Способы синхронизации в системах пдс. В настоящее время большую роль в жизни человеческого общества играет техника передачи дискретных сообщений. Применение этой техники позволяет обеспечить лучшее использование дорогостоящей высокопроизводительной техник

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Определение. Частными производными второго порядка от функции называются частные производные от ее частных производных первого порядка.

Обозначения частных производных второго порядка:

Для практических примеров справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверять правильность нахождения частных производных первого порядка.

Примеры.

а) Найти частные производные второго порядка функции

Решение.

1.Считаем переменную y

2. Полученную функцию еще раз продифференцируем по «икс», т.е. найдем вторую производную по «икс»:

3.Считаем переменную х константой, применяем правило дифференцирования суммы, правило вынесение постоянного множителя за знак производной и табличную производную степенной функции:

4. Полученную функцию еще раз продифференцируем по «игрек», т.е. найдем вторую производную по «игрек»:

5. Найдем смешанную производную «икс по игрек». Для этого первую производную по «икс» продифференцируем по «игрек».

5. Найдем смешанную производную «игрек по икс». Для этого первую производную по «игрек» продифференцируем по «икс».

б) Найти частные производные первого порядка функции Проверить, что Записать полный дифференциал первого порядка dz.

Решение.

1.Найдем частные производные первого порядка, применяя правила вычисления производной произведения, суммы, вынесения постоянного множителя за знак производной и табличные интегралы тригонометрических функций:

2. Найдем смешанные производные второго порядка:

3. Составим полный дифференциал первого порядка:

в) Показать, что данная функция удовлетворяет уравнению

Решение.

1.Найдем частную производную заданной функции по «икс»:

2. Умножим полученное выражение х 2 :

3. От полученной функции найдем частную производную по «икс»:

4. Найдем частную производную заданной функции по «игрек»:

5. Вычислим вторую производную по «игрек»:

6. Умножим полученную функцию на у 2 :

7. Вычтем из результата, полученного в п.5, результат п.6:

Что и требовалось показать.


Похожая информация:

  1. V3: {{101}} 04.07.14. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами (общее решение)

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z"_x, z"_y $ и находятся по формулам:

Частные производные первого порядка

$$ z"_x = \frac{\partial z}{\partial x} $$

$$ z"_y = \frac{\partial z}{\partial y} $$

Частные производные второго порядка

$$ z""_{xx} = \frac{\partial^2 z}{\partial x \partial x} $$

$$ z""_{yy} = \frac{\partial^2 z}{\partial y \partial y} $$

Смешанная производная

$$ z""_{xy} = \frac{\partial^2 z}{\partial x \partial y} $$

$$ z""_{yx} = \frac{\partial^2 z}{\partial y \partial x} $$

Частная производная сложной функции

а) Пусть $ z (t) = f(x(t), y(t)) $, тогда производная сложной функции определяется по формуле:

$$ \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} $$

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

$$ \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} $$

$$ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} $$

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ \frac{dy}{dx} = -\frac{f"_x}{f"_y} $$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z"_x = - \frac{F"_x}{F"_z}; z"_y = - \frac{F"_y}{F"_z} $$

Примеры решений

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 - y^2 + 4xy + 10 $
Решение

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z"_x = (x^2-y^2+4xy+10)"_x = 2x - 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z"_y = (x^2-y^2+4xy+10)"_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ z"_x = 2x+4y; z"_y = -2y+4x $$
Пример 2
Найти частные производные функции второго порядка $ z = e^{xy} $
Решение

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

$$ z"_x = (e^{xy})"_x = e^{xy} \cdot (xy)"_x = ye^{xy} $$

Положим теперь $ x $ постоянной величиной:

$$ z"_y = (e^{xy})"_y = e^{xy} \cdot (xy)"_y = xe^{xy} $$

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

$$ z""_{xx} = (z"_x)"_x = (ye^{xy})"_x = (y)"_x e^{xy} + y(e^{xy})"_x = 0 + ye^{xy}\cdot (xy)"_x = y^2e^{xy} $$

Задаем $ x $ постоянной:

$$ z""_{yy} = (z"_y)"_y = (xe^{xy})"_y = (x)"_y e^{xy} + x(e^{xy})"_y = 0 + x^2e^{xy} = x^2e^{xy} $$

Теперь осталось найти смешанную производную. Можно продифференцировать $ z"_x $ по $ y $, а можно $ z"_y $ по $ x $, так как по теореме $ z""_{xy} = z""_{yx} $

$$ z""_{xy} = (z"_x)"_y = (ye^{xy})"_y = (y)"_y e^{xy} + y (e^{xy})"_y = ye^{xy}\cdot (xy)"_y = yxe^{xy} $$

Ответ
$$ z"_x = ye^{xy}; z"_y = xe^{xy}; z""_{xy} = yxe^{xy} $$
Пример 4
Пусть $ 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение

Записываем функцию в формате: $ F(x,y,z) = 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z"_x (y,z - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_x = 3 x^2 z - 4 $$

$$ z"_y (x,y - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_y = 3z^2 $$

Ответ
$$ z"_x = 3x^2 z - 4; z"_y = 3z^2; $$
Понравилась статья? Поделиться с друзьями: