, посылая друг другу пакеты данных, блоки данных, которые индивидуально отправлено и доставлено. Как и в других IEEE 802 LAN, Ethernet каждой станции дается 48-битный MAC-адрес. MAC-адреса используются для определения и назначения и источника каждого пакета данных. Карты сетевого интерфейса (NIC) или фишки обычно не принимают пакеты, адресованные в другие места Ethernet. Адаптеры приходят запрограммированы глобально уникальный адрес. Несмотря на значительные изменения в Ethernet от толщины коаксиальный кабель шины работает в 10 Мбит / с для точка-точка " работает на 1 Гбит / с и за ее пределами, всех поколений Ethernet (за исключением ранней экспериментальной версии) использовать тот же формат кадра (и, следовательно, тот же интерфейс для высших слоев), и могут быть легко между собой через мост.

В связи с повсеместность Ethernet, постоянно сокращается стоимость оборудования, необходимого для ее поддержки, и ограниченном пространстве панели необходимой витая пара Ethernet , большинство производителей теперь строить функциональные Ethernet карту непосредственно в компьютер плат, исключая необходимость установка отдельной сетевой плате.

Ethernet

Ethernet (читается "эзернет") - локальная компьютерная сеть с выходом в интернет или без него.

Синонимы Ethernet - LAN или "локалка" . Сеть Ethernet используется для объединения компьютеров в проводную сеть. Яркий пример сети Ethernet - проводной интернет в жилых домах (например, "Корбина"), а также корпоративные сети в офисах. Чтобы организовать сеть Ethernet, используют кабель с разъемом RJ-45 , который подключают к порту сетевой карты компьютера. Существует беспроводной аналог Ethernet-сети под названием WLAN .

  • Tutorial
  • Что такое домен коллизий?
  • Сколько пар используется для Ethernet и почему?
  • По каким парам идет прием, а по каким передача?
  • Что ограничивает длину сегмента сети?
  • Почему кадр не может быть меньше определенной величины?

Если не знаешь ответов на эти вопросы, а читать стандарты и серьезную литературу по теме лень - прошу под кат.

Кто-то считает, что это очевидные вещи, другие скажут, что скучная и ненужная теория. Тем не менее на собеседованиях периодически можно услышать подобные вопросы. Мое мнение: о том, о чем ниже пойдет речь, нужно знать всем, кому приходится брать в руки «обжимку» 8P8C (этот разъем обычно ошибочно называют RJ-45). На академическую глубину не претендую, воздержусь от формул и таблиц, так же за бортом оставим линейное кодирование. Речь пойдет в основном о медных проводах, не об оптике, т.к. они шире распространены в быту.

Технология Ethernet описывает сразу два нижних уровня модели OSI . Физический и канальный. Дальше будем говорить только о физическом, т.е. о том, как передаются биты между двумя соседними устройствами.

Технология Ethernet - часть богатого наследия исследовательского центра Xerox PARC . Ранние версии Ethernet использовали в качестве среды передачи коаксиальный кабель, но со временем он был полностью вытеснен оптоволокном и витой парой. Однако важно понимать, что применение коаксиального кабеля во многом определило принципы работы Ethernet. Дело в том, что коаксиальный кабель - разделяемая среда передачи. Важная особенность разделяемой среды: ее могут использовать одновременно несколько интерфейсов, но передавать в каждый момент времени должен только один. С помощью коаксиального кабеля можно соединит не только 2 компьютера между собой, но и более двух, без применения активного оборудования. Такая топология называется шина . Однако если хотябы два узла на одной шине начнут одновременно передавать информацию, то их сигналы наложатся друг на друга и приемники других узлов ничего не разберут. Такая ситуация называется коллизией , а часть сети, узлы в которой конкурируют за общую среду передачи - доменом коллизий . Для того чтоб распознать коллизию, передающий узел постоянно наблюдает за сигналов в среде и если собственный передаваемый сигнал отличается от наблюдаемого - фиксируется коллизия. В этом случае все узлы перестают передавать и возобновляют передачу через случайный промежуток времени.

Диаметр коллизионного домена и минимальный размер кадра

Теперь давайте представим, что будет, если в сети, изображенной на рисунке, узлы A и С одновременно начнут передачу, но успеют ее закончить раньше, чем примут сигнал друг друга. Это возможно, при достаточно коротком передаваемом сообщении и достаточно длинном кабеле, ведь как нам известно из школьной программы, скорость распространения любых сигналов в лучшем случае составляет C=3*10 8 м/с. Т.к. каждый из передающих узлов примет встречный сигнал только после того, как уже закончит передавать свое сообщение - факт того, что произошла коллизия не будет установлен ни одним из них, а значит повторной передачи кадров не будет. Зато узел B на входе получит сумму сигналов и не сможет корректно принять ни один из них. Для того, чтоб такой ситуации не произошло необходимо ограничить размер домена коллизий и минимальный размер кадра. Не трудно догадаться, что эти величины прямо пропорциональны друг другу. В случае же если объем передаваемой информации не дотягивает до минимального кадра, то его увеличивают за счет специального поля pad, название которого можно перевести как заполнитель.

Таким образом чем больше потенциальный размер сегмента сети, тем больше накладных расходов уходит на передачу порций данных маленького размера. Разработчикам технологии Ethernet пришлось искать золотую середину между двумя этими параметрами, и минимальным размером кадра была установлена величина 64 байта.

Витая пара и дуплексный режим рабты
Витая пара в качестве среды передачи отличается от коаксиального кабеля тем, что может соединять только два узла и использует разделенные среды для передачи информации в разных направлениях. Одна пара используется для передачи (1,2 контакты, как правило оранжевый и бело-оранжевый провода) и одна пара для приема (3,6 контакты, как правило зеленый и бело-зеленый провода). На активном сетевом оборудовании наоборот. Не трудно заметить, что пропущена центральная пара контактов: 4, 5. Эту пару специально оставили свободной, если в ту же розетку вставить RJ11, то он займет как раз свободные контакты. Таким образом можно использовать один кабели и одну розетку, для LAN и, например, телефона. Пары в кабеле выбраны таким образом, чтоб свести к минимуму взаимное влияние сигналов друг на друга и улучшить качество связи. Провода одной пару свиты между собой для того, чтоб влияние внешних помех на оба провода в паре было примерно одинаковым.
Для соединения двух однотипных устройств, к примеру двух компьютеров, используется так называемый кроссовер-кабель(crossover) , в котором одна пара соединяет контакты 1,2 одной стороны и 3,6 другой, а вторая наоборот: 3,6 контакты одной стороны и 1,2 другой. Это нужно для того, чтоб соединить приемник с передатчиком, если использовать прямой кабель, то получится приемник-приемник, передатчик-передатчик. Хотя сейчас это имеет значение только если работать с каким-то архаичным оборудованием, т.к. почти всё современное оборудование поддерживает Auto-MDIX - технология позволяющая интерфейсу автоматически определять на какой паре прием, а на какой передача.

Возникает вопрос: откуда берется ограничение на длину сегмента у Ethernet по витой паре, если нет разделяемой среды? Всё дело в том, первые сети построенные на витой паре использовали концентраторы. Концентратор (иначе говоря многовходовый повторитель) - устройство имеющее несколько портов Ethernet и транслирующее полученный пакет во все порты кроме того, с которого этот пакет пришел. Таким образом если концентратор начинал принимать сигналы сразу с двух портов, то он не знал, что транслировать в остальные порты, это была коллизия. То же касалось и первых Ethernet-сетей использующих оптику (10Base-FL).

Зачем же тогда использовать 4х-парный кабель, если из 4х пар используются только две? Резонный вопрос, и вот несколько причин для того, чтобы делать это:

  • 4х-парный кабель механически более надежен чем 2х-парный.
  • 4х-парный кабель не придется менять при переходе на Gigabit Ethernet или 100BaseT4, использующие уже все 4 пары
  • Если перебита одна пара, можно вместо нее использовать свободную и не перекладывать кабель
  • Возможность использовать технологию Power over ethernet

Не смотря на это на практике часто используют 2х-парный кабель, подключают сразу 2 компьютера по одному 4х-парному, либо используют свободные пары для подключения телефона.

Gigabit Ethernet

В отличии от своих предшественников Gigabit Ethernet всегда использует для передачи одновременно все 4 пары. Причем сразу в двух направлениях. Кроме того информация кодируется не двумя уровнями как обычно (0 и 1), а четырьмя (00,01,10,11). Т.е. уровень напряжения в каждый конкретный момент кодирует не один, а сразу два бита. Это сделано для того, чтоб снизить частоту модуляции с 250 МГц до 125 МГц. Кроме того добавлен пятый уровень, для создания избыточности кода. Он делает возможной коррекцию ошибок на приеме. Такой вид кодирования называется пятиуровневым импульсно-амплитудным кодированием (PAM-5). Кроме того, для того, чтоб использовать все пары одновременно для приема и передачи сетевой адаптер вычитает из общего сигнала собственный переданный сигнал, чтоб получить сигнал переданный другой стороной. Таким образом реализуется полнодуплексный режим по одному каналу.

Дальше - больше

10 Gigabit Ethernet уже во всю используется провайдерами, но в SOHO сегменте не применяется, т.к. судя по всему там вполне хватает Gigabit Ethernet. 10GBE качестве среды распространения использует одно- и многомодовое волокно, с или без уплотнением по длине волны , медные кабели с разъемом InfiniBand а так же витую пару в стандарте 10GBASE-T или IEEE 802.3an-2006.

40-гигабитный Ethernet (или 40GbE ) и 100-гигабитный Ethernet (или 100GbE ). Разработка этих стандартов была закончена в июле 2010 года. В настоящий момент ведущие производители сетевого оборудования, такие как Cisco, Juniper Networks и Huawei уже заняты разработкой и выпуском первых маршрутизаторов поддерживающих эти технологии.

В заключении стоит упомянуть о перспективной технологии Terabit Ethernet . Боб Меткалф, создатель предположил, что технология будет разработана к 2015 году, и так же сказал:

Чтобы реализовать Ethernet 1 ТБит/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое

UPD : Спасибо хабраюзеру Nickel3000 , что подсказал, про то что разъем, который я всю жизнь называл RJ45 на самом деле 8P8C .
UPD2: : Спасибо пользователю Wott , что объяснил, почему используются контакты 1,2,3 и 6.

Теги: Добавить метки

Понравилась статья? Поделиться с друзьями: