Процесс циклического кодирования. Процесс циклического кодирования «Циклические коды. Коды БЧХ»

Циклические коды являются разновидностью линейных групповых кодов и относятся к систематическим кодам. Первоначально были созданы для упрощения процедуры декодирования. Однако высокая эффективность к обнаружению ошибок таких кодов обеспечила их широкое применение на практике. Двоичный вектор циклического кода удобно рассматривать не как комбинацию нулей и единиц, а в виде полинома некоторой степени

где х - основание системы счисления, коэффициенты, принадлежащие множеству в случае двоичной системы счисления.

Пример. Двоичный вектор может быть представлен в виде полинома следующим образом:

Представление двоичных векторов в виде полиномов позволяет свести действие над векторами к действиям над многочленами. При этом:

сложение многочленов сводится к сумме по модулю 2 коэффициентов при равных степенях переменной

умножение производится по обычному правилу умножения степенных функций, однако полученные коэффициенты при данной степени складываются по модулю 2;

деление осуществляется по правилам деления степенных функций, при этом операция вычитания заменяется суммированием по модулю 2.

Пример. Найти сумму многочленов

Найти произведение многочленов

Выполнить деление многочленов

Основным свойством циклических кодов является следующее: если вектор принадлежит циклическому коду, то любой вектор, полученный из рассматриваемого с помощью циклических сдвигов, также принадлежит циклическому коду.

Идея построения циклических кодов базируется на понятии неприводимого многочлена. Многочлен называется неприводимым, если он делится только на самого себя и на единицу, и не делится ни на какой другой многочлен. Иными словами, неприводимый многочлен нельзя представить в виде произведения многочленов низших степеней. На неприводимый многочлен без остатка делится многочлен . Неприводимые многочлены играют в теории циклических кодов роль образующих полиномов. Виды неприводимых многочленов различных степеней приведены в

Примеры неприводимых многочленов:

Векторы циклического кода строятся в соответствий со следующими правилами. Пусть - любой двоичный вектор некоторого натурального кода; - одночлен степени неприводимый полином степени Тогда любой вектор циклического кода образуется с помощью соотношения

где остаток от деления

Таким образом, любой вектор циклического кода может быть образован умножением некоторого вектора натурального двоичного кода на одночлен степени с добавлением к полученному произведению остатка от деления При построении циклических кодов указанным способом расположение информационных разрядов в каждом векторе кода строго упорядочено - они занимают старших разрядов вектора кода, а остальные разрядов являются проверочными.

Пример. Вектор натурального двоичного кода имеет вид Образовать из негр вектор циклического кода при условии, что образующий полином имеет вид

Представим вектор в виде полинома

В результате деления полинома на полином получаем остаток . Поэтому

Циклический код, как и всякий систематический код, удобно задавать в матричном виде с помощью порождающей матрицы имеющей вид

где - транспонированная единичная йатрица формата - матрица проверочных разрядов, образованная остатком от деления

Зададим порождающую матрицу циклического кода длиной информационными разрядами и порождающим полиномом .

Очевидно, заготовка для порождающей матрицы имеет вид

Для нахождения строк проверочных разрядов матрицы вычислим и запишем в виде полинома каждый вектор единичной матрицы

Длина вектора циклического кода поэтому

(см. скан)

В результате получаем порождающую матрицу С:

Любой вектрр циклического кода получается как сумма по моду векторов его порождающей матрицы. Так как циклический код является групповым, то нулевой вектор всегда приписывается циклическому коду как единичный элемент группы»

Таблица 13.5

Пример. Построить все векторы циклического кода, заданного порождающей матрицей

Код представлен в табл. 13.5.

Необходимо отметить, что каждый циклический код, заданный некоторой порождающей матрицей, можно представить в нескольких вариантах, отличающихся друг от друга длиной и количеством информационных разрядов (при одинаковых обнаруживающих способностях). Эти варианты так называемых укороченных циклических кодов получаются вычеркиванием последних строк и такого же количества столбцов слева в порождающей матрице циклического кода. При этом число проверочных разрядов остается неизменным, а длина кода и число его информационных разрядов уменьшаются соответственно на величину, равную числу вычеркнутых строк и столбцов порождающей матрицы.

Пример, Циклический код задан своей порождающей матрицей

Вычеркнем из шесть последних строк и шесть первых слева столбцов. Получим порождающую матрицу

Характеристики (в смысле обнаружения ошибок) полученного кода такие же, как и циклического кода, представленного порождающей матрицей

Построение циклических кодов с заданными параметрами связано с выбором образующего неприводимого полинома. Образующий полином выбирается исходя из следующего условия: степень полинома должна быть равна числу проверочных разрядов циклического кода.

На практике часто возникает задача построения циклического кода заданной мощности и заданной обнаруживающей и корректирующей способностей.

1. Так как мощность циклического кода задана, то число его информационных разрядов определяется в соответствии с формулой

2. Оптимальное число проверочных разрядов циклического кода определяется по специальным таблицам .

3. По справочникам находятся все неприводимые полиномы степени

4. Для одного из непроводимых многочленов (следует выбирать многочлен с максимальным числом членов) степени строится порождающая матрица циклического кода. Каждый вектор кода вычисляется по формуле

где - полином информационного вектора порождающей матрицы; - одночлен степени - остаток от деления

5. Построенная порождающая матрица проверяется на выполнение следующих условий:

а) вес в смысле Хэмминга любого вектора порождающей матрицы должен удовлетворять соотношению где - минимальное расстояние, в смысле Хэмминга рассматриваемого циклического кода;

б) вес в смысле Хэмминга проверочного вектора, являющегося суммой по модулю 2 любых двух проверочных векторов порождающей матрицы, должен удовлетворять соотношению

6. Если порождающая матрица циклического кода удовлетворяет всем приведенным условиям, то выписываются все векторы циклического кода и определяется в соответствии с известными правилами для линейных групповых кодов. Если код не соответствует требованиям, то выбирается другой порождающий полином той же степени и процедура образования циклического кода повторяется для нового полинома.

Построим циклический код мощностью 16 и корректирующей с по собностью

Для определяем значение по

3» По справочникам находим все неприводимые полиномы степени Таких полиномов два:

4. Выбираем в качестве образующего полином Заготовка порождающей матрицы циклического кода имеет вид

Каждый информационный вектор из матрицы представляем полиномом

Определяем полностью все векторы порождающей матрицы, используя формулу

Так как длина вектора циклического кода (см. формат порождающей матрицы то

Аналогично находим все остальные векторы порождающей мат рицы

Таблица 13.6

В результате получена порождающая матрица С? циклического кода

5. Полученная порождающая матрица удовлетворяет всем необходимым условиям. Поэтому строим циклический код полностью (табл. 13.6). Как следует из таблицы, код имеет т. е. удовлетворяет требованиям задачи.

Замечания. При использовании неприводимого полинома в качестве порождающего получаем код, также удовлетворяющий требованиям задачи. Его порождающая матрица имеет вид

Обнаружение ошибок с помощью циклических кодов производится следующим образом. Любой вектор циклического кода делится на образующий полином без остатка. Поэтому критерием наличия ошибки в векторе циклического кода является появление ненулевого остатка от деления вектора циклического кода на образующий полином. Ненулевой остаток является опознавателем ошибки в векторе циклического кода, однако его вид не указывает на место расположения ошибки в кодовом векторе. Исправление ошибок базируется на следующем алгоритме:

1. Принятый кодовый вектор разделить на образующий полином.

Если число единиц не превышает корректирующей способности кода, то принятый вектор сложить по модулю 2 с полученным остатком. Результат суммирования даст исправленный кодовый вектор. Если число единиц остатка больше корректирующей способности кода, то осуществить циклический сдвиг искаженного вектора влево на один разряд, а затем произвести деление на образующий полином. Если полученный остаток содержит единиц не больше корректирующей способности циклического кода, то произвести суммирование сдвинутого циклически вектора с остатком. Результат суммирования сдвинуть циклически на один разряд вправо. Полученный вектор уже не содержит ошибок и является вектором циклического кода.

3. Если после первого циклического сдвига и последующего деления остаток содержит единиц больше, чем корректирующая способность кода, то повторять процедуру алгоритма до тех пор, пока не будет получен остаток с числом единиц, не превышающим корректирующей способности кода. В этом случае результат последнего циклического сдвига суммируется с остатком и полученный вектор циклически сдвигается на столько разрядов вправо, на сколько был сдвинут влево исходный принятый вектор с ошибкой. В итоге получается исправленный кодовый вектор.

Пусть циклический код задан своей порождающей матрицей С и образующим полиномом , где

Код имеет в 3, т. е. корректирует ошибки кратности Пусть вместо вектора 0001101 принят вектор 0011101. Для исправления ошибки осуществляем следующие действия. Принятый вектор записываем в виде полинома: затем делим на

Полученный в результате деления остаток содержит три единицы, что больше, чем корректирующая способность кода. Поэтому делаем циклический сдвиг влево на один разряд принятого кодового вектора. В результате имеем

Осуществляем деление на

Полученный остаток содержит две единицы, что больше, чем корректирующая способность кода. Поэтому делаем еще один циклический сдвиг влево на один разряд принятого кодового вектора. В результате имеем

Осуществляем деление на

Полученный остаток снова содержит две единицы, поэтому делаем еще один циклический сдвиг влево на один разряд и получаем Делим на

Широкое распространение на практике получил класс линейных кодов, которые называются цшаическими кодами . Название происходит от основного свойства этих кодов: если некоторая кодовая комбинация принадлежит циклическому коду, то комбинация, полученная циклической перестановкой исходной комбинации (циклическим сдвигом), также принадлежит данному коду:

Вторым свойством всех разрешенных комбинаций циклических кодов является их делимость без остатка на некоторый выбранный полином, называемый производящим.

Эти свойства используются при построении кодов кодирующих и декодирующих устройств, а также при обнаружении и исправлении ошибок.

Циклические коды - это целое семейство помехоустойчивых кодов (одной из разновидностей которых являются коды Хэмминга), обеспечивающее большую гибкость с точки зрения возможности реализации кодов с необходимой способностью обнаружения и исправления ошибок, возникающих при передаче кодовых комбинаций по каналу связи. Циклический код относится к систематическим блочным (л, &)-кодам, в которых к первых разрядов представляют собой комбинацию первичного кода, а последующие (л - к) разрядов являются проверочными.

В основе построения циклических кодов лежит операция деления передаваемой кодовой комбинации на порождающий неприводимый полином степени г. Остаток от деления используется при формировании проверочных разрядов. При этом операции деления предшествует операция умножения, осуществляющая сдвиг влево ^-разрядной информационной кодовой комбинации на г разрядов.

При декодировании принятой л-разрядной кодовой комбинации опять производится деление на порождающий (производящий, образующий) полином.

Синдромом ошибки в этих кодах является наличие остатка от деления принятой кодовой комбинации на порождающий полином. Если синдром равен нулю, то считается, что ошибок нет. В противном случае с помощью полученного синдрома можно определить номер разряда принятой кодовой комбинации, в котором произошла ошибка, и исправить ее.

Однако не исключается возможность возникновения в кодовых комбинациях многократных ошибок, что может привести к ложным исправлениям и (или) необнаружению ошибок при трансформации одной разрешенной комбинации в другую.

Пусть общее число битов в блоке равно я, из них полезную информацию несут в себе т битов, тогда в случае ошибки имеется возможность исправить j битов. Зависимость 5 от п и т для кодов можно определить по табл. 2.6.

Таблица 2.6

Зависимость общего числа разрядов комбинаций от количества информационных и исправляемых разрядов

Увеличивая разность (п - т), можно не только нарастить число исправляемых бит s, но и обнаружить множественные ошибки. Проценты обнаруживаемых множественных ошибок приведены в табл. 2.7.

Таблица 2.7

Проценты обнаруживаемых множественных ошибок

Описание циклических кодов и их построение удобно проводить с помощью многочленов (или полиномов). Запись комбинации в виде полинома используется для того, чтобы отобразить формализованным способом операцию циклического сдвига исходной кодовой комбинации. Так, «-элементную кодовую комбинацию можно описать полиномом (п - 1) степени:

где a„_j = {0, 1}, причем а„_, = 0 соответствуют нулевым элементам комбинации, д„_, = 1 - ненулевым; i - номер разряда кодовой комбинации.

Представим полиномы для конкретных 4-элементных комбинаций:

Операции сложения и вычитания являются эквивалентными и ассоциативными и выполняются по модулю 2:

Примеры выполнения операций:

Операция деления является обычным делением многочленов, только вместо вычитания используется сложение по модулю 2:

Циклический сдвиг кодовой комбинации - перемещение ее элементов справа налево без нарушения порядка их следования, так что крайний левый элемент занимает место крайнего правого.

Основные свойства и название циклических кодов связаны с тем, что все разрешенные комбинации битов в передаваемом сообщении (кодовые слова) могут быть получены путем операции циклического сдвига некоторого исходного кодового слова.

Допустим, задана исходная кодовая комбинация и соответствующий ей полином:

Умножим а(х) на х:

Так как максимальная степень х в кодовой комбинации длиной п не превышает (л - 1), то из правой части полученного выражения для получения исходного полинома необходимо вычесть а„(х" - 1). Вычитание а„(х" - 1) называется взятием остатка по модулю (х п - 1).

Сдвиг исходной комбинации на / тактов можно представить следующим образом: а(х) ? У - а„(х" - 1), т.е. умножением а(х) нах" и взятием остатка по модулю (х" - 1). Взятие остатка необходимо при получении многочлена степени, большей или равной п.

Идея построения циклических кодов базируется на использовании неприводимых многочленов. Неприводимым называется многочлен, который не может быть представлен в виде произведения многочленов низших степеней, т.е. делиться только на самого себя или на единицу и не делиться ни на какой другой многочлен. На такой многочлен делится без остатка двучлен (х" + 1). Неприводимые многочлены в теории циклических кодов играют роль порождающих полиномов.

Возвращаясь к определению циклического кода и учитывая запись операций циклического сдвига кодовых комбинаций, можно записать порождающую матрицу циклического кода в следующем виде:

где Р(х) - исходная кодовая комбинация, на базе которой получены все остальные - 1) базовые комбинации;

С, = 0 или Cj = 1 («О», если результирующая степень полинома Р(х)-х‘ не превосходит (л - 1), или «1» - если превосходит).

Комбинация Р(х) называется порождающей (генераторной) комбинацией. Для построения циклического кода достаточно верно выбрать Р(х). Затем все остальные кодовые комбинации получаются такими же, как и в групповом коде.

Порождающий полином должен удовлетворять следующим требованиям:

  • Р(х) должен быть ненулевым;
  • вес Р(х ) не должен быть меньше минимального кодового расстояния: V(P(x)) > d mm ;
  • Р(х) должен иметь максимальную степень к (к - число избыточных элементов в коде);
  • Р(х) должен быть делителем полинома (х" - 1).

Выполнение последнего условия приводит к тому, что все рабочие кодовые комбинации циклического кода приобретают свойство делимости на Р(х) без остатка. Учитывая это, можно дать другое определение циклического кода: циклический код - это код, все рабочие комбинации которого делятся на порождающий полином без остатка.

Для определения степени порождающего полинома можно воспользоваться выражением г > log 2 (и + 1), где п - размер передаваемого пакета за один раз, т.е. длина строящегося циклического кода.

Примеры порождающих полиномов приведены в табл. 2.8.

Таблица 2.8

Примеры порождающих полиномов

Алгоритм получения разрешенной кодовой комбинации циклического кода из комбинации простого кода следующий.

Пусть заданы полином Р(х) = а г _ { х г + а г _ 2 х г ~ 1 + ... + 1, определяющий корректирующую способность кода, и число проверочных разрядов к, а также исходная комбинация простого от-элементного кода и информационные разряды в виде многочлена А т (х).

Требуется определить разрешенную кодовую комбинацию циклического кода (и, к).

  • 1. Представляем исходную кодовую комбинацию в виде многочлена А т (х). Умножаем многочлен исходной кодовой комбинации на х г: А т (х ) х г. Степень порождающего полинома г равна значению старшего разряда исходной кодовой комбинации.
  • 2. Определяем проверочные разряды, дополняющие исходную информационную комбинацию до разрешенной, как остаток от деления полученного в предыдущем пункте произведения на порождающий

полином:

Остаток деления обозначим как R(x).

3. Окончательно разрешенная кодовая комбинация циклического

кода определится как = А т (х) ? x r + R(x).

Для определения ошибок в принятой кодовой комбинации достаточно разделить ее на порождающий полином. Если принятая комбинация - разрешенная, то остаток от деления будет нулевым. Ненулевой остаток свидетельствует о том, что принятая комбинация содержит ошибки. По виду остатка (синдрома) можно в некоторых случаях также сделать вывод о характере ошибки и ее местоположении и исправить ошибку.

Алгоритм определения ошибки следующий.

Пусть заданы «-элементные комбинации (п = к + т).

  • 1. Выявляем факт наличия ошибки. Получаем остаток от деления принятой комбинации А п -(х) на порождающий полином Р(х): А (х)
  • --- = Rq(x). Наличие остатка R 0 (x) при (Л 0 (х) ф 0) свидетельствует Р(х)

об ошибке.

2. Делим полученный полином #(х) = Л„_, (х) 0 Rq (х) на образующий Р г (х): Ш-1 = R(x), где R(x) - текущий остаток.

3. Сравниваем ЛДх) и R(x). Если они равны, то ошибка произошла в старшем разряде. Если нет, то увеличиваем степень принятого полинома на х и снова делим:

4. Сравниваем полученный остаток с Rq(x). Если они равны, то ошибка произошла во втором разряде. Если они не равны, то умножаем Щх) х 2 и повторяем эти операции до тех пор, пока не получим

R(x) = ад.

Ошибка будет в разряде, соответствующем числу, на которое повышена степень Щх), плюс 1. Например, в случае равенства R(x) и ЛДх)

Соответствующий этому слову, от формальной переменной x . Видно, что это соответствие не просто взаимнооднозначное, но и изоморфное . Так как «слова» состоят из букв из поля, то их можно складывать и умножать (поэлементно), причём результат будет в том же поле. Полином, соответствующий линейной комбинации пары слов и , равен линейной комбинации полиномов этих слов

Это позволяет рассматривать множество слов длины n над конечным полем как линейное пространство полиномов со степенью не выше n-1 над полем

Алгебраическое описание

Если кодовое слово, получающееся циклическим сдвигом на один разряд вправо из слова , то ему соответствующий полином c 1 (x ) получается из предыдущего умножением на x:

Пользуясь тем, что ,

Сдвиг вправо и влево соответственно на j разрядов:

Если m (x ) - произвольный полином над полем G F (q ) и c (x ) - кодовое слово циклического (n ,k ) кода, то m (x )c (x )m o d (x n − 1) тоже кодовое слово этого кода.

Порождающий полином

Определение Порождающим полиномом циклического (n ,k ) кода C называется такой ненулевой полином из C , степень которого наименьшая и коэффициент при старшей степени g r = 1 .

Теорема 1

Если C - циклический (n ,k ) код и g (x ) - его порождающий полином, тогда степень g (x ) равна r = n k и каждое кодовое слово может быть единственным образом представлено в виде

c (x ) = m (x )g (x ) ,

где степень m (x ) меньше или равна k − 1 .

Теорема 2

g (x ) - порождающий полином циклического (n ,k ) кода является делителем двучлена x n − 1

Следствия: таким образом в качестве порождающего полинома можно выбирать любой полином, делитель x n − 1 . Степень выбранного полинома будет определять количество проверочных символов r , число информационных символов k = n r .

Порождающая матрица

Полиномы линейно независимы, иначе m (x )g (x ) = 0 при ненулевом m (x ) , что невозможно.

Значит кодовые слова можно записывать, как и для линейных кодов, следущим образом:

, где G является порождающей матрицей , m (x ) - информационным полиномом.

Матрицу G можно записать в символьной форме:

Проверочная матрица

Для каждого кодового слова циклического кода справедливо . Поэтому проверочную матрицу можно записать как:

Кодирование

Несистематическое

При несистематическом кодирование кодовое слово получается в виде произведения информационного полинома на порождающий

c (x ) = m (x )g (x ) .

Оно может быть реализовано при помощи перемножителей полиномов.

Систематическое

При систематическом кодировании кодовое слово формируется в виде информационного подблока и проверочного

Пусть информационное слово образует старшие степени кодового слова, тогда

c (x ) = x r m (x ) + s (x ),r = n k

Тогда из условия , следует

Это уравнение и задает правило систематичекого кодирования. Оно может быть реализовано при помощи многотактных линейных фильтров(МЛФ)

Примеры

Двоичный (7,4,3) код

В качестве делителя x 7 − 1 выберем порождающий полином третьей степени g (x ) = x 3 + x + 1 , тогда полученный код будет иметь длину n = 7 , число проверочных символов (степень порождающего полинома) r = 3 , число информационных символов k = 4 , минимальное расстояние d = 3 .

Порождающая матрица кода:

,

где первая строка представляет собой запись полинома g (x ) коэффициентами по возрастанию степени. Остальные строки - циклические сдвиги первой строки.

Проверочная матрица:

,

где i-ый столбец, начиная с 0-ого, представляет собой остаток от деления x i на полином g (x ) , записанный по возрастанию степеней, начиная сверху.

Так, например, 3-ий столбец получается , или в векторной записи .

Легко убедиться, что G H T = 0 .

Двоичный (15,7,5) БЧХ код

В качестве порождающего полинома g (x ) можно выбрать произведение двух делителей x 15 − 1 ^

g (x ) = g 1 (x )g 2 (x ) = (x 4 + x + 1)(x 4 + x 3 + x 2 + x + 1) = x 8 + x 7 + x 6 + x 4 + 1 .

Тогда каждое кодовое слово можно получить с помощью произведения информационного полинома m (x ) со степенью k − 1 таким образом:

c (x ) = m (x )g (x ) .

Например, информационному слову соответствует полином m (x ) = x 6 + x 5 + x 4 + 1 , тогда кодовое слово c (x ) = (x 6 + x 5 + x 4 + 1)(x 8 + x 7 + x 6 + x 4 + 1) = x 14 + x 12 + x 9 + x 7 + x 5 + 1 , или в векторном виде

См. также

Ссылки

Wikimedia Foundation . 2010 .

  • Циклические формы в музыке
  • Цикличные граничные условия

Смотреть что такое "Циклические коды" в других словарях:

    укороченные циклические коды - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN shortened cyclic codes …

    Коды Рида-Соломона - недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Очень распространены коды Рида Соломона, работающие с байтами (октетами). Код Рида Соломона является … Википедия

    коды Голея - Семейство совершенных линейных блоковых кодов с исправлением ошибок. Наиболее полезным является двоичный код Голея. Известен также троичный код Голея. Коды Голея можно рассматривать как циклические коды. … … Справочник технического переводчика

    Коды, исправляющие ошибки

    Коды исправляющие ошибки - Обнаружение ошибок в технике связи действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок (коррекция ошибок) процедура восстановления информации после… … Википедия

    Исправляющие ошибки Коды - Обнаружение ошибок в технике связи действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок (коррекция ошибок) процедура восстановления информации после… … Википедия

Циклическим кодом называется линейный код, который представляет собой конечное множество, замкнутое относительно операции циклического сдвига кодовых векторов, образующих его. Пусть дан n -мерный вектор v = a 0 a 1 …a n -1 с координатами из конечного поля F . Его циклическим сдвигом называется вектор v" = a n ­ -1 a 0 a 1 …a n -2 .

Рассмотрим n -мерное арифметическое пространство над полем Галуа GF (2). Каждому вектору a 0 a 1 …a n -1 из GF (2) можно сопоставить взаимно однозначно многочлен a 0 +a 1 x +…+a n -1 x n -1 с коэффициентами из GF (2). Сумме двух векторов a 0 a 1 …a n -1 и b 0 b 1 …b n -1 ставится в соответствие сумма соответствующих им многочленов, произведению элементов поля на вектор - произведение многочлена, соответствующего этому вектору, на элемент.

Рассмотрим некоторый многочлен g (x ) из описанного линейного пространства. Множество всех многочленов из этого подпространства, которые делятся без остатка на g (x ), образует линейное подпространство. Линейное подпространство определяет некоторый линейный код.

Линейный код, образованный классом многочленов C (g (x )), кратных некоторому полиному g (x ), называемому порождающим многочленом, называется полиномиальным.

Покажем, как связаны полиномиальные коды C (g (x )) и циклические коды. Пусть a = a 0 …a n -1 – некоторое кодовое слово, а соответствующий кодовый многочлен a (x ) = a 0 +...+a n -1 x n -1 . Циклическому сдвигу a " соответствует кодовый многочлен a "(x ) = a n -1 +a 0 x +…+a n -2 x n -1 , который можно выразить через первоначальный:

Поскольку полиномиальный код должен делиться на g (x ), то для того, чтобы он был циклическим, многочлен a "(x ) должен делиться на g (x ). Из этого соображения можно сформулировать следующую теорему. Полиномиальный код является циклическим тогда и только тогда, когда многочлен g (x ) является делителем многочлена x n –1. В этом случае многочлен g (x ) называется порождающим многочленом циклического кода.

В теории кодирования доказывается следующая теорема: если многочлен g (x ) имеет степень n k и является делителем x n –1, то C (g (x )) является линейным циклическим (n , k )-кодом.

Многочлен x n –1 разложим на множители x n –1 = (x –1)(x n -1 +x n -1 +…+1). Следовательно, циклические коды существуют при любом n . Число циклических n -разрядных кодов равно числу делителей многочлена x n –1. Для построения циклических кодов разработаны таблицы разложения многочленов x n –1 на неприводимые многочлены, то есть на такие, которые делятся только на единицу и на самого себя.

Рассмотрим, например, какие коды можно построить на основе многочлена x 7 –1 над полем GF (2). Разложение многочлена на неприводимые множители имеет вид

Поскольку можно образовать шесть делителей многочлена x 7 –1, комбинируя неприводимые делители, существует шесть двоичных циклических кодов. (n , k )-код определяется, во-первых, значением n , а во-вторых, значением k = n s , s – степень многочлена-делителя x n –1, определяющего код. Ниже приведены делители полинома и соответствующие им значения k :

x – 1, s =1, k =6;

x 3 +x 2 +1, s =3, k =4;

x 3 +x +1, s =3, k =4;

(x –1)(x 3 +x 2 +1)=x 4 +x 2 +x+1, s =4, k =3;

(x –1)(x 3 +x +1)=x 4 +x 3 +x 2 +1, s =4, k =3;

(x 3 +x 2 +1)( x 3 +x +1)=x 6 + x 5 + x 4 + x 3 + x 2 + x , s =6, k =1.

(7, 6)-код имеет лишь один проверочный символ, а (7, 1)-код – лишь один информационный. Они являются соответственно кодом с проверкой на чётность и кодом с повторением.

Как и обычный линейный код, циклический код может быть задан порождающей матрицей. Следовательно, задача состоит в том, чтобы найти такую матрицу, то есть найти k линейно независимых кодовых комбинаций, образующих её. Воспользуемся для этого свойством замкнутости циклического кода относительно операции циклического сдвига. Заметим, что циклический сдвиг вправо на один разряд эквивалентен умножению многочлена g (x ) на x . Тогда порождающую матрицу можно построить, взяв в качестве строк порождающий многочлен и k его циклических сдвигов:

Рассмотрим теперь, как с помощью порождающего многочлена g (x ) = 1+x +x 3 осуществляется кодирование (7, 4)-кодом. Возьмём, например, 4-разрядное слово (0101), которому соответствует многочлен f (x ) = x + x 3 . Перемножив эти два многочлена.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

«Циклические коды. Коды БЧХ»

МИНСК, 2009

Циклические коды

Циклическим кодом называется линейный блоковый (n,k)-код, который характеризуется свойством цикличности, т.е. сдвиг влево на один шаг любого разрешенного кодового слова дает также разрешенное кодовое слово, принадлежащее этому же коду и у которого, множество кодовых слов представляется совокупностью многочленов степени (n-1) и менее, делящихся на некоторый многочлен g(x) степени r = n-k, являющийся сомножителем двучлена x n +1.

Многочлен g(x) называется порождающим.

Как следует из определения, в циклическом коде кодовые слова представляются в виде многочленов


где n - длина кода; - коэффициенты из поля GF(q).

Если код построен над полем GF(2), то коэффициенты принимают значения 0 или 1 и код называется двоичным.
Пример. Если кодовое слово циклического кода

то соответствующий ему многочлен

Например, если код построен над полем GF(q)=GF(2 3), которое является расширением GF(2) по модулю неприводимого многочлена f(z)=z 3 +z+1, а элементы этого поля имеют вид, представленный в таблице 1,

то коэффициенты

принимают значения элементов этого поля и поэтому они сами отображаются в виде многочленов следующего вида
где m - степень многочлена, по которому получено расширение поля GF(2);\ a i - коэффициенты, принимающие значение элементов GF(2), т.е. 0 и 1. Такой код называется q-ным.

Длина циклического кода называется примитивной и сам код называется примитивным, если его длина n=q m -1 на GF(q).

Если длина кода меньше длины примитивного кода, то код называется укороченным или непримитивным.

Как следует из определения общее свойство кодовых слов циклического кода - это их делимость без остатка на некоторый многочлен g(x), называемый порождающим.

Результатом деления двучлена x n +1 на многочлен g(x) является проверочный многочлен h(x).

При декодировании циклических кодов используются многочлен ошибок e(x) и синдромный многочлен S(x).

Многочлен ошибок степени не более (n-1) определяется из выражения

где - многочлены, отображающие соответственно принятое (с ошибкой) и переданное кодовые слова.

Ненулевые коэффициенты в е(x) занимают позиции, которые соответствуют ошибкам.

Пример.

Синдромный многочлен, используемый при декодировании циклического кода, определяется как остаток от деления принятого кодового слова на порождающий многочлен, т.е.


или

Следовательно, синдромный многочлен зависит непосредственно от многочлена ошибок е(х).Это положение используется при построении таблицы синдромов, применяемой в процессе декодирования. Эта таблица содержит список многочленов ошибок и список соответствующих синдромов, определяемых из выражения

(см. таблицу 2).

В процессе декодирования по принятому кодовому слову вычисляется синдром, затем в таблице находится соответствующий многочлен е(х), суммирование которого с принятым кодовым словом дает исправленное кодовое слово, т.е.

Перечисленные многочлены можно складывать, умножать и делить, используя известные правила алгебры, но с приведением результата по mod 2, а затем по mod x n +1, если степень результата превышает степень (n-1).

Допустим, что длина кода n=7, то результат приводим по mod x 7 +1.

При построении и декодировании циклических кодов в результате деления многочленов обычно необходимо иметь не частное, а остаток от деления.
Поэтому рекомендуется более простой способ деления, используя не многочлены, а только его коэффициенты (вариант 2 в примере).

Пример.

Матричное задание кодов

Циклический код может быть задан порождающей и проверочной матрицами. Для их построения достаточно знать порождающий g(x) и проверочный h(x) многочлены. Для несистематического циклического кода матрицы строятся циклическим сдвигом порождающего и проверочного многочленов, т.е. путем их умножения на x

и

При построении матрицы H (n,k) старший коэффициент многочлена h(x) располагается справа.

Пример. Для циклического (7,4)-кода с порождающим многочленом g(x)=x 3 +x+1 матрицы G (n,k) и H (n,k) имеют вид:

где

Для систематического циклического кода матрица G (n,k) определяется из выражения

где I k - единичная матрица; R k,r - прямоугольная матрица. Строки матрицы R k,r определяются из выражений или где a i (x) - значение i-той строки матрицы I k ; i - номер строки матрицы R k,r .

Пример. Матрица G (n,k) для (7,4)-кода на основе порождающего многочлена g(x)=x 3 +x+1, строится в следующей последовательности


или

Определяется R 4,3 , используя

так как

Аналогичным способом определяется

Понравилась статья? Поделиться с друзьями: